Mathematical modeling of the behavior of earthquake resistant rods subjected to quenching treatments using the finite element method

Main Article Content

Carmen del Rocio Moyón Moyón
Cristina Estefanía Ramos Araujo
Natalia Alexandra Pérez Londo
Luis Stalin López Telenchana

Abstract

Typography:  In the construction sector, seismic resistant rods gradually lose mechanical properties when subjected to thermal treatments, this loss is different and depends on the percentage of alloying elements as well as on the thickness of the material. Therefore, applying mathematical modeling to simulate the degree of affectation in seismic-resistant materials under tensile stresses becomes a tool that allows to establish the behavior of any material quickly and accurately under this type of stresses. The research method applied was inductive, with a quantitative approach, by means of experimental design and documentary type. The population is constituted by rebars, considering 90 experimental units as sample. The destructive tensile test and the simulation using finite element methods showed that the maximum stress for the rupture of the seismic-resistant material is between 690 Mpa and 700 Mpa, a result that is fundamental in the design and material selection phase at the time of constructing new buildings. By means of the analysis of variance, it was concluded that the dependence of the fracture mechanism is a function of both the diameter of the material and the type of manufacturer. In addition, it was established that the fracture mechanism of earthquake resistant materials subjected to thermal hardening processes is of the ductile type.

Downloads

Download data is not yet available.

Article Details

How to Cite
Moyón Moyón, C. del R., Ramos Araujo, C. E., Pérez Londo, N. A., & López Telenchana, L. S. (2023). Mathematical modeling of the behavior of earthquake resistant rods subjected to quenching treatments using the finite element method. ConcienciaDigital, 6(3.2), 47-76. https://doi.org/10.33262/concienciadigital.v6i3.2.2666
Section
Artículos

References

Alshoaibi, A., & Fageehi, Y. (2021). Simulation of Quasi-Static Crack Propagation by Adaptive Finite Element Method. Metals, 11(1), 98. https://doi:10.3390/met11010098
Asif, A., Dhanapal, M., Megha, U., Nazar, S., & Rose S. (2023). Analysis of steel–concrete composite beam using Ansys 18.1 Workbench, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.05.285.
Balaji, M., Murthy, B., & Rao, N. (2016). Optimization of Cutting Parameters in Drilling of AISI 304 Stainless Steel Using Taguchi and ANOVA, Procedia Technology, 25, 1106-1113, ISSN 2212-0173, https://doi.org/10.1016/j.protcy.2016.08.217.
Batista, J., Sousa, M., Ésio M., Lima, F., & Oliveira, X. (2019). Beam-tendon finite elements for post-tensioned steel-concrete composite beams with partial interaction, Journal of Constructional Steel Research, Volume 159, 2019, Pages 147-160, ISSN 0143-974X, https://doi.org/10.1016/j.jcsr.2019.04.009.
Carm, M., Sharmila, S., & Kumar, P. (2023). Finite element analysis of Steel – Concrete – Steel double skin tubular columns under axial loading, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.06.070.
Coburn, A., & Spence, R. (2002). Earthquake Protection, Second edition. John Wiley & Sons, Ltd. ISBN: 0-471-49614-6.
Daniyan, I., Mpofu, K., Muvunzi, R., Fameso, F., & Ramatsetse, B. (2021). Model design and finite element analysis of a traction link of a railcar, Procedia CIRP, 100, 37-42, ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.05.006.
Enami, Keitaro. (2005). The effects of compressive and tensile prestrain on ductile fracture initiation in steels, Engineering Fracture Mechanics, 72(7),1089-1105, ISSN 0013-7944, https://doi.org/10.1016/j.engfracmech.2004.07.012.
Gutiérrez, H., & De La Vara, S. (2008). Análisis y diseño de experimentos. (2ª ed.). McGraw-Hill/Interamericana Editores, S.A. de C.V. http://construccion.uv.cl/docs/textos/TEXTO.13.pdf
He, T., Mitsume, N., Yasui, F., Morita, N., Fukui, T., & Shibanuma, K. (2023). Strategy for accurately and efficiently modelling an internal traction-free boundary based on the s-version finite element method: Problem clarification and solutions verification, Computer Methods in Applied Mechanics and Engineering, Volume 404, ISSN 0045-7825. https://doi.org/10.1016/j.cma.2022.115843.
Hernández-Sampieri, Roberto. (2018) Metodología de la investigación: Las rutas cuantitativa y cualitativa y mixta. México: Mc Graw Hill- Educación.
Huiping, L., Guoqun, Z., Shanting, N., & Chuanzhen, H. (2007). FEM simulation of quenching process and experimental verification of simulation results. Materials Science and Engineering: A, 452-453, 705–714. doi:10.1016/j.msea.2006.11.023. https://www.scopus.com/record/display.uri?eid=2-s2.0-33847258739&origin=inward&txGid=7dfbc6bd7e20bd14c026fd876a44ffc4
Hutton, D. V. (2017). Fundamentals of finite element analysis. (3ª ed.). McGraw-Hill/Interamericana Editores, S.A. de C.V. Ll.
Li, J., Zeng, L., Wang, S., Song, X., Chen, N., Zuo, N., y Rong, Y. (2023). Evaluation of finite element simulation of water quenched cracking for medium carbon alloy steels using acoustic emission technique, Journal of Materials Research and Technology, 25, 763-772, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2023.05.248.
Mackenzie, A., Hancock, J., & Brown, D., (1977) On the influence of state of stress on ductile failure initiation in high strength steels, Engineering Fracture Mechanics, 9(1), 167-188, ISSN 0013-7944, https://doi.org/10.1016/0013-7944(77)90062-5.
Mackerle, J. (2003). Finite element analysis and simulation of quenching and other heat treatment processes. Computational Materials Science, 27(3), 313–332. https://doi:10.1016/s0927-0256(03)00038-7.
Mangai, K., & Eswari, S. (2023). Finite element modelling and analysis of brass coated steel fibre reinforced concrete beams, Materials Today: Proceedings, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.654.
Modirzadeh, M., Tesfamariam, S., & Milani, S., (2012). Performance based earthquake evaluation of reinforced concrete buildings using design of experiments, Expert Systems with Applications, 39(3), 2919-2926, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2011.08.153.
Moreira, L., Batista J., & Parente, E., (2018). Nonlinear finite element simulation of unbonded prestressed concrete beams, Engineering Structures, Volume 170, 2018, Pages 167-177, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2018.05.077.
Overby, D., Kowalsky, M., & Seracino, R. (2017). Stress-strain response of A706 grade 80 reinforcing steel, Construction and Building Materials, Volume 145, 292-302, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2017.03.200.
Şimşir, C., & Gür, C. H. (2008). 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution. Journal of Materials Processing Technology, 207(1-3), 211–221. doi:10.1016/j.jmatprotec.2007.12.074 . https://www.scopus.com/record/display.uri?eid=2-s2.0-50949131521&origin=inward&txGid=3c085c35e31f33e928176ef2a53dfe19
Singh, G., Singh, S., Dhiman, D., Gulati, V., & Kaur, T. (2018). Optimization of EN24 Steel on EDM Machine using Taguchi & ANOVA Technique, Materials Today: Proceedings, 5(14), 27974-27981, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2018.10.037.
Tantideeravit, S., & Kamaya, M. (2020). An application of FEM in the determination of tensile properties for work-hardened carbon steel by means of small punch test, Results in Materials, Volume 8, ISSN 2590-048X, https://doi.org/10.1016/j.rinma.2020.100142.
Toshioka, Y., Fukagawa, M., & Saiga, Y. (1972). Calculation of Internal Stress of Steel Induced during Quenching. Transactions of the Iron and Steel Institute of Japan, 12(1), 6–15. doi:10.2355/isijinternational1966.12.6. https://www.jstage.jst.go.jp/article/isijinternational1966/12/1/12_6/_article
Verma, R., Kumar, P., Jayaganthan, R., & Pathak, H. (2022). Extended finite element simulation on Tensile, fracture toughness and fatigue crack growth behaviour of additively manufactured Ti6Al4V alloy, Theoretical and Applied Fracture Mechanics, Volume 117, 2022, 103163, ISSN 0167-8442, https://doi.org/10.1016/j.tafmec.2021.103163.
Wakjira, T., & Ebead, U. (2018). Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using FRCM: Experimental study. Construction and Building Materials, 164, 164–177. doi: 10.1016/j.conbuildmat.2017.12.224
Wang, F., Chandrasekar, S., & Yang, H. (1997). Experimental and Computational Study of the Quenching of Carbon Steel. Journal of Manufacturing Science and Engineering, 119(3), 257. doi:10.1115/1.2831102. https://www.scopus.com/record/display.uri?eid=2-s2.0-0031212376&origin=inward&txGid=5be3be9cac80d4a32b3fbdbbc808f8ed
Yao, Z., & Wang, W. (2022). Full-range strain-hardening behavior of structural steels: Experimental identification and numerical simulation, Journal of Constructional Steel Research, Volume 194, 2022, 107329, ISSN 0143-974X, https://doi.org/10.1016/j.jcsr.2022.107329.
Zhang, J., Natarajan, S., Ooi, E. T., & Song, C. (2020). Adaptive analysis using scaled boundary finite element method in 3D. Computer Methods in Applied Mechanics and Engineering, 372, 113374. https://doi:10.1016/j.cma.2020.113374
Zhu, Y., Fell, B., & Kanvinde, A. (2021). Continuum damage mechanics based ductile fatigue-fracture prediction in buckling steel braces. Journal of Constructional Steel Research, 184. doi:10.1016/j.jcsr.2021.106812

Most read articles by the same author(s)