Effects of polymerization time of Bio Crown nano hybrid resin with 3D printing

Main Article Content

Angie Giovanna Carballo Aguilar
Jefferson Omar Coyago Cholango
David Gerardo Carrillo Vaca

Abstract

Introduction. The resinous materials currently printed in Dentistry are becoming more popular in the field of prosthodontics, they contain organic and inorganic fillers nano and microhybrid ceramics including silanized zirconium; this allows them to have an elevated level of fracture and flexural resistance. Its elaboration is indirect in a 3D printer, after elaboration of an exocad design where plural fixed prostheses of up to 3 units, veneers, inlays can be planned. In this way, 3D composites offer an efficient and durable alternative for various applications in restorative dentistry. Objective. To evaluate and compare the roughness and shore D hardness of Prizma Bio-Crown 3D resin at different polymerization times. Methodology. Experimental in vitro, 100 evaluate samples of nano hybrid resin (Prizma bio crown) were performed. The samples were made with 3D printing (LCD) with dimensions of 12 mm high by 6 mm wide, each sample block was subjected to a polishing protocol that includes the use of silicone discs, goat hair and felt, accompanied by two polishing pastes: DURA Polishing and Superpolishing. Polishing was done for 20 seconds at each step, using an electric motor at different speeds (10,000 rpm, 5,000 rpm, and 4,000 rpm, respectively). Results. The study reveals a significant variability in roughness levels between the diverse groups of samples, indicating substantial variations in manufacturing, finishing and polishing conditions. Using a detailed measurement scale, we evaluated the average roughness (Ra) on four sides of the samples for each group, revealing distinctive patterns based on treatment time and the finishing and polishing technique employed. These results suggest that the optimization of these parameters is crucial to obtain restorations with high-quality Prizma Bio Crown resin, with smooth, aesthetic and wear-resistant surfaces. Conclusion. The processes of pre-printing, post-printing, polymerization time and polishing protocol were identified as determining factors in the physical properties of the material, especially in its roughness and Shore D hardness. These findings provide a guide to standardize these parameters and improve both aesthetics and functionality in the processing of 3D printed Bio Crown resin in the dental field. General area of study: Dentistry. Specific area of study: Oral Rehabilitation. Type of study: Original article.

Downloads

Download data is not yet available.

Article Details

How to Cite
Carballo Aguilar, A. G., Coyago Cholango, J. O., & Carrillo Vaca, D. G. (2025). Effects of polymerization time of Bio Crown nano hybrid resin with 3D printing. Anatomía Digital, 8(2), 48-68. https://doi.org/10.33262/anatomiadigital.v8i2.3393
Section
Articulos de revisión bibliográfica

References

1. Tahayeri A, Morgan MC, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dental Materials [Internet]. 2018 [citado 15 enero 2025]; 34(2):192–200. Disponible en: http://dx.doi.org/10.1016/j.dental.2017.10.003

2. Jain S, Sayed ME, Shetty M, Alqahtani SM, Al Wadei MHD, Gupta SG, et al. Physical and mechanical properties of 3d-printed provisional crowns and fixed dental prosthesis resins compared to CAD/CAM milled and conventional provisional resins: a systematic review and meta-analysis. Polymers (Basel) [Internet]. 2022. [citado 15 enero 2025]; 14(13):2691. Disponible en:
https://www.mdpi.com/2073-4360/14/13/2691/htm

3. Chung YJ, Park JM, Kim TH, Ahn JS, Cha HS, Lee JH. 3D printing of resin material for denture artificial teeth: chipping and indirect tensile fracture resistance. Materials (Basel) [Internet]. 2018 [citado 15 enero 2025]; 11(10):1798 Disponible en:
https://pubmed.ncbi.nlm.nih.gov/30248955/

4. Tsolakis IA, Papaioannou W, Papadopoulou E, Dalampira M, Tsolakis AI. Comparison in terms of accuracy between dlp and lcd printing technology for dental model printing. Dentistry Journal [Internet]. 2022 [citado 15 enero 2025]; 10(10):181. Disponible en:
https://www.mdpi.com/2304-6767/10/10/181/htm

5. Park JM, Ahn JS, Cha HS, Lee JH. Materials wear resistance of 3D printing resin material opposing zirconia and metal antagonists. Materials (Basel) [Internet]. 2018 [citado 15 enero 2025];11(6):1043. Disponible en:
https://pubmed.ncbi.nlm.nih.gov/29925763/

6. Borrello J, Nasser P, Iatridis JC, Costa KD. 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Additive Manufacturing [Internet]. 2018 [citado 15 enero 2025]; 23:374-380. Disponible en:
http://dx.doi.org/10.1016/j.addma.2018.08.019

7. Pongwisuthiruchte A, Dubas ST, Aumnate C, Potiyaraj P. Mechanically tunable resins based on acrylate-based resin for digital light processing (DLP) 3D printing. Scientific Reports [Internet]. 2022 [citado 15 enero 2025]; 12(1):1-10. Disponible en:
https://www.nature.com/articles/s41598-022-24667-8

8. Alshaikh AA, Khattar A, Almindil IA, Alsaif MH, Akhtar S, Khan SQ, et al. 3D-printed nanocomposite denture-base resins: effect of zro2 nanoparticles on the mechanical and surface properties in vitro. Nanomaterials (Basel) [Internet]. 2022 [citado 15 enero 2025]; 12(14):2451 Disponible en:
https://pubmed.ncbi.nlm.nih.gov/35889675/

9. Jin G, Gu H, Jang M, Bayarsaikhan E, Lim JH, Shim JS, et al. Influence of postwashing process on the elution of residual monomers, degree of conversion, and mechanical properties of a 3D printed crown and bridge materials. Dental Materials [Internet]. 2022 [citado 15 enero 2025]; 38(11):1812-1825. Disponible en: http://dx.doi.org/10.1016/j.dental.2022.09.017

10. Alsandi Q, Ikeda M, Nikaido T, Tsuchida Y, Sadr A, Yui N, et al. Evaluation of mechanical properties of new elastomer material applicable for dental 3D printer Journal of the Mechanical Behavior of Biomedical Materials [Internet]. 2019 [citado 15 enero 2025]; 100:103390. Disponible en: http://dx.doi.org/10.1016/j.jmbbm.2019.103390

11. Myagmar G, Lee JH, Ahn JS, Yeo ISL, Yoon HI, Han JS. Wear of 3D printed, and CAD/CAM milled interim resin materials after chewing simulation. The Journal of Advance Prosthodontics [Internet]. 2021 [citado 15 enero 2025];13(3):144-151. Disponible en:
http://dx.doi.org/10.4047/jap.2021.13.3.144

12. Vásquez-Niño AF, Ochoa-Alzate JR, Osorio-Amariles D, Rodríguez-Quirós HA. Polímeros para fabricación análoga y digital de bases de dentadura: un estudio comparativo de la resistencia flexional, módulo elástico y resistencia a la compresión de sus propiedades mecánicas. Revista Facultad de Odontología Universidad de Antioquia [Internet]. 2021 [citado 15 enero 2025]; 33(1): 6-16. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-246X2021000100006&lng=en&nrm=iso&tlng=en

13. Morón-Conejo B, López-Vilagran J, Cáceres D, Berrendero S, Pradíes G. Accuracy of five different 3D printing workflows for dental models comparing industrial and dental desktop printers. Clinical Oral Investigations [Internet]. 2023 [citado 15 enero 2025]; 27: 2521-2532. Disponible en:
https://doi.org/10.1007/s00784-022-04809-y

14. Wada J, Wada K, Gibreel M, Wakabayashi N, Iwamoto T, Vallittu PK, et al. Effect of 3D printer type and use of protection gas during post-curing on some physical properties of soft occlusal splint material. Polymers [Internet]. 2022 [citado 15 enero 2025]; 14(21):4618. Disponible en:
https://www.mdpi.com/2073-4360/14/21/4618/htm

15. Aydın N, Topçu FT, Karaoğlanoğlu S, Oktay EA, Erdemir U. Effect of finishing and polishing systems on the surface roughness and color change of composite resins. Journal of clinical and experimental dentistry [Internet]. 2021 [citado 15 enero 2025]; 13(5), e446–e454 Disponible en: http://dx.doi.org/10.4317/jced.58011

16. Della Bona A, Cantelli V, Britto VT, Collares KF, Stansbury JW. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dental Materials [Internet]. 2021 [citado 15 enero 2025]; 37(2): 336–350. Disponible en: http://dx.doi.org/10.1016/j.dental.2020.11.030

17. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. Journal of Prosthodontic Research [Internet]. 2013 [citado 15 enero 2025]; 57(4):236-261. Disponible en: http://dx.doi.org/10.1016/j.jpor.2013.09.001

18. Jurado CA, Tsujimoto A, Watanabe H, Fischer NG, Hasslen JA, Tomeh H, et al. Evaluation of polishing systems for CAD/CAM polymer-infiltrated ceramic-network restorations. Operative Dentistry [Internet]. 2021 [citado 15 enero 2025]; 46(2): 219-225. Disponible en:
https://www.researchgate.net/publication/352870407_Evaluation_of_Polishing_Systems_for_CADCAM_Polymer-Infiltrated_Ceramic-Network_Restorations

19. Castellanos Andrés D, Prieto Serrano J. Factores que afectan a la precisión de los modelos impresos 3D para la fabricación de alineadores: revisión. Ortodoncia española: Boletín de la Sociedad Española de Ortodoncia [Internet]. 2022 [citado 15 enero 2025]; 60(3): 109-119. Disponible en:
https://dialnet.unirioja.es/servlet/articulo?codigo=9121143&info=resumen&idioma=SPA

20. Anadioti E, Musharbash L, Blatz MB, Papavasiliou G, Kamposiora P. 3D printed complete removable dental prostheses: a narrative review. BMC Oral Health [Internet]. 2020 [citado 15 enero 2025]; 20(1):1-9. Disponible en:
https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-020-01328-8

21. Jaramillo-Cartagena R, López-Galeano EJ, Latorre-Correa F, Agudelo-Suárez AA. Effect of polishing systems on the surface roughness of nano-hybrid and nano-filling composite resins: a systematic review. Dentistry Journal (Basel) [Internet]. 2021 [citado 15 enero 2025]; 9(8):95. Disponible en:
http://dx.doi.org/10.3390/dj9080095

22. Park SM, Park JM, Kim SK, Heo SJ, Koak JY. Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses. Materials [Internet]. 2020 [citado 15 enero 2025]; 13(18):3970 Disponible en:
https://www.mdpi.com/1996-1944/13/18/3970/htm

23. Chávez Sánchez E, Jiménez Mendoza W, Valderrama KM, Carrión CS. Resistencia a la tracción diametral in vitro de cinco cementos dentales usados como cementantes de puentes y coronas en prótesis fijas. Revista Estomatológica Herediana [Internet]. 2020 [citado 15 enero 2025]; 30(2): 94-107. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1019-43552020000200094&lng=es&nrm=iso&tlng=es

24. Hong G, Yang J, Jin X, Wu T, Dai S, Xie H, et al. Mechanical properties of nanohybrid resin composites containing various mass fractions of modified zirconia particles. International Journal of Nanomedicine [Internet]. 2020 [citado 15 enero 2025]; 15:9891-9907 Disponible en:
http://dx.doi.org/10.2147/IJN.S283742

25. Gad MM, Fouda SM. Factors affecting flexural strength of 3D-printed resins: a systematic review. Journal of Prosthodontics [Internet]. 2023 [citado 15 enero 2025]; 32(S1): 96–110. Disponible en:
https://onlinelibrary.wiley.com/doi/full/10.1111/jopr.13640

26. Zhang L, Yu P, Wang XY. Surface roughness and gloss of polished nanofilled and nanohybrid resin composites. Journal of Dental Sciences [Internet]. 2021 [citado 15 enero 2025]; 16(4):1198-1203 Disponible en:
http://dx.doi.org/10.1016/j.jds.2021.03.003

27. Son K, Lee J-H, Lee K-B. Comparison of intaglio surface trueness of interim dental crowns fabricated with SLA 3D printing, DLP 3D printing, and milling technologies. Healthcare [Internet]. 2021 [citado 15 enero 2025]; 9(8):983. Disponible en: https://www.mdpi.com/2227-9032/9/8/983/htm

28. Soto-Montero J, de Castro EF, Romano B de C, Nima G, Shimokawa CAK, Giannini M. Color alterations, flexural strength, and microhardness of 3D printed resins for fixed provisional restoration using different post-curing times. Dental Materials [Internet]. 2022 [citado 15 enero 2025]; 38(8):1271–82. Disponible en: http://dx.doi.org/10.1016/j.dental.2022.06.023

29. Goiato M, Dos Santos M, Antenucci F, Mary R, Prado Ribeiro P. Influencia del tiempo de almacenamiento sobre la dureza y rugosidad de materiales para rebasados resilentes. RCOE [Internet]. 2007 [citado 15 enero 2025]; 12(1–2): 67-72. Disponible en:
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1138-123X2007000100005&lng=es&nrm=iso&tlng=es

30. Schweiger J, Edelhoff D, Güth JF. 3D Printing in digital prosthetic dentistry: an overview of recent developments in additive manufacturing. Journal of Clinical Medicine [Internet]. 2021 [citado 15 enero 2025]; 10(9):2010 Disponible en: http://dx.doi.org/10.3390/jcm10092010