Propagation models applied to LTE technologies in residential areas in Riobamba – Ecuador

Contenido principal del artículo

Geraldine Crespín Angulo
Cristhian Bermeo Reyes
Johan Chico Vallejo


Introduction. It is known that in any transmission system what propagates are electromagnetic waves which are transmitted and received and knowing the trend in which it varies with distance is one of the fundamental requirements for a reliable and efficient cellular transmission system. Objectives: To conduct a comparative study of five propagation models in different scenarios in the northern area of the city of Riobamba; to determine which of the five models included in the study is the most applicable in each case. Methodology: To make a comparative diagram by means of graphs showing the trend of each of the propagation models with respect to the measurements obtained by means of the software. Results: The SUI propagation model is the one that was adapted to the scenarios proposed because its calculations to determine path losses include more specific data within a suburban area. Conclusions: After the respective investigations and the results obtained, it was determined that from a considerable distance between the base station and the mobile receiver, the reception power decreases.


La descarga de datos todavía no está disponible.

Detalles del artículo

Cómo citar
Crespín Angulo, G., Bermeo Reyes, C., & Chico Vallejo, J. (2022). Propagation models applied to LTE technologies in residential areas in Riobamba – Ecuador. ConcienciaDigital, 5(3.1), 315-332.


Abhayawardhana, V. S., Wassell, I. J., Crosby, D., Sellars, M., & Brown, M. G. (2005). Comparison of empirical propagation path loss models for fixed wireless access systems. 1, 73-77 Vol. 1.
Akinwole, B. O. H. (2013). Comparative Analysis of Empirical Path Loss Model for Cellular Transmission in Rivers State. American Journal of Engineering Research, 8.
Alonso Quintana, R., Bordón López, R., & Montejo Sánchez, S. (2013). Estudio comparativo de los modelos de propagación de canal inalámbrico. Ingeniería Electrónica, Automática y Comunicaciones, 34(1), 12–26.
Alqudah, Y. (2013). On the Performance of Cost 231 Walfish Ikegami Model in Deployed 3.5 GHz Network. 524–527.
Amarasinghe, K., Peiris, K. G. A. B., Thelisinghe, L. A. D. M. D., Warnakulasuriya, G. M., & Samarasinghe, A. T. L. K. (2009). Comparison of propagation models for Fixed WiMAX system based on IEEE 802.16-2004. In ICIIS 2009—4th International Conference on Industrial and Information Systems 2009, Conference Proceedings (p. 129).
Calero, C. V. (2015). Simulación del modelo de propagación cost 231 walfisch- ikegami para el canal móvil de bandas 4G.
Chisab, R. (2014). Performance Evaluation of 4G-LTE-SCFDMA Scheme under SUI and ITU Channel Models.
European Commission & Directorate-General for the Information Society and Media. (1999). COST Action 231: Digital mobile radio towards future generation systems: Final Report. Publications Office.
Ghz, W. O., Milanovic, J., & Bejuk, K. (s.f.). Comparison of Propagation Models Accuracy for WiMAX on 3.5 GHz.
Log normal Shadowing. (s.f.). Retrieved May 17, 2022, from
Maldonado, C., Perez García, N., Uzcátegui, J., & Malaver, E. (2010). Nuevo modelo de propagación para redes WLAN operando en 2.4 Ghz, en ambientes interiores. Télématique, 9, 1–22.
Mathuranathan. (2019, March 27). Hata Okumura model for outdoor propagation. GaussianWaves.
Navarro Cadavid, A., & Andredy Ardila, C. (2012). Ajuste estadístico de modelos de propagación de señal usando medidas de la ciudad de Cali. Ingenium, 6(11), 11.
Some Empirical Models. (s.f.). Retrieved May 17, 2022, from
Walfisch, J., & Bertoni, H. L. (1988). A theoretical model of UHF propagation in urban environments. IEEE Transactions on Antennas and Propagation, 36(12), 1788–1796.