Georeferenced yield mapping of cocoa crop (Theobroma cacao L.) CCN-51 using precision agriculture techniques

Main Article Content

Erick Eguez Enriquez
Edwin Miguel Jiménez Romero
Oscar Oswaldo Prieto Benavides
Anyela Nayeli Cedeño Cedeño

Abstract

Introduction: Precision Agriculture optimizes input use by leveraging the spatial and temporal variability present within crops, including soil, productivity, pests, and diseases. Its implementation in perennial fruit trees represents a challenge due to yield estimation. In cacao crops, variability in productivity is significant, affecting the efficiency of agricultural management. Although studies on interpolation exist for short-cycle crops, a specific approach is required for perennial fruit trees. Objective: This study aims to validate a method for mapping the spatial variability of CCN-51 cacao yield in manual harvest systems. Methodology: The experimental area covers 3000 m², with 7-year-old grafted plants. For sampling, the area was divided into 36 regular cells of 30 m x 30 m. During the harvest from March to June, pods were collected biweekly and georeferenced using GPS, employing the UTM system and the Mobile Topographer app. Statistical analyses were performed with GS+ and QGIS 3.10, applying interpolation through kriging or inverse distance weighting, depending on spatial dependence.  Results: The study of CCN-51 cacao showed monthly variability in production. Diseases such as frosty pod rot and black pod increased over time. Geostatistical analysis revealed that both the Gaussian and spherical models were suitable to describe the spatial dependence of healthy pods, diseased pods, and dry weight, with high spatial dependence in most months. Kriging interpolation allowed the identification of specific areas of high and low production, showing that the southwest and central zones were the most productive or affected depending on the month. Conclusion: The proposed method allows for optimizing cacao crop management, increasing resource use efficiency, and improving sustainability in perennial agricultural systems. General Area of Study: Agronomy. Specific area of study: Precision agriculture. Type of study: Original articles.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Eguez Enriquez, E., Jiménez Romero, E. M., Prieto Benavides, O. O., & Cedeño Cedeño, A. N. (2025). Georeferenced yield mapping of cocoa crop (Theobroma cacao L.) CCN-51 using precision agriculture techniques. Ciencia Digital, 9(3.1), 27-44. https://doi.org/10.33262/cienciadigital.v9i3.1.3376
Section
Artículos

References

Anzules-Toala, V., Pazmiño-Bonilla, E., Alvarado-Huamán, L., Borjas-Ventura, R., Castro-Cepero, V., & Julca-Otiniano, A. (2021). Control of cacao (Theobroma cacao) diseases in Santo Domingo de los Tsachilas, Ecuador. Agronomía Mesoamericana, 45939. https://doi.org/10.15517/am.v33i1.45939

Cabi. (2022). Phytophthora megakarya (black pod of cocoa). En CABI Compendium. https://doi.org/10.1079/cabicompendium.40979

Cárdenas Pardo, N. J., Darghan Contreras, A. E., Sosa Rico, M. D., & Rodríguez, A. (2017). Análisis espacial de la incidencia de enfermedades en diferentes genotipos de cacao (Theobroma cacao L.) en El Yopal (Casanare), Colombia. Acta Biológica Colombiana, 22(2). https://doi.org/10.15446/abc.v22n2.61161

Colaço, A. F., Trevisan, R. G., Karp, F. H. S., & Molin, J. P. (2020). Yield mapping methods for manually harvested crops. Computers and Electronics in Agriculture, 177, 105693. https://doi.org/10.1016/j.compag.2020.105693

Cubillos, G. (2023). Model of cultural control of the cacao frosty pod rot disease (Moniliophthora roreri (CIF & Par) Evans et al.)1. Horticulture International Journal, 7(1), 6–7. https://doi.org/10.15406/hij.2023.07.00268

Flores, V., Gómez Rodríguez, L., López García, J. A., & Grajales Conesa, J. (2022). Mecanismos de infección endógena en frutos de cacao con Moniliophthora roreri. Polibotánica, 0(53). https://doi.org/10.18387/polibotanica.53.13

Furtado, D. C., & Oliveira, F. C. D. de. (2019). Distribuição espacial da produtividade e fatores fitossanitários de cacaueiros na Amazônia Oriental. UFRA.

Hammam, A. A., Mohamed, W. S., Sayed, S. E.-E., Kucher, D. E., & Mohamed, E. S. (2022). Assessment of Soil Contamination Using GIS and Multi-Variate Analysis: A Case Study in El-Minia Governorate, Egypt. Agronomy, 12(5), 1197. https://doi.org/10.3390/agronomy12051197

Kumar, G. R., Challur, G., & Tammana, P. B. (2022). Machine Learning Techniques For Crop Yield Prediction In Indian Agriculture. International Journal of Science & Engineering Development Research, 7(11), 475–482. https://api.semanticscholar.org/CorpusID:254587884

Molin, J. P., Colaço, A. F., Carlos, E. F., & Mattos Junior, D. de. (2012). Yield mapping, soil fertility and tree gaps in an orange orchard. Revista Brasileira de Fruticultura, 34(4), 1256–1265. https://doi.org/10.1590/S0100-29452012000400035

Molin, J. P., & Mascarin, L. S. (2007). Colheita de citros e obtenção de dados para mapeamento da produtividade. Engenharia Agrícola, 27(1), 259–266. https://doi.org/10.1590/S0100-69162007000100020

Okumura, M. H., de Tomi, G., & Passos, A. (2014). Geroferenced Pest Control Management in Brazilian Citrus Production. Materials Science Forum, 805, 429–434. https://doi.org/10.4028/www.scientific.net/MSF.805.429

Ota, T., Iwasaki, Y., Nakano, A., Kuribara, H., & Higashide, T. (2019). Development of yield and harvesting time monitoring system for tomato greenhouse production. Engineering in Agriculture, Environment and Food, 12(1), 40–47. https://doi.org/10.1016/j.eaef.2018.09.003

Pereira, G. W., Valente, D. S. M., Queiroz, D. M. de, Coelho, A. L. de F., Costa, M. M., & Grift, T. (2022). Smart-Map: An Open-Source QGIS Plugin for Digital Mapping Using Machine Learning Techniques and Ordinary Kriging. Agronomy, 12(6), 1350. https://doi.org/10.3390/agronomy12061350

Ramírez Gil, J. G. (2016). Pérdidas económicas asociadas a la pudrición de la mazorca del cacao causada por Phytophthora spp., y Moniliophthora roreri (Cif y Par) Evans et al., en la hacienda Theobroma, Colombia. Revista de Protección Vegetal, 31(1), 42–49.

Robertson, G. P. (2008). GS+: Geostatistics for the Environmental Sciences (10.0). Gamma Design Software, LLC.

Swan, A. (1998). Geostatistics for Natural Resources Evaluation. Geological Magazine, 135(6), 819–842. https://doi.org/10.1017/S0016756898631502

Talaat, F. M. (2023). Crop yield prediction algorithm (CYPA) in precision agriculture based on IoT techniques and climate changes. Neural Computing and Applications, 35(23), 17281–17292. https://doi.org/10.1007/s00521-023-08619-5

Ten Hoopen, G., Sounigo, O., Babin, R., Yede, & Cilas, C. (2009). Spatial and temporal analysis of a Phytophthora megakarya epidemic in a plantation in the centre region of Cameroon. 16th international cacao research conference, 683–687.

Triboni, H. de R., & Barbosa, J. C. (2004). Estimativa do número de frutos por amostragem de parte da copa em laranjeiras. Revista Brasileira de Fruticultura, 26(3), 454–458. https://doi.org/10.1590/S0100-29452004000300020