MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DC272D.C4409290" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Impacto del uso de la inteligencia artifi= cial en la formación docente técnico profesional

 

Impact of the use of artificial intelligence in technical vocational teacher training=

=  


1

Freddy Teófilo García Durango

https://orcid.org/0009-0005-9642-0791<= o:p>

 <= /span>

Universidad Bolivariana del Ecuador

Maestría en Educación Mención Pedagogía en Entornos Digitales

ftgarciad@= ube.edu.ec

2

Andrea Estefanía Peralta Campuzano

https://orcid.org/0009-0001-3597-0539<= o:p>

 <= /span>

Universidad Bolivariana del Ecuador

Maestría en Educación Mención Pedagogía en Entornos Digitales

aeperaltac= @ube.edu.ec

3

Reigosa Lara Alejandro

https://orcid.org/0000-0002-4323-6668<= o:p>

 <= /span>

Universidad Bolivariana del Ecuador

Areigosalube@ube= .edu.ec

4

Galo Wilfrido Tobar Farias

https://orcid.org/0000-0002-2746-031X<= o:p>

 <= /span>

Universidad Bolivariana del Ecuador

gwtoba= rf@ube.edu.ec

 <= /span>

 <= /span>

 

 

Artículo de Investigación Científica y Tecnológica

Enviado: 14/03/2025

Revisado: 10/04/2025

Aceptado: 18/05/2025

Publicado:20/06/2025

DOI: https://doi.org/10.33262/exploradordigital= .v9i2.3493      

=  

 

 =

Cítese:

 

 

García Durango= , F. T., Peralta Campuzano, A. E., Lara Alejandro, R., & Tobar Farias, G. = W. (2025). Impacto del uso de la inteligencia artificial en la formación doc= ente técnico profesional. Explorador Digital, 9(2), 82-106. https://doi= .org/10.33262/exploradordigital.v9i2.3493

 

 

 

 

EXPLORADOR DIGITAL, es una Revista electrónica, Trimestral, que se publicará en soporte electrónico t= iene como misión contribuir a la   formación de profesionales competentes con visión humanística y crítica que sean capaces de exponer = sus resultados investigativos y científicos en la misma medida que se promueva mediante su intervención cambios positivos en la sociedad. https://exploradordigital.org

La revista es editada por la Editorial Ciencia Digital (Editorial de prestigio registra= da en la Cámara Ecuatoriana de Libro con No de Afiliación 663) www.celibro.org.ec

 

 

 

 

Esta revista está protegida bajo una licencia Creative Commons en la 4.0 International. Copia de la licenc= ia: = http://creativecommons.org/licenses/by-nc-sa/4.0/

 

Palabras clave= s:

Inteligencia artificial; Formación docente; Educación técnico-profesional;

 

Res= umen

Introducción: En el siglo X= XI, la inteligencia artificial (IA) ha emergido como un catalizador de cambio= en diversos sectores, y la educación no es una excepción. Su capacidad para analizar grandes volúmenes de datos, personalizar experiencias de aprendi= zaje y automatizar tareas administrativas ha reconfigurado el panorama educati= vo a nivel global Objetivo: El objetivo general de este estudio fue analizar el impacto del uso de la inteligencia artificial (IA) en la formación docente técnico-profesional en el Instituto Técnico Agropecuario Ciudad de Valencia, ubicado en la provincia de Los Ríos, Ecuador. Meto= dología: El problema planteado se centró en la falta de competencias tecnológi= cas y pedagógicas de los docentes, así como en la limitada disponibilidad de recursos y capacitación para integrar herramientas de IA en sus prácticas educativas. Para abordar este problema, se utilizó un diseño no experimen= tal, descriptivo y correlacional con un enfoque cuantitativo. La recolección de datos se realizó mediante un cuestionario estructurado con preguntas en escala Likert, administrado a una muestra de 20 docentes. Resultados: = Los datos fueron analizados utilizando el software estadístico Jamovi. El principal resultado mostró una correlaci= ón positiva alta (r =3D 0.763) entre la percepción de la IA y la formación docente, indicando que la implementación de herramientas de IA está estrechamente vinculada con mejoras en competencias pedagógicas, motivaci= ón docente y adaptabilidad al cambio. Conclusión: La conclusión princ= ipal destaca que, aunque los docentes tienen una percepción favorable hacia la= IA, existen barreras relacionadas con la capacitación y los recursos que deben ser superadas. Esto resalta la importancia de estrategias integrales que fortalezcan tanto las competencias tecnológicas como las pedagógicas para maximizar el impacto de la IA en contextos técnico-profesionales. Pala= bras claves: Tecnologías educativas Área de estudio general: Educación Área de estudio específica: Mae= stría en Entornos Digitales Tipo de estudio:  Artículos original.=

 

 

Keywords: Teacher training; Artificial intelligence; Technical and professio= nal education; Educational technologies.

 

Abs= tract

Introduction: In the 21st century, artificial intelligence (= AI) has emerged as a catalyst for change in various sectors, and education is= no exception. Its ability to analyze large volumes of data, personalize lear= ning experiences, and automate administrative tasks has reconfigured the educational landscape globally. Objective: The general objective of this study was to analyze the impact of the use of artificial intelligence (AI) on technical-professional teacher training at the Instituto Técnico = Agropecuario Ciudad de Valencia, located in the pro= vince of Los Ríos, Ecuador. Methodology: The problem posed focused on the lack of technological and pedagogical skills of teachers, as well as the limited availability of resources and training to integrate AI tools into their educational practices. To address this problem, a non-experimental, descriptive, and correlational design with a quantitative approach was us= ed. Data collection was conducted through a structured questionnaire with Likert-scale questions, administered to a sample of 20 teachers. Resul= ts: The data were analyzed using Jamovi statistic= al software. The main result showed a high positive correlation (r =3D 0.763) between the perception of AI and teacher training, indicating that the implementation of AI tools is linked to improvements in pedagogical skill= s, teacher motivation, and adaptability to change. Conclusion: The ma= in conclusion highlights that, although teachers have a favorable perception= of AI, there are barriers related to training and resources that must be overcome. This highlights the importance of comprehensive strategies that strengthen both technological and pedagogical skills to maximize the impa= ct of AI in technical and professional contexts. General area of ​​study: Education. Specific area of ​​stu= dy: Master’s in digital Environments. Type of study: Original articles= .

 

 

 

1.      Introducción

En el siglo XXI la Inteligencia Artificial (= IA) ha emergido como un catalizador de cambio en diversos sectores, y la educac= ión no es una excepción. Su capacidad para analizar grandes volúmenes de datos, personalizar experiencias de aprendizaje y automatizar tareas administrativ= as ha reconfigurado el panorama educativo a nivel global (Chiu et al., 2024; Diliberti et al., 2024). En este contexto, la formación docente técnico-profesional, orientada a la capacitación de individuos para desempeñarse en sectores productivos específicos, enfrenta retos y oportunidades únicos al adoptar estas tecnologías avanzadas. Este estudio s= e delimita al Instituto Técnico Agropecuario Ciudad de Valencia, ubicado en la provinc= ia de Los Ríos, Ecuador, y se centra en las percepciones de 59 docentes acerca= del impacto del uso de la IA en su práctica educativa.

La preparación docente es un componente fundame= ntal para el éxito de cualquier institución educativa. Los profesores no solo de= ben tener dominio en sus áreas de especialización, sino también competencias pedagógicas y tecnológicas que les permitan enfrentar los retos del siglo X= XI. En este escenario, la IA representa una oportunidad significativa para transformar la formación docente, facilitando herramientas que apoyen la personalización del aprendizaje, promuevan una evaluación continua y mejore= n la toma de decisiones en el aula. Sin embargo, la implementación de estas tecnologías plantea desafíos, como la resistencia al cambio, la falta de recursos tecnológicos y la necesidad de formación continua, elementos clave para garantizar una adopción eficaz y sostenible (Chiu et al., 2024= ; Mbambo & du Plessis, 2024).

La formación técnico-profesional constituye un pilar esencial para el desarrollo económico y social, ya que prepara a los estudiantes para insertarse en un mercado laboral dinámico y competitivo (Forero & Negre, 2024). Sin embargo, el proceso de enseñanza en este ámbito enfrenta desafíos significativos, como la necesidad de actualización tecnológica constante, la escasez de recursos formativos mode= rnos y la falta de preparación docente para integrar herramientas basadas en IA = (Wardat et al., 2024). Estas carencias dificultan la conexión entre la oferta educativa y las demandas del mercado, limitando el potencia= l de los egresados para contribuir efectivamente al desarrollo económico local y nacional.

El problema de esta investigación radica en la insuficiente integración de la IA en la formación docente técnico-profesion= al, lo que se refleja en la limitada capacidad de los educadores para personali= zar la enseñanza, evaluar competencias de manera eficiente y optimizar la gesti= ón del aprendizaje (Aljemely, 2024)= . Esto se atribuye, en gran medida, a la falta de capacitación docente en tecnologías emergentes, así como a la ause= ncia de políticas institucionales que promuevan la innovación pedagógica (Kitcha= roen et al., 2024). Las consecuencias de este problema incluyen una formación descontextualizad= a de las necesidades del sector productivo, estudiantes con competencias poco alineadas a las demandas del mercado laboral y un rezago tecnológico que af= ecta la competitividad del sistema educativo técnico-profesional (Erduran & Levrini, 2024).

Las preguntas que se origina del planteamiento = del problema son ¿Cuál es el impacto del uso de la inteligencia artificial en la formación docente técnico-profesional en el Instituto Técnico Agropecuario Ciudad de Valencia, provincia de Los Ríos? ¿Cómo perciben los docentes del Instituto Técnico Agropecuario Ciudad de Valencia el uso de herramientas de inteligencia artificial en su práctica educativa? ¿Cuáles son las principal= es barreras y facilitadores identificados por los docentes para la implementac= ión de herramientas de inteligencia artificial en su formación y práctica pedagógica? ¿Qué relación existe entre las percepciones de los docentes sob= re la inteligencia artificial y factores sociodemográficos como la edad, la experiencia laboral y la formación previa en tecnologías digitales?

Desde una perspectiva teórica, la investigación encuentra su justificación en el creciente cuerpo de literatura que destaca= los beneficios de la IA en la educación. Según estudios recientes (Dilzhan, 2024; Singh & Ram, 2024; Sperling et al., 2024), la IA permite la personalización del aprendizaje mediante algoritmos que ajustan contenidos a las necesidades individuales de los estudiantes, mejora la gestión de procesos formativos a través de análisis predictivos y fomenta el aprendizaje activo mediante plataformas interactivas. Metodológicamente, la investigación se fundamenta= en un enfoque cuantitativo que combina la técnica de encuesta con el análisis estadístico, utilizando el programa Jamovi para garantizar la validez y confiabilidad de los resultados. Prácticamente, este estudio busca ofrecer insights valiosos para el diseño de programas de capacitación docente que integren la IA de manera efectiva en contextos técnico-profesionales.

El objetivo general de esta investigación fue el determinar el impacto del uso de la inteligencia artificial en la formación docente técnico-profesional en el Instituto Técnico Agropecuario Ciudad de Valencia, provincia de Los Ríos, con el propósito de identificar sus beneficios, limitaciones y potenciales aplicaciones pedagógicas. Los objeti= vos trazados fueron:  I. Identificar las percepciones de los docentes del Instituto Técnico Agropecuario Ciudad de Valencia sobre el uso de la inteligencia artificial en el ámbito educativo. Este objetivo busca comprender cómo los docentes valoran y experimentan la integración de herramientas de IA en su labor pedagógica, considerando tanto sus expectativas como sus preocupaciones. II. Determinar las principales ba= rreras y facilitadores para la implementación de herramientas de inteligencia artificial en la formación docente técnico-profesional. Este objetivo se orienta a explorar los factores internos y externos que influyen en el éxit= o o fracaso de las iniciativas tecnológicas en el contexto educativo técnico. I= II. Evaluar la relación entre las percepciones docentes y las características sociodemográficas y profesionales, como edad, experiencia laboral y formaci= ón previa en tecnologías digitales. Este objetivo busca establecer patrones correlacionales que permitan entender mejor las dinámicas del uso de la IA = en la práctica educativa y su relación con las particularidades de los docente= s.

Esta investigación no solo responde a una neces= idad urgente de modernización en la educación técnico-profesional, sino que tamb= ién busca contribuir al debate académico sobre el papel de la tecnología en la formación docente. Los resultados permitirán elaborar estrategias específic= as para superar las barreras identificadas y aprovechar las oportunidades que ofrece la inteligencia artificial, promoviendo así un cambio transformador = en el ámbito educativo técnico.

Finalmente, cabe destacar que la estructura metodológica de esta investigación se basa en un diseño no experimental, lo= que permite estudiar las percepciones de los docentes sin intervenir en las variables del contexto. A través de una encuesta con un cuestionario de esc= ala Likert, cuya confiabilidad ha sido comprobada con un alfa de Cronbach de 0.= 89, se garantizará la validez de los datos recolectados. Este enfoque descripti= vo y correlacional proporcionará una visión integral de cómo la IA está siendo p= ercibida e integrada en el proceso formativo de los docentes técnico-profesionales, sentando las bases para futuras investigaciones y aplicaciones en este camp= o.

1.1.= Revisión de Literatura

Inteligencia Artificial. La inteligencia artificial (IA), entendida como la emulación de habilidades cognitivas humanas mediante sistemas computacionales, se presenta como una herramienta de amplio alcance en el ámbito educativo (Yı= lmaz, 2024). Sus aplicaciones van desde la personalización del proceso de aprendizaje hasta la mejora de la gestión administrativa, con el objetivo de modernizar la educación técnica <= !--[if supportFields]> ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"Ai5NPkVu","properties":{"= formattedCitation":"(Yilmaz et\\uc0\\u160{}al., 2024)","plainCitation":"(Yilmaz et al., 2024)","noteIndex":0},"citationItems":[{"id&q= uot;:395,"uris":["http://zotero.org/users/local/gWEvpWfy/ite= ms/QAU5JEUR"],"itemData":{"id":395,"type"= ;:"article-journal","container-title":"Scientific Reports","issue":"1","note":"publis= her: Nature Publishing Group UK London","page":"15130","source":"Go= ogle Scholar","title":"Real-Time multifaceted artificial int= elligence vs In-Person instruction in teaching surgical technical skills: a randomized controlled trial","title-short":"Real-Time multifaceted artificial intelligence vs In-Person instruction in teaching surgical techn= ical skills","volume":"14","author":[{"f= amily":"Yilmaz","given":"Recai"},{"= family":"Bakhaidar","given":"Mohamad"},{= "family":"Alsayegh","given":"Ahmad"= },{"family":"Abou Hamdan","given":"Nour"},{"family":"= Fazlollahi","given":"Ali M."},{"family":"Tee","given":"Trish= a"},{"family":"Langleben","given":"= Ian"},{"family":"Winkler-Schwartz","given&quo= t;:"Alexander"},{"family":"Laroche","giv= en":"Denis"},{"family":"Santaguida",&quo= t;given":"Carlo"}],"issued":{"date-parts"= ;:[["2024"]]}}}],"schema":"https://github.com/cita= tion-style-language/schema/raw/master/csl-citation.json"} (Yilmaz et al., 2024). Sin embargo, para maximizar su potencial= , es esencial que los docentes desarrollen competencias específicas que les perm= itan utilizar estas tecnologías de manera adecuada. En este contexto, uno de los principales retos identificados en la investigación radica en la necesidad urgente de capacitar a los educadores en el manejo de herramientas de IA, asegurando su integración efectiva en las prácticas pedagógicas bajo un marco ético (Aljemely, 2024; Ayanwale et al., 2024).

Competencia Tecnológica. La integración de la inteligencia artific= ial (IA) en el ámbito educativo ha destacado por su potencial para transformar = los procesos de enseñanza y aprendizaje, pero requiere que los docentes posean competencias tecnológicas avanzadas para manejar estas herramientas de mane= ra efectiva (Yang et al., 2024= ). Según Aljemel= y (2024)= , la adquisición de competencias en el manejo de IA es esencial para que los educadores puedan adoptar estrategias pedagógicas innovadoras que faciliten= el aprendizaje personalizado y aumenten la eficiencia educativa. Asimismo, Ayanwale et al. (2024) desta= can que los programas de capacitación enfocados en IA han mostrado resultados positivos en el desarrollo de habilidades tecnológicas en los docentes, permitiéndoles comprender el funcionamiento y las aplicaciones prácticas de estas herramientas.

La necesidad de competencias tecnológicas en el contexto educativo técnico-profesional es particularmente evidente debido a= la creciente demanda de habilidades digitales en el mercado laboral <= /span> ADDIN ZOTERO_ITEM CSL_CITATION {"citationID":"guVW5FXx","properties":{"= formattedCitation":"(Tan et\\uc0\\u160{}al., 2024)","plainCitation":"(Tan et&nbs= p;al., 2024)","noteIndex":0},"citationItems":[{"id&q= uot;:378,"uris":["http://zotero.org/users/local/gWEvpWfy/ite= ms/R95I73KU"],"itemData":{"id":378,"type"= ;:"article-journal","container-title":"Medical Teacher","DOI":"10.1080/0142159X.2023.2256961",&qu= ot;ISSN":"0142-159X, 1466-187X","issue":"1","journalAbbreviation&q= uot;:"Medical Teacher","language":"en","page":"15= 1-152","source":"DOI.org (Crossref)","title":"Response to: \"The next parad= igm shift? ChatGPT, artificial intelligence, and medical education\"","title-short":"Response to","volume":"46","author":[{"famil= y":"Tan","given":"Li Feng"},{"family":"Heng","given":"Jo= nathan Jun Yi"},{"family":"Teo","given":"Desmo= nd B."}],"issued":{"date-parts":[["2024",1,= 2]]}}}],"schema":"https://github.com/citation-style-language= /schema/raw/master/csl-citation.json"} (Tan et al., 2024;= <= span style=3D'color:windowtext;text-decoration:none;text-underline:none'>Chiu et al.= , 2024), argumentan que los educadores técnico-profesionales desempeñan un papel cla= ve en la preparación de estudiantes para un entorno laboral dinámico, y que su falta de preparación tecnológica podría limitar la efectividad de la formac= ión impartida. Por ello, la competencia tecnológica no solo es una dimensión crítica para la adopción de la IA, sino también una necesidad urgente para garantizar la relevancia y sostenibilidad de los programas educativos.=

Disponibilidad de Recursos. La implementación de herramientas basadas= en IA depende en gran medida de la disponibilidad de recursos tecnológicos adecuados. Diliberti et al. (2024) señalan que, aunque las tecnologías de IA ofrecen una amp= lia gama de aplicaciones educativas, muchas instituciones carecen de la infraestructura necesaria para su implementación efectiva. Este problema es especialmente relevante en instituciones técnico-profesionales que, en algu= nos casos, enfrentan limitaciones presupuestarias y de equipamiento.=

En un estudio llevado a cabo por Fundi et al. (2024), se evidenció que la falta de acc= eso a recursos tecnológicos es uno de los principales obstáculos para la adopción= de IA en contextos educativos, particularmente en regiones con escasos recurso= s. Los autores argumentan que las instituciones deben priorizar la inversión en infraestructura tecnológica y desarrollar alianzas estratégicas con empresas tecnológicas para superar estas barreras. Sin embargo, la disponibilidad de recursos no solo implica la presencia de dispositivos tecnológicos, sino también el acceso a plataformas, software y materiales educativos basados e= n IA que sean relevantes y accesibles para los educadores.

Capacitación Recibida. La capacitación docente en tecnologías emergentes es una condición esencial para la adopción efectiva de herramien= tas de IA en el aula. Du Plessis (2024) subraya que= la formación docente debe centrarse en proporcionar habilidades prácticas y contextuales que permitan a los educadores integrar la IA en sus estrategias pedagógicas de manera significativa. En este sentido, las capacitaciones de= ben estar diseñadas para abordar tanto los aspectos técnicos de la IA como su aplicabilidad pedagógica, asegurando que los docentes puedan utilizar estas herramientas para enriquecer la experiencia de aprendizaje de sus estudiant= es.

Por otro lado Sperlin= g et al.= (2024) identifican que los programas de capacitación a menudo son inadecuados en términos de alcance y profundidad, lo que limita la capacidad de los docent= es para adoptar tecnologías de IA de forma sostenible. Estos autores sugieren = que las instituciones educativas deben colaborar con expertos en tecnología y pedagogía para diseñar programas de formación integrales que aborden las necesidades específicas de los educadores. Además, enfatizan la importancia= de fomentar una cultura de aprendizaje continuo entre los docentes, permitiénd= oles mantenerse actualizados en un campo en constante evolución.

Percepción de Eficiencia. La percepción de los docentes sobre la efectividad de la IA en la mejora de los resultados educativos desempeña un papel crucial en su disposición para adoptar estas tecnologías. Muchos doce= ntes perciben la IA como una herramienta valiosa para personalizar la enseñanza y optimizar los procesos educativos, aunque también expresan preocupaciones relacionadas con la complejidad de su implementación. En un estudio sobre la percepción docente en España, encontraron que la mayoría de los educadores consideraban que la IA tenía el potencial de mejorar la calidad de la enseñanza, pero requería un enfoque estratégico para abordar los desafíos asociados.

Se destaca que la percepción de eficiencia tamb= ién está influenciada por factores como el nivel de familiaridad con la tecnolo= gía y la experiencia previa en su uso. Los docentes que han tenido experiencias positivas con herramientas de IA tienden a mostrar una actitud más favorable hacia su adopción, mientras que aquellos con poca o ninguna experiencia a menudo expresan escepticismo o resistencia. Este hallazgo sugiere que las estrategias de implementación de IA deben incluir esfuerzos para aumentar la exposición y el conocimiento de los docentes sobre estas tecnologías.<= /o:p>

Formación Docen= te. La formación docente es un eje central en la consolidación de sistemas educativos efecti= vos y adaptados a las demandas contemporáneas. Más allá de la adquisición de conocimientos disciplinares, implica el desarrollo de competencias pedagógi= cas, tecnológicas y socioemocionales que permitan a los educadores responder a l= os retos de un mundo en constante cambio. En el contexto técnico-profesional, = esta formación adquiere una relevancia especial al preparar a los docentes para capacitar a estudiantes en áreas específicas del mercado laboral, muchas ve= ces vinculadas a sectores productivos clave. Según Erduran= y Levrini (2024), una formación docente integral no solo debe centrarse en las metodologías tradicionales, sino también incorporar herramientas innovadoras, como la inteligencia artificial, que potencien la personalización del aprendizaje, mejoren la evaluación de competencias y optimicen la toma de decisiones pedagógicas. Sin embargo, la falta de preparación tecnológica, la resistenc= ia al cambio y la escasez de recursos representan barreras significativas que deben ser abordadas a través de políticas educativas claras y programas de capacitación continua. La formación docente, por tanto, no es un proceso estático, sino una construcción dinámica que debe adaptarse a los avances tecnológicos y a las necesidades sociales, con el fin de garantizar una enseñanza de calidad y pertinente.

Competencia Pedagógica. La competencia pedagógica es un componente central de la formación docente, particularmente en el contexto técnico-profesional. Según Erduran= y Levrini (2024), el uso de IA puede enrique= cer significativamente las prácticas pedagógicas al ofrecer herramientas que permitan a los docentes personalizar la enseñanza y evaluar el progreso de = los estudiantes de manera más precisa. Estas capacidades son especialmente relevantes en la formación técnico-profesional, donde los estudiantes a men= udo tienen necesidades educativas diversas y específicas.

En un estudio sobre el impacto de la IA en la educación, Ayanwale et al. (2024) argumentan que la integración de herramientas basadas en = IA puede ayudar a los docentes a identificar áreas de mejora en su enseñanza y adaptar sus metodologías en consecuencia. Sin embargo, para que esto sea posible, los educadores deben estar equipados con las habilidades pedagógic= as necesarias para utilizar la tecnología de manera efectiva. Este hallazgo resalta la importancia de un enfoque equilibrado en la formación docente, q= ue combine el desarrollo de habilidades tecnológicas con una sólida base pedag= ógica.

Motivación Docente. La motivación docente desempeña un papel crítico en la adopción de nuevas tecnologías educativas, incluida la IA. Los docentes que perciben la IA como una herramienta útil y accesible tienden a estar más motivados para integrarla en su práctica pedagógica. Por el contrario, aquellos que enfrentan barreras como la falta de capacitación o recursos tecnológicos adecuados pueden experimentar una disminución en su motivación para adoptar estas innovaciones.

Se destaca que la motivación docente también es= tá influenciada por el apoyo institucional y las políticas educativas. Los docentes que sienten que sus instituciones valoran y promueven el uso de la= IA en la educación tienden a mostrar un mayor compromiso con su adopción. Este hallazgo subraya la importancia de crear un entorno de apoyo que fomente la experimentación y el aprendizaje continuo entre los educadores.<= /span>

Adaptación al Cambio. La capacidad de adaptación al cambio es o= tro factor crucial en la formación docente, especialmente en un contexto marcado por la rápida evolución tecnológica. Muchos docentes enfrentan dificultades para adaptarse a las nuevas herramientas tecnológicas debido a la falta de experiencia previa y el temor a cometer errores. Este fenómeno, conocido co= mo resistencia al cambio, puede limitar significativamente la efectividad de l= as iniciativas de adopción de IA en las instituciones educativas.

Sin embargo, estudios recientes sugieren que la resistencia al cambio puede mitigarse mediante estrategias de capacitación = que se centren en construir confianza y competencia entre los docentes. Estas estrategias incluyen talleres prácticos, oportunidades para el aprendizaje colaborativo y el acceso a recursos de apoyo continuo.

Impacto en la Enseñanza. El impacto de la IA en la enseñanza ha si= do ampliamente documentado, con resultados que sugieren mejoras significativas= en la personalización del aprendizaje, la evaluación de competencias y la gest= ión del tiempo en el aula (Yılmaz, 2024). En un estudio realizado en contextos de educación técnica, Forero = & Negre (2024) encontraron que los docentes q= ue utilizan herramientas de IA reportaron una mayor capacidad para identificar= las necesidades individuales de sus estudiantes y adaptar sus estrategias de enseñanza en consecuencia.

Sin embargo, el impacto de la IA no es uniforme= y depende de factores como el nivel de preparación docente, la calidad de las herramientas tecnológicas y el apoyo institucional. Por ello, los autores argumentan que las instituciones deben adoptar un enfoque integral que considere estos factores para maximizar los beneficios de la IA en la enseñanza.

La literatura existente destaca el papel crucia= l de la IA en la transformación de la educación técnico-profesional y subraya la necesidad de desarrollar competencias tecnológicas y pedagógicas entre los docentes. Además, señala que la disponibilidad de recursos, la percepción de eficiencia, la motivación docente y la capacidad de adaptación son factores determinantes en la implementación exitosa de estas tecnologías. Basados en ella, se puede entender que las variables de estudio divididas en dimension= es pueden ser clasificadas en una operacionalización que permita establecer con ello las preguntas de investigación que aplicarán en las encuestas (tabla 1).

Tabla  SEQ Tabla \* ARABIC = 1

Operacionalización de variables

Variable

Dimensión

Preguntas de la Encuesta

Independiente: Inteligencia Artificial

1. Competencia Tecnológica<= /p>

1.1. Me siento capacitado/a para utilizar herramientas de inteligencia artificial en mi práctica docente.

1.2. Conozco las aplicaciones prácticas de la inteligencia artificial en la educación técnico-profesional.

2. Disponibilidad de Recursos

2.1. Mi institución proporciona los recursos necesarios para implementar la inteligencia artificial en la enseñanza.

2.2. Cuento con acceso a programas y platafor= mas basadas en inteligencia artificial.

3. Capacitación Recibida

3.1. He recibido formación específica sobre el uso de inteligencia artificial en contextos educativos.=

3.2. Las capacitaciones sobre inteligencia artificial han sido prácticas y aplicables a mi contexto laboral.

4. Percepción de Eficiencia=

4.1. La inteligencia artificial mejora la cal= idad del proceso de enseñanza-aprendizaje en mi área de trabajo.

4.2. Considero que la inteligencia artificial contribuye a personalizar la enseñanza para mis estudiantes.

Dependiente: Formación Docente

1. Competencia Pedagógica

1.1. Poseo habilidades pedagógicas para integ= rar herramientas tecnológicas en el aula.

1.2. Soy capaz de planificar actividades educativas que incluyan herramientas basadas en inteligencia artificial.<= o:p>

2. Motivación Docente

2.1. Me siento motivado/a a incorporar herramientas tecnológicas en mi labor docente.

2.2. Creo que el uso de la inteligencia artificial puede mejorar mis prácticas pedagógicas.

 

Tabla 1

Operacionalización de variables (continuación)<= o:p>

Variable

Dimensión

Preguntas de la Encuesta

3. Adaptación al Cambio

3.1. Estoy dispuesto/a a= aprender nuevas tecnologías para mejorar mi desempeño como docente.<= /o:p>

3.2. Encuentro fácil adaptarme a nuevas herramientas y metodologías tecnológicas en mi práctica educativa.

4. Impacto en la Enseñanza<= /p>

4.1. La integración de inteligencia artificia= l ha mejorado la interacción con mis estudiantes.

4.2. El uso de estas tecnologías ha optimizad= o la evaluación de competencias en mis alumnos.

 

2.&n= bsp;     Metodología

En este estudio se realizará un análisis cuantitativo de las percepciones de 59 docentes del Instituto Técnico Agropecuario Ciudad de Valencia sobre el impacto de la inteligencia artific= ial en su formación y práctica educativa.

El diseño de esta investigación es no experimen= tal, dado que no se manipulan las variables de estudio, sino que se analizan las percepciones de los docentes tal como ocurren en su entorno natural. Este enfoque permite estudiar las interacciones entre la inteligencia artificial (IA) y la formación docente técnico-profesional sin alterar las condiciones= del contexto. Según Yue et al. (2024), el diseño no experimental es especialmente útil en investigaciones educativ= as donde los fenómenos se observan y describen sin intervención directa.<= /o:p>

El tipo de estudio es descriptivo y correlacion= al, ya que se busca, por un lado, describir las percepciones de los docentes respecto al uso de herramientas de IA en su práctica pedagógica, y, por otr= o, analizar posibles relaciones entre estas percepciones y características sociodemográficas, como edad, experiencia laboral y formación tecnológica. = Este enfoque permite identificar patrones y asociaciones significativas sin establecer causalidad (Altinay et al., 2024<= /a>).

El enfoque es cuantitativo, debido a que se emp= lean herramientas estadísticas para analizar los datos obtenidos mediante un cuestionario estructurado con escala Likert. Este método proporciona result= ados objetivos y replicables, esenciales para fundamentar propuestas de mejora e= n el uso de la IA en la educación técnico-profesional (Diliberti et al., 2024).

La recogida de datos en esta investigación se realizó mediante un cuestionario estructurado diseñado para captar las percepciones de los docentes del Instituto Técnico Agropecuario Ciudad de Valencia acerca del impacto de la inteligencia artificial en su formación técnico-profesional. Este instrumento fue elaborado con preguntas formulada= s en escala Likert de cinco puntos (1 =3D Muy en desacuerdo, 5 =3D Muy de acuerd= o), lo que permitió cuantificar las opiniones y actitudes de manera sistemática y estandarizada. Según Dilzhan (2024), el uso de este tipo de escalas facilita la medición de variables subjetivas, como las percepciones y actitudes, garantizando una adecuada sensibilidad en los resultados.

Tabla  SEQ Tabla \* ARABIC = 2

Estadísticas de Fiabilidad de Elemento

Si se descarta el elemento

 

Alfa de Cronbach

Competencia Tecnológica 1

0.936

Competencia Tecnológica 2

0.934

Disponibilidad de Recursos 1

0.924

Disponibilidad de Recursos 2

0.923

Capacitación Recibida 1

0.922

Capacitación Recibida 2

0.921

Percepción de Eficiencia 1

0.927

Percepción de Eficiencia 2

0.922

Competencia Pedagógica 1

0.919

Competencia Pedagógica 2

0.918

Motivación Docente 1

0.924

Motivación Docente 2

0.918

Adaptación al Cambio 1

0.927

Adaptación al Cambio 2

0.917

Impacto en la Enseñanza 1

0.927

Impacto en la Enseñanza 2

0.918

 Nota: el Alfa de Cronbach general resultó= en 0.928 validando tanto para los ítems como al instrumento.=

El cuestionario de la tabla 2 fue diseña= do para evaluar dimensiones clave de las variables de estudio, como la compete= ncia tecnológica, la disponibilidad de recursos, la capacitación recibida y la percepción de eficiencia respecto a la inteligencia artificial, así como aspectos relacionados con la formación docente, incluyendo la competencia pedagógica, la motivación, la adaptación al cambio y el impacto en la enseñanza. Antes de su aplicación, el instrumento fue sometido a una prueba piloto para asegurar su claridad y validez, obteniendo un coeficiente Alfa = de Cronbach de 0.928 lo que indica una alta confiabilidad del cuestionario (Fakhri et al., 2024).

La administración del cuestionario se realizó de manera presencial e= n un ambiente controlado, garantizando la confidencialidad y anonimato de las respuestas. Este enfoque permitió obtener una tasa de respuesta del 100%, ya que todos los docentes seleccionados como muestra (59) participaron activamente. Los datos recopilados fueron procesados y analizados con el software estadístico Jamovi, lo que aseguró la precisión en el análisis y la interpretación de los resultados (Tan et al., 2024). Este procedimiento sistemático proporciona una base sólida para evaluar las percepciones docentes y explorar su relación con las variables demográficas y profesionales.

3.      Resultados

Este estudio se llevó a cabo con el propósito de analizar el impacto= de la inteligencia artificial (IA) en la formación docente técnico-profesional= en el Instituto Técnico Agropecuario Ciudad de Valencia, provincia de Los Ríos. Para ello, se utilizó un diseño no experimental, descriptivo y correlaciona= l, ya que no se manipularon las variables, sino que se observaron las percepci= ones de los docentes en su contexto natural.

3.1. Resultados descriptivos

El análisis descriptivo de las dimensiones relacionadas con la inteligencia artificial (IA) y la formación docente técnico-profesional de = los resultados tabulados de la tabla 3, revela percepciones moderadas a altas entre los docentes encuestados. En cuanto a la competencia tecnológic= a, los resultados indican una media de 3.68 y una mediana de 4.00, sugiriendo = que los docentes tienen una percepción positiva sobre sus habilidades tecnológi= cas, aunque la desviación estándar de 1.292 refleja una considerable dispersión = en las respuestas. Esto implica que, si bien algunos docentes se sienten preparados tecnológicamente, otros presentan limitaciones en esta área. Respecto a la disponibilidad tecnológica, la media de 3.36 muestra una percepción moderada, mientras que una mediana de 4.00 indica que una parte significativa de los encuestados considera que cuentan con recursos adecuad= os. Sin embargo, la desviación estándar de 1.462 señala una alta variabilidad, = lo que sugiere desigualdades en el acceso a recursos tecnológicos entre los docentes.

En cuanto a la capacitación recibida, la media de 3.32 y la mediana = de 4.00 revelan percepciones moderadas, con algunos docentes reconociendo carencias en la formación recibida. La desviación estándar de 1.319 refleja= una dispersión considerable en las respuestas, lo que pone de manifiesto la necesidad de programas de capacitación más consistentes. La percepción de eficiencia tiene una media de 3.61 y una mediana de 4.00, lo que indica que= los docentes valoran positivamente el potencial de la IA para mejorar la enseña= nza. Con una desviación estándar de 1.071, esta dimensión presenta menor dispers= ión, lo que sugiere un consenso más amplio en torno a los beneficios percibidos = de la IA.

En términos de competencia pedagógica, los resultados muestran una m= edia de 3.94 y una mediana de 4.00, lo que indica que los docentes confían en sus habilidades pedagógicas. La desviación estándar de 1.095 sugiere una disper= sión moderada, destacando que la mayoría considera que sus competencias pedagógi= cas son adecuadas para integrar tecnologías innovadoras. La dimensión de motiva= ción docente destaca con la media más alta de 4.16 y una mediana de 4.50, reflej= ando una alta motivación de los docentes para incorporar herramientas de IA en s= us prácticas educativas. La baja desviación estándar de 0.971 sugiere consenso= en esta percepción, lo que es un indicio positivo para la adopción de la tecnología.

La adaptación al cambio tiene una media de 3.91 y una mediana de 4.5= 0, lo que evidencia que los docentes están bien predispuestos a adaptarse a nu= evos escenarios tecnológicos. La desviación estándar de 1.124 indica que, aunque= la mayoría está dispuesta a aceptar cambios, algunos enfrentan retos en este aspecto. Finalmente, en la dimensión de impacto en la enseñanza, la media de 3.97 y la mediana de 4.50 reflejan que los docentes perciben un impacto positivo de la IA en los procesos de enseñanza. La desviación estándar de 0.960, la más baja entre las dimensiones, indica un amplio consenso en esta percepción.

En general, los resultados de la tabla 3= , sugieren que los docentes tienen percepciones positivas hacia la IA, especialmente en términos de su impacto en la enseñanza, la motivación y la competencia pedagógica. Sin embargo, persisten desafíos significativos en cuanto a la disponibilidad tecnológica y la capacitación recibida, áreas que presentan mayor dispersión y, por ende, desigualdades entre los encuestados. Estos hallazgos destacan la necesidad de mejorar la infraestructura tecnoló= gica y ofrecer programas de formación más consistentes para maximizar el impacto= de la IA en la formación docente técnico-profesional.

Tabla  SEQ Tabla \* ARABIC = 3

Descriptivas

 Dimensiones

N

Media

Mediana

DE

Mínimo

Máximo

Competencia tecnológica

59

3.68

4.00

1.292

1.00

5.00

 

Tabla 3

Descriptivas (continuación)

 Dimensiones

N

Media

Mediana

DE

Mínimo

Máximo

Disponibilidad tecnológica

59

3.36

4.00

1.462

1.00

5.00

Capacitación recibida

59

3.32

4.00

1.319

1.00

5.00

Percepción de eficiencia

59

3.61

4.00

1.071

1.50

5.00

Competencia pedagógica

59

3.94

4.00

1.095

1.00

5.00

Motivación docente

59

4.16

4.50

0.971

1.50

5.00

Adaptación al cambio

59

3.91

4.50

1.124

1.50

5.00

Impacto en la enseñanza

59

3.97

4.50

0.960

1.50

5.00

 Nota: Tomado de los datos tabulados en Ja= movi

3.2. Resultado de la correlación de variables

La Tabla 4: Matriz de Correlaciones y= la Figura 1: Gráfica de Dispersión ofrecen información cl= ave sobre la relación entre las variables de estudio: inteligencia artificial y formación docente.

La tabla 4 muestra un coeficiente de correlación de 0.763 entre las variables inteligencia artificial y formación docente. Este valor, que se encuentra en el rango de correlación positiva a= lta (según las convenciones estadísticas), indica que existe una relación direc= ta y fuerte entre ambas variables. En términos prácticos, esto sugiere que, a me= dida que aumenta la percepción o implementación de herramientas de inteligencia artificial, también mejora la formación docente, incluyendo aspectos como la motivación, la competencia pedagógica y la adaptación al cambio. Este resul= tado respalda la hipótesis de que la integración de la inteligencia artificial t= iene un impacto significativo en la formación de los docentes, posiblemente al facilitar procesos como la personalización del aprendizaje, la evaluación continua y la optimización de las estrategias pedagógicas.

La figura 1 de Dispersión visualiza la relación entre las dos variables. En la figura, los puntos tienden a agrupa= rse en una dirección ascendente, lo que confirma una correlación positiva. Esto indica que, a medida que los valores de inteligencia artificial (eje X) aum= entan, también lo hacen los valores de formación docente (eje Y). La alineación de= los puntos en un patrón coherente sugiere que la relación es consistente y fuer= te, lo que refuerza los resultados observados en la tabla 4= de correlaciones.

El coeficiente de correlación positivo alto (0.763) y la disposición ascendente de los puntos en la gráfica de dispersión muestran que la implementación de inteligencia artificial está estrechamente vinculada con mejoras en la formación docente. Estos resultados destacan la relevancia de= la IA como un recurso valioso para fortalecer la enseñanza, siempre que los docentes cuenten con la capacitación y recursos adecuados para aprovechar su potencial. Sin embargo, los puntos dispersos en menor medida sugieren que factores contextuales, como la disponibilidad de recursos tecnológicos o las diferencias individuales en la capacitación, podrían moderar esta relación,= y sería necesario profundizar en estudios adicionales para analizar estos factores.

Tabla  SEQ Tabla \* ARABIC = 4

Matriz de Correlaciones

 

Inteligencia artificial

Formación Docente

Inteligencia artificial

Formación Docente

0.763

 

Figura <= !--[if supportFields]>=  SEQ Figura \* ARABIC = 1

Gráfica de dispersión

3.3. Resultados de los análisis factoriales

Los resultados proporcionan las cargas factoriales y unicidades de los ítems analizados, distribuidos en tres factores identificados mediante un análisis factorial con rotación oblimin (que permite correlación entre factores). Cada carga factorial representa la relación entre un ítem y un factor, mientras = que las unicidades indican la proporción de la varianza de cada ítem que no es explicada por los factores.

Los resultados del análisis factorial muestran = que las dimensiones evaluadas se agrupan en tres factores principales, que expl= ican distintos aspectos relacionados con el impacto de la inteligencia artificia= l en la formación docente técnico-profesional. El factor 1 está compuesto por elementos vinculados a la competencia pedagógica, la motivación docente, la adaptación al cambio y el impacto en la enseñanza. Las cargas más altas, correspondientes a las dimensiones de competencia pedagógica (0.959 y 0.864= ), destacan la relevancia de las habilidades pedagógicas como núcleo de este factor. Además, elementos como la motivación docente y la disposición al cambio tam= bién están fuertemente representados, con cargas de 0.864 y 0.793, respectivamen= te. Las bajas unicidades de estos ítems (por ejemplo, 0.1199 para Competencia Pedagógica 1) indican que este factor explica una gran parte de la varianza= , lo que sugiere que las percepciones docentes sobre sus habilidades pedagógicas= y su disposición al cambio son elementos clave en la integración de la inteligencia artificial.

El factor 2 agrupa las dimensiones relacionadas= con la capacitación recibida y la percepción de eficiencia. Las cargas más alta= s, correspondientes a la capacitación recibida (0.987 y 0.917), reflejan que e= ste factor se centra predominantemente en la preparación de los docentes para integrar herramientas de IA en su práctica pedagógica. Además, la percepció= n de eficiencia también tiene una representación moderada (0.690), lo que indica= una conexión entre la formación recibida y la percepción de que la IA puede mej= orar los procesos educativos. Las unicidades bajas, como en el caso de Capacitac= ión Recibida 1 (0.0374), sugieren que este factor explica casi toda la varianza relacionada con la formación, lo que refuerza la importancia de la capacita= ción como un componente esencial en las percepciones docentes sobre la inteligen= cia artificial.

Por su parte, el factor 3 está compuesto exclusivamente por dimensiones de competencia tecnológica. Las cargas más a= ltas (0.978 y 0.825) reflejan que este factor mide de manera precisa las habilid= ades tecnológicas de los docentes. La unicidad extremadamente baja en el caso de Competencia Tecnológica 2 (−0.0118) indica que este factor explica ca= si toda la varianza de este ítem, lo que resalta la importancia de evaluar de manera independiente las habilidades tecnológicas para comprender su papel = en la formación docente.

 

 

 

 

Tabla 5=

Cargas de los Factores

Factor

 

1

2

3

Unicidad

Competencia Pedagógica 1

0.959

0.1199

Competencia Pedagógica 2

0.864

0.1143

Motivación Docente 2

0.864

0.1143

Adaptación al Cambio 2

0.793

0.1737

Impacto en la Enseñanza 2

0.785

0.2511

Motivación Docente 1

0.728

0.4804

Impacto en la Enseñanza 1

0.706

0.5179

Adaptación al Cambio 1

0.634

0.6168

Disponibilidad de Recursos 2

0.627

-0.359

0.2892

Disponibilidad de Recursos 1

0.615

-0.363

0.3272

Percepción de Eficiencia 1

0.396

0.6949

Capacitación Recibida 1

0.987

0.0374

Capacitación Recibida 2

0.917

0.0624

Percepción de Eficiencia 2

0.690

0.2996

Competencia Tecnológica 2

0.978

-0.0118

Competencia Tecnológica 1

0.825

0.3265

Nota. El método de extracción ‘Residuo mínimo’ se usó en combinaci= ón con una rotación ‘oblimin<= /p>

 

 

 

 

 

 

 

Figura 2= =

Gráfica de Sedimentación

En general, los factores identificados (Tabla 5 y Figura 2) reflejan= la complejidad de las interacciones entre las dimensiones estudiadas. Aunque la competencia pedagógica y la motivación docente están fuertemente relacionad= as con las actitudes y disposiciones hacia la IA, la capacitación recibida jue= ga un papel central en la percepción de eficiencia y la disposición para integ= rar estas herramientas. Por otro lado, las competencias tecnológicas se present= an como un componente independiente pero esencial, que influye de manera indir= ecta en la formación docente. Estos hallazgos refuerzan la importancia de abordar tanto las competencias pedagógicas como las tecnológicas en los programas d= e formación, así como de garantizar una capacitación adecuada para maximizar el impacto = de la inteligencia artificial en el ámbito educativo técnico-profesional.=

4.      Discusión

 El aná= lisis realizado sobre el impacto de la Inteligencia Artificial (IA) en la formación docente técnico-profesional en el Instituto Técnico Agropecuario Ciudad de Valencia permite destacar conclusiones significativas que abordan= los objetivos específicos planteados en el estudio. Estas conclusiones no solo reflejan las percepciones y actitudes de los docentes, sino también las principales barreras y facilitadores que influyen en la implementación efec= tiva de herramientas de IA en el contexto educativo técnico-profesional.

En relación con el primer objetivo específico, centrado en identificar las percepciones de los docentes sobre el uso de la inteligencia artificial en su práctica educativa, los resultados muestran q= ue las opiniones de los docentes son en general positivas. Dimensiones como la percepción de eficiencia y el impacto en la enseñanza tienen medias altas, = lo que indica que los docentes valoran los beneficios potenciales de la IA en términos de personalización del aprendizaje, mejora de la evaluación y opti= mización de los procesos pedagógicos. Este hallazgo coincide con estudios previos que destacan la capacidad de la IA para transformar las prácticas educativas mediante el uso de algoritmos adaptativos y herramientas interactivas (Chiu et al., 2024). Sin embargo, también se observaron variaciones significativas en las respuestas, especialmente en relación con la competencia tecnológica y la capacitación recibida, lo que refleja desigualdades en el acceso a recursos y formación = que afectan la percepción general sobre estas herramientas. Este contraste resa= lta la importancia de proporcionar un acceso equitativo a las tecnologías de IA= y de fortalecer las estrategias de capacitación docente.

El segundo objetivo específico buscó identificar las principales barreras y facilitadores para la implementación de la IA en= la formación técnico-profesional. En este sentido, el estudio destaca que las barreras más relevantes incluyen la falta de formación específica, la limit= ada disponibilidad tecnológica y la resistencia inicial al cambio, aspectos que= han sido señalados en investigaciones previas como limitantes clave para la adopción de tecnologías emergentes en el ámbito educativo (Fundi et al., 2024; Mbambo & du Ple= ssis, 2024). Por ejemplo, aunque los docentes muestran una disposición moderada a alta hacia la adaptación al cambio, algunos participantes aún enfrentan retos para integr= ar estas herramientas debido a su falta de familiaridad con las mismas. Esto refuerza la necesidad de políticas institucionales que promuevan un entorno= de apoyo continuo, que incluya tanto el acceso a recursos tecnológicos como la oportunidad de participar en programas de capacitación especializados. Entre los facilitadores, destaca la motivación docente como una de las dimensiones mejor valoradas, lo que indica que existe una disposición generalizada para= incorporar innovaciones pedagógicas si se brindan las condiciones adecuadas. Este resultado coincide con investigaciones que subrayan la importancia de la motivación intrínseca de los docentes como un factor crítico para superar l= as barreras iniciales a la adopción tecnológica.

En cuanto al tercer objetivo específico, enfoca= do en explorar la relación entre las percepciones docentes y características sociodemográficas o profesionales, los análisis muestran que variables como= la experiencia laboral y la formación previa en tecnologías tienen un impacto significativo en la disposición y capacidad para adoptar herramientas de IA. Los docentes con mayor experiencia reportaron una menor confianza en su competencia tecnológica, lo que sugiere la necesidad de estrategias diferenciadas de formación que consideren las trayectorias profesionales y niveles de familiaridad con la tecnología de cada grupo. Por otro lado, aquellos que han recibido capacitación previa muestran una percepción más favorable hacia la eficiencia de la IA, lo que subraya la importancia de los programas de formación específicos como un elemento determinante para mejor= ar la adopción de estas herramientas. Estos hallazgos se alinean con estudios = que destacan la relación entre la experiencia previa y la percepción de autoefi= cacia tecnológica en contextos educativos (Aljemel= y, 2024<= /span>; Ayanwale et al., 2024).

En general, los resultados del estudio destacan= la relevancia de abordar tanto las competencias tecnológicas como las pedagógi= cas en los programas de formación docente para maximizar el impacto de la IA en= el ámbito educativo técnico-profesional. Además, refuerzan la importancia de la capacitación como un eje central para promover la integración efectiva de e= stas herramientas, especialmente en instituciones que enfrentan limitaciones tecnológicas o presupuestarias. La IA ofrece oportunidades significativas p= ara mejorar la personalización del aprendizaje y optimizar los procesos pedagógicos, pero su implementación exitosa depende de un enfoque integral = que incluya no solo el acceso a recursos tecnológicos, sino también el desarrol= lo de habilidades específicas y la generación de una cultura institucional que valore la innovación educativa (Sperlin= g et al.= , 2024; Erduran & Levri= ni, 2024).

Finalmente, esta investigación resalta la neces= idad de realizar estudios futuros que profundicen en las dinámicas entre la motivación docente, la percepción de eficiencia de la IA y la disponibilida= d de recursos, considerando el papel de factores contextuales e institucionales = en la adopción tecnológica. Además, sería pertinente explorar cómo las experiencias positivas en el uso de la IA pueden generar un efecto multiplicador entre los docentes, fomentando una mayor aceptación y disposi= ción hacia estas herramientas en el ámbito técnico-profesional. En suma, este estudio contribuye al entendimiento de las dinámicas entre la inteligencia artificial y la formación docente, proporcionando una base sólida para el diseño de estrategias que promuevan el uso efectivo y ético de estas tecnologías en contextos educativos.

5.      Conclusiones

·      =    El uso de la inteligencia artificial (IA) en la formación docente técnico-profesional mejora la enseñanza al personalizar la capacitación y optimizar la retroalimentación, fortaleciendo las competencias pedagógicas.=

·      =    Sin embargo, su adopción plantea desafíos como la necesidad de formación específica, la dependencia tecnológica y dilemas éticos sobre privacidad y autonomía docente.

·      =    Es crucial combinar la IA con enfoques pedagógicos sólidos para potenciar su i= mpacto sin reemplazar al educador, promoviendo su uso responsable en la educación técnico-profesional.

 

6.      Conflicto de intereses

Los autores declaran que no existe conflicto de intereses en relación con el artículo presentado.

7.&n= bsp;     Declaración de contribución de los autores

Todos autores contribuyeron significativamente en = la elaboración del artículo.

8.      Costos de financiamiento

La presente investigación fue financiada en su totalidad con fondos propios de los autores.

9.      Referencias Bibliográficas

Aljemely= , Y. (2024). Challenges= and best practices in training teachers to utilize artificial intelligence: A systematic review. Frontiers in Education, 9, 1470853. https:= //www.frontiersin.org/journals/education/articles/10.3389/feduc.2024.147085= 3/full

Altinay, Z., Altinay, F., Sharma, R. C., Dagli, G., Shadiev<= /span>, R., Yikici, B., & Altinay, M. (2024). Capacity building for student teachers in learning, teaching artificial intelligence for quality of education. Soc= ieties, 14(8), 148. https://www.mdpi.com/2075-4698/14/8/148<= /span>

Ayanwale= , M. A., Frimpong, E. K= ., Opesemowo, O. A. G., & Sanusi, I. T. (2024). Expl= oring Factors That Support Pre-service Teachers’ Engagement in Learning Artificial Intelligence. Journal for STEM Education Research. https://doi.org/10.1007= /s41979-024-00121-4

Chiu, T. K., Ahmad, Z., Ismailov, M., & Sanusi, I. T. (2024). Wh= at is artificial intelligence, literacy and competency? A comprehensive framework= to support them. Computers and Education Open, 6, 100171. https:= //www.sciencedirect.com/science/article/pii/S2666557324000120=

Diliberti, M., Schwartz, H. L., Doan, S., Shapiro, A. K., Rainey, L., & Lake, R. J. (2024). Using Artificial Intelligence Tools in K-12 Classrooms. RAND. https:= //www.rand.org/content/dam/rand/pubs/research_reports/RRA900/RRA956-21/RAND= _RRA956-21.pdf

Dilzhan<= /span>, B. (2024). Teaching English and Artificial Intelligence: EFL Teachers’ Perceptions and Use of ChatGPT [Thesis of Master, SDU University, Kasajis= tán]. https://osf.io/fwy92/download=

Mbambo, G., & du Plessis, E. (2024). The impact of artificial intelligence on teacher training in open distance and electronic learning. = ScienceOpen Preprints. https:= //www.scienceopen.com/hosted-document?doi=3D10.14293/PR2199.000731.v1

Erduran<= /span>, S., & Levrini, O. (2024). The impact of artificial intellig= ence on scientific practices: An emergent area of research for science education= . International Journal of Science Education, 46(18), 1982-1989. https://doi.org/10.1080= /09500693.2024.2306604

Fakhri, M. M., Isma, A., Hidayat, W., Ahmar, A. S., & Surianto= , D. F. (2024). Digital Literacy Training and Introduction to Artificial Intelligence Ethics to Rea= lize Digital Literate Teachers: Pelatihan Literasi Digital dan Pengenalan<= /span> Etika Kecerdasan Buatan untuk Mewujudkan Guru Melek Digital. Mattawang<= /span>: Jurnal Pengabdian Masyarakat, 5(1), 38-47. https://jurnal.ahmar.id= /index.php/mattawang/article/view/2603

Forero Corba, W., & Negre Bennasar, F. N. (2024)= . Técnicas y aplicaciones= del Machine Learning e Inteligencia Artificial en educación: Una revisión sistemática. RIED-Revista Iberoamericana De Educación a Distancia, 27(1), 1-35. https:= //www.redalyc.org/journal/3314/331475280017/331475280017.pdf<= /a>

Kitcharoen, P., Howimanporn, S., & Chookaew, S. (2024). Enhancing teachers’ ai competenc= ies through artificial intelligence of things professional development training= . International Journal of Interactive Mobile Technologies, 18(2). https:= //search.ebscohost.com/login.aspx?direct=3Dtrue&profile=3Dehost&sco= pe=3Dsite&authtype=3Dcrawler&jrnl=3D18657923&AN=3D175182709&= ;h=3DcsoIW1G529rzfFHFqZHSTBKSb%2B4MOZX%2BuefU%2BWMqMc%2BF19gAkq2aoE8W3oSdGc= bGlVZ5kRpL0GpVN6fv2UT36Q%3D%3D&crl=3Dc

Singh, V., & Ram, S. (2024). Impact of Artificial Intelligence on Teacher Education. Shodh Sari-An Internafional Mulfidisciplinary<= /span> Journal, 3(1), 243-266. https:= //icertpublication.com/wp-content/uploads/2024/01/125.-Impact-of-Artificial= -Intelligence-on-Teacher-Education.pdf

Sperling, K., Stenberg, C.-J., McGrath, C= ., Åkerfeldt, A., Heintz, F., & Stenliden, L. (2= 024). In search of artificial intelligence (AI) literacy in Teacher Education: A scoping review. Computers and Education Open, 6, 100169. https:= //www.sciencedirect.com/science/article/pii/S2666557324000107=

Tan, L. F., Heng, J. J. Y., & Teo, D.= B. (2024). Response to: The next paradigm shift? ChatGPT, artificial intellige= nce, and medical education. Medical Teacher, 46(1), 151-152. <= span style=3D'mso-bookmark:ref14'>https://doi.org/10.1080= /0142159X.2023.2256961

Wardat, Y., Tashtoush, M., AlAli, R., & Saleh, S. (2024). Artificial intelligence in education: Mathemati= cs teachers’ perspectives, practices, and challenges. Iraqi Journal for Computer Science and Mathematics, 5(1), 60-77. https://ijcsm.researchc= ommons.org/ijcsm/vol5/iss1/20/

Yang, W., Hu, X., Yeter, I. H., Su, J., Yang, Y., &a= mp; Lee, J. C. (2024). Artificial intelligence education for young children: A case study of technology‐enhanced embodied learning. Journal of Computer Assisted Learning, 40(2), 465-477. https://doi.org/10.1111/jcal.12892

Yilmaz, R., Bakhaidar= , M., Alsayegh, A., Abou Hamdan, N., Fazlollahi, A. M., Tee, T.= , Langleben, I., Winkler-Schwartz, A., Laroche, D., Santaguida, C., & Del Maestro, R. (2024). Real-Time multifaceted artifi= cial intelligence vs In-Person instruction in teaching surgical technical skills= : A randomized controlled trial. Scientific Reports, 14(15130). <= /span>https:= //www.nature.com/articles/s41598-024-65716-8#citeas

Yılmaz, Ö. (2024). Personalised= learning and artificial intelligence in science education: Current state and future perspectives. Educational Technology Quarterly, 2024(3), 255-274. https:= //acnsci.org/journal/index.php/etq/article/view/744

Yue, M., Jong, M. S.-Y., & Ng, D. T. = K. (2024). Understanding K–12 teachers’ technological pedagogical content knowledge readiness and attitudes toward artificial intelligence education.= Education and Information Technologies, 29(15), 19505-19536. https://doi.org/10.1007= /s10639-024-12621-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento de la Revista Explorador Digital.

 

 

 

 

El artículo queda en propiedad de la revista y, por tanto, su publicación parcial y/o total en o= tro medio tiene que ser autorizado por el director de la Revista Explorador Digital.

&= nbsp;

 

------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Wul13JournalArticle{85036D1D-B423-4696-A9F8-74A5479186CA}The= effect of polymer surfactant on the rheological properties of nanoemulsion= s.Colloid and Polymer Science 2013 709–716291Wulff-Pérez MiguelMartín-RodriguezAntonioGálvez-RuizMaría J.de Vicente<= b:First>Juan11Zam15= JournalArticle{FB40766B-903F-463C-A57E-3F34CA9E5021}= Composite chitosan/Agarose ferrogels for potential applic= ations in magnetic hyperethermiaGels.201569-801Zamora MoraV= anessaSoaresPaula = I.P.EcheverriaCoro= Hernández Rebeca<= /b:First>MijangosCarmen5Bha10JournalArticle{3EC2A2EA-5A35-480A-9A1D-C11383B455BF}= Supermacroprous chitosan-agarose-gelatin cryogels. in vitro characterizatio= n and in vivo assesment for cartilage tissue engineering.Journal of the Royal Society Interface20101-15BhatSmuritaTr= ipathiAnujKumarAshok4Rui04Report{289ADC54-049A-4459-B615-36603B0D1B08}<= /b:Guid>Desarrollo de un Sistema de liberación de fármacos basad= o en nanopartículas magnéticas recubiertas con Polietilénglicol para el = tratamiento de diferentes enfermedades.2004Universidad Autónoma de Madrid. Departamento de Física Aplicada.<= /b:Publisher>MadridRuiz EstradaGladys Amalia= 9Cor11JournalArticle{2CE82786-F4F8-40AE-B743-82C4554E5E89}Hidrogeles nanoe= structurados termosensibles sintetizados mediante polimerización en microe= mulsión inversa.Revista Mexicana de Ingeniería Q= uímica.2011513-520103CortésJ. A.= PuigJ. E.M= orales J. A.Mendiz= ábalE.13MarcadorDePosi= ción1JournalArticle{819DA773-= 947B-4BC2-855C-003DB219D8AF}Enhanced spinnability of narb= on nanotube fibers by surfactant additionFiberes a= nd Polymers2014762-766<= b:Volume>154<= b:Person>Song JunyoungKingSoyo ungYoon SoraCho= DaehwanJeongYoungjin12Ilg13JournalArticle{752C8BEE-7C38-4885-8859-F6506= 8501C9B}Stimuli-responsive hydrogels cross-linked by magn= etic nanoparticles.Soft Matter20133465-34689IlgPatrick14Bos15JournalArticle{8726F6AC-1312-4A0D-94FD-908B651CD5BC}Functionalized microfibers for field-responsive materials and biological a= pplications.2015= BossisGeorgesMarinsJéssica A.KuzhirPavelVolkovaOlgaZu= barevAndrey<= /b:Author>Journal of Intelligent Material Systems and Struct= ures1-915Lin12JournalArticle{CABBB6F0-E9CB-4C6D-BB4E-88B488FEA5A4}Microflu= idic synthesis of microfibers for magnetic-responsive controlled drug relea= se and cell culture.PLoS ONE20121-873Lin= Yung-ShengHuangKen= g-ShiangYangChih-H= uiWangChih-YuYangYuh-ShyrongHsuHsiang-ChenLiaoYu-Ju= TsaiChia-Wen3Tar05JournalArticle{8A= 89917D-A7C1-4E7C-9FB6-ED9C063087E3}Advances in magnetic n= anoparticles for biotechnology applications.Journa= l of Magnetism and Magnetic Materials2005<= b:Pages>28-34290TartajP.MoralesM. P.González-CarreñoT.= Veintemillas-VerdaguerS.SernaC. J.1Gar03JournalArticle{9B65BBFA= -A814-4A04-9249-A6A47D160DAB}Síntesis y propiedades de f= errofluidos de magnetita2003Super= ficies y Vacío.28-31161G= arcía-CerdaL.A.Ro= dríguez-FernándezO.S.Betancourt-GalindoR.<= b:Last>Saldívar-GuerreroR.Torres-TorresM.A.2Dia11JournalArticle{7FD6F7= BB-B6BD-4D3D-AC43-1AF5FDBD6366}A biotechnological perspec= tive on the application of iron oxide magnetic colloids modified with polys= accharides.2011<= b:Person>DiasA.M.G.C.HussainA.MarcosA.SRoqueA.C.A.142–155Biotechnology Advances 29 296Lew11JournalArticle{69BACEF5-DDAD-42EE-BC36-71ACEA6223A9}Biohybrid carbo= n nanotube/agarose fibers for neural tissue engineering.2= 011Advanced Functional Materials2624-263221LewitusDan Y.= BranchJonathan R.<= b:Person>SmithKaren L.CallegariGerardoKohnJoachimNeimarkAlexander V.<= /b:Author>7= Est10JournalArticle{AD2B1400-8= 746-4FD6-8914-4CA8F67548A7}Hidrogeles poliméricos potenc= ialmente aplicables en Agricultura.2010Revista Iberoamericana de Polímeros76-87122Estrada GuerreroRodolfo F.Lemus TorresDafneMendoza AnayaDemetrioRodriguez LugoVentura<= /b:First>8Ald16JournalArticle= {D12368F2-04FB-475B-B3C1-20843943EEEC}Facile synthesis of magnetic agarose microfibers by directed selfassemb= lyPolymer201661-6493= AldanaSamuelVeredaFernando= Hidalgo-AlvarezRoquede VicenteJuan10 ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQAC Thl/wwYAAFEaAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZz48bNRS+I/E/WHNP82smP1bN Vskk6UJ326pJi3r0Jk7GXc84mnF2G1WVUHtEQkIUxIFK3DggoFIrcSl/zUIRFIl/gWfPZGInDtuu elih7l4ynu89f37P/p49vnzlfsjQMYkTyqOWU75UchCJRnxMo2nLuT3sFxoOSgSOxpjxiLScBUmc K7sffnAZ74iAhASBfZTs4JYTCDHbKRaTETTj5BKfkQjeTXgcYgGP8bQ4jvEJ+A1ZsVIq1YohppGD IhyC2yHYoDFBNyYTOiLO7tJ9j0EfkUhkw4jFA+mcZDYadnxUlohkkfgsRseYtRzoacxPhuS+cBDD iYAXLaek/pzi7uUi3smMmNhiq9n11V9mlxmMjyqqz3h6mHfqup5ba+f+FYCJTVyv3qv1ark/BcCj EYw05aL79DrNTtfLsBoo/Wnx3a13q2UDr/mvbnBue/LfwCtQ6t/dwPf7PkTRwCtQivc28K5br/iu gVegFF/bwNdL7a5bN/AKFDAaHW2gS16t6i9Hm0MmnO1Z4U3P7dcrmfMVCmZDPrtkFxMeiW1zLcT3 eNwHgAQyLGiExGJGJngE89jHjB7GFO3TaSBkN3iHYO192jRKNppkjygZxXQmWs7HMwwrY+X1n5c/ /vPyOTp99OL00S+njx+fPvo5dWRY7eFoqlu9/v6Lv59+iv56/t3rJ1/Z8YmO//2nz3779Us7EBbR is6rr5/98eLZq28+//OHJxZ4O8aHOnxIQ5Kg6+QE3eIhDExFxWRODuO3sxgGmOoW7Wia4AjLXiz+ eyIw0NcXmGELrkPMCN6JQURswKvzewbhQRDPBbV4vBaEBvCAc9bhsTUK12RfWpiH82hq7zye67hb GB/b+vZxZOS3N5+BelKbSz8gBs2bDEcCT0lEBJLv+BEhltHdpdSI6wEdxTzhE4HuUtTB1BqSIT00 ZtPKaI+GkJeFjSDk24jNwR3U4cw26i45NpGwKjCzkB8SZoTxKp4LHNpcDnHI9IDvYxHYSA4W8UjH 9RIBmZ4SxlFvTJLEZnMjhvFqSb8GAmJP+wFbhCYyFvTI5nMfc64ju/zID3A4s2EHNAp07EfJEUxR jG5yYYMfcHOFyGfIA462pvsOJUa6z1aD26CdOqXVBJFv5rEll1cJN+bvYMEmmCipAWk3FDuk0Zny nfbw7oQbpPLVt08tvC+qZLdjal0ze2tCvQ23Ls8+j8f04qtzF8+jmwQWxGaJei/O78XZ+d+L87b1 /O4leaXCINByM5hut9XmO9y6955QxgZiwch+orbfCdSecR8apZ06eZL8LDYL4KdcydCBgZvGWNmg mItPqAgGAZ7B1r3sSCfTJHM9TdCMJ3BkVM1W3xLP5uEBH6dHznJZHi9T8UiwWLWXvLwdjgsiRdfq q2NU7l6xnarj7pKAtH0bElpnJomqhUR92SiDpA7XEDQLCTWyd8KiaWHRkO6XqdpgAdTyrMDmCMGW quV4LpiAEZyZMCNjmac01cvsqmS+y0xvC6YxA0rwZSObAatMNyXXrcOTo0un2htk2iChTTeThIqM qmFJgOGrivogkqUwWxAbUV7ReNtcN1cpNejJUGSx0GjUG/8VjPPmGuzWtYFFulKwCJ20nFrVgykz wrOWM4GjO/wMZzB3ErmpxWwKX8BGIk4X/HmUZRYnoouTIA24Ep1UDUIqSIwYDVuOHH4+G1ikNERx K1dAEC4suSbIykUjB0k3k0wmEzISetq1Fhnp9BEUPl0F1rfK/PxgacnnkO5BMD5Bh2we38Iwxbx6 WQZwTBP4vlNOozmm8EkyF7LV/FsrTJns6t8E1RxK2zGbBTirKLqYp3Al5Tkd9ZTHQHvKxgwB1UKS FcLDqSywelCNappXjZTD1qp7tpGMnCaaq5ppqIqsmnYxNXpYloG1WJ6vyGusliGGcqlX+FS61yW3 udS6tX1CXiUg4Hn8LFX3DQqCRm3VmUFNMt6UYanZWatZO5YDPIPamxQJTfVrS7drcctrhLU7aDxX 5Qe79VkLTZPlvlJFWt1e6NcL/PAeiEcXPuTOmUhUKuHyIMawIRqoapnKBiyR+yJbGvALzWPach6U vLbrVzy/UGp4vYJbdUuFhteuFtqeVy33vHKp26k8hMIigrDspTcnffjYxBbZ/Ylq37hDCZff0y6N eFjk6m6kqIirO5RyxbhDSe9D0FBekTiIgug8qFX6zWqzUys0q+1+we12GoWmX+sUujW/3u13fa/R 7D900LECu+2q79Z6jUKt7PsFt1aS9BvNQt2tVNpuvd3oue2H2TYGRp7KRxYLCK/itfsvAAAA//8D AFBLAwQUAAYACAAAACEADdGQn7YAAAAbAQAAJwAAAHRoZW1lL3RoZW1lL19yZWxzL3RoZW1lTWFu YWdlci54bWwucmVsc4SPTQrCMBSE94J3CG9v07oQkSbdiNCt1AOE5DUNNj8kUeztDa4sCC6HYb6Z abuXnckTYzLeMWiqGgg66ZVxmsFtuOyOQFIWTonZO2SwYIKObzftFWeRSyhNJiRSKC4xmHIOJ0qT nNCKVPmArjijj1bkIqOmQci70Ej3dX2g8ZsBfMUkvWIQe9UAGZZQmv+z/TgaiWcvHxZd/lFBc9mF BSiixszgI5uqTATKW7q6xN8AAAD//wMAUEsBAi0AFAAGAAgAAAAhAOneD7//AAAAHAIAABMAAAAA AAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYACAAAACEApdan58AAAAA2 AQAACwAAAAAAAAAAAAAAAAAwAQAAX3JlbHMvLnJlbHNQSwECLQAUAAYACAAAACEAa3mWFoMAAACK AAAAHAAAAAAAAAAAAAAAAAAZAgAAdGhlbWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbFBLAQItABQA BgAIAAAAIQACThl/wwYAAFEaAAAWAAAAAAAAAAAAAAAAANYCAAB0aGVtZS90aGVtZS90aGVtZTEu eG1sUEsBAi0AFAAGAAgAAAAhAA3RkJ+2AAAAGwEAACcAAAAAAAAAAAAAAAAAzQkAAHRoZW1lL3Ro ZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwucmVsc1BLBQYAAAAABQAFAF0BAADICgAAAAA= ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image001.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABxAG8DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9sPh+ fGnxVj1rxPc/E7WdIht/E+pabZ6dpMFl5ccVpdSWwYma3kdmcxFz82BuwBxk9B/wrfxP/wBFx8Wf 9+dM/wDkKsj9mr/kTdd/7KB4j/8ATtc16HQUzk/+Fb+J/wDouPiz/vzpn/yFR/wrfxP/ANFx8Wf9 +dM/+Qq6yigVzk/+Fb+J/wDouPiz/vzpn/yFR/wrfxP/ANFx8Wf9+dM/+Qqp/Hb9oDwD8APC/wDw kHjG+3XE2V0/TYWBmunx0A7KO7HgfUgH4d+Mn7dnxr+KF1NBpetNoOltuEdnpzbWKf7b9ScemK7s Jl2IxesdF3Z8xnnFuV5C/Z1G5VP5Y2v8+i/PyPuK68MXFk/l3n7RviCFv7ssmlKf1s6daeEr7UG2 2H7RHiKY+kLaU38rOvyp1r4mWLS79c8aNNJn5jLeNI2ffk1Y8OfFB7edJvDHjmaGVW/d/Z75o2z9 Mg10/wBn4GVT2axMeftdX+69zzZcS8VUsJ9dqZNWWH/5+OE1H/wJ0+X8T9WP+Fb+J/8AouPiz/vz pn/yFR/wrfxP/wBFx8Wf9+dM/wDkKvir4I/8FC/ix8PruHTvH8x8RaVuxJ55xcRr6q/f6Gvt/wCF /wAU/BXxh8JQeM/AusJdWk3Dr0khcdUdeqsPQ9RyMgg1yYrAYjB/GtO62PYyPijLM+i1Qlaa3i9H 69mvNfMq/wDCt/E//RcfFn/fnTP/AJCo/wCFb+J/+i4+LP8Avzpn/wAhV1lFcZ9Dc5P/AIVv4n/6 Lj4s/wC/Omf/ACFWPqFz4u+HXxG8L6TP8QNU1yx8RXF1Z3Fvq0NqDA8dtJcJKjQQxn/lkylWyDvB GMc+iV5/8Wv+So/Db/sPX3/pruqBrUz/ANnO6WLwpr6E/wDNQPEf/p2ua9A+2r615h8Arny/DviB M/8ANQPEX/p1ua7n7Z71PMEtzW+2r61jfEH4i6F8N/BuoeNvEE+210+3aV+RlyBwo9ycD8af9s96 8p/aj1W31PRrTwbdIskF1ukuYWGVdRwP1rw+JOIcJwvk1XMsTFyhTtdJpN3aSSvpd3OnB4DFZpiF hcO0pyvZvVJ2bu0tbI+MfG3jD4kftR/GD7bJFJeanq10INNsVYBII8/LGvZVUck/Unua85/bo+Gu r/AL4m2PwtPiOS53eHra9vmj+VPPkaQMq45KDaAM9eT3wPur9j/4E+EfBniHVviTZ27NMwFrYrNy LfI3SFfqCgz2AI7mvkP/AIK6Seb+1hG3/Uq2f/oyapzviyjn/CdHF5bzQo1FFpNcsrO+jS6ad7Pf VWPr/oz+HdHA+KVSpn1OFfEQjUkm7TjGScbTV18Tu2na8VorO58u5oBKnKmiivy8/wBKXGLjZo+k P2Jfgt4r/aM8P+MLHSNaZtS8O2ttcabazkbbne0gaMseQcKNpzjPB65Hffs1fHbxN+zj8UFuZzMu nTTi21/TX43KGwWwejoeQevUdCa0v+CLE3leKPHpz1sLH/0OWui/4KF/DKx8KfE6z8eaParHB4it 2a6VB8v2mPAZvbcpU+5DGv3LgvHVMZlMMNiW5XTs3q9G9L+S27WP8ovpPcMYPh3xKxWa5NTjQcHS cowSjFuUINysrK7k/e/mvd63v916Z4g0/WdOg1bTLpZre6hWWCVDkOrDII/Cp/tq+teA/sIfEG58 V/Aq306/u/Mn0e5e15bkR9Uz+Br2j7Z71WIpuhWlTfR2PMyzHRzLL6WKj9uKfpfdfJmt9tX1rhfi ZcCb4qfDcA/8x6+/9Nd1XSfbPeuP8dXHm/Fr4crn/mN33/psuqx5jvjuY/wPn2aN4iXH/NQPEX/p 1ua7T7V7V578Grny9N8SJn/moHiH/wBOlzXYfbPf9KzuPU0vtXtXkPx+kkk8U25b7v2X5fz5r0z7 Z7/pXn/x005rq2s9bjQnyWMUjegPI/WvzTxcwdbHcB4pUtXDlm/SMk39y1+R9JwjWjRz6k5dbr5t NI6H4GTongONVxn7TJu/Ovzc/wCCyfibUNF/bBtZbVg0beE7TzIm6N+8mr74+CHieOyuLjw3cPt8 9vOt892Aww+uAPyNfBX/AAVl8B+NPin+21pnhHwF4cutU1G68LWaw21pCWY/vJuT6D3PFeJkeZUs 08McE8M7ygoU2lupQ91q3d2T9Gu5+w+FcXlvitXqVpKMfZ1Z8zdlyvld7vSy6+h86aH4n0zXY/3E mybHzQt1H+IrSr7U/Y0/4JJeFfAptfiF+0iY9W1ZcSW/h+Fj9mtm4I80j/WMP7v3fXNN/am/4JjS WX2jxr+zvukh5ebw5NISyf8AXFj1H+yefc16cOH82+pqtOGv8v2rd7fpv5H75g/HDgTEZ88rddro qrVqTl25t1/iaUX32va/4I1user+OH28m3sxn/gUlew/8FHZ4JPAXh9TjzP7YYr67fKbP64rx/8A 4JJadqvhzxL480jWtPmtLqGO0Sa3uIyrIwaTgg1p/t0fFC18a/Ei38JaTc+Za+H4WjmZfutcOQXH vgBB7HdX6ZwLSnLD0f7vM397P4n+lXjsPR4nzHVP2ioqOu96dN6fJNno3/BN+SaPwl4kJH7s6jF+ fl19KfavavE/2L/Cc/g74LWtzeweXPqk7XTcclDwufwFetfbPf8ASvUzKpGpjqjXf8tD814Tw9TC 8O4anPflv97b/U0vtXtXL+KZvM+L/wAO1x/zGr7/ANNl1Wt9s9/0rndan834yfDtf+oxf/8Apsuq 4k9T6JGJ8J7lY7bxMh/6KB4h/wDTpcV1f2xK4P4b3PlnxQm7/mfvEH/pzuK6T7Z/t1L3BtXNj7Yl VdatrPW9Mm0u7X5Jlx06Hsao/bP9uj7Z/t1jWo0sTRlSqxvGSaaezTVmn6ocKkqc1OLs1qn5nl2p afqXhjWPs7u0c0L7opV4yOzCuv8AB3irwTe663iTWdHs7XXpbZLebUmiAaWNckLv7Dk8e9aXiDRt N8R2vkXq/Ov+rmX7yf8A1vauH1bwXrOmsxSD7RGOkkXPHuO1fzhicg4y8K81qYvJKbxGCm7uFnJr tzJappaKcbpr4ux+k0czynifCqjjJ+yrJW5r2TXrs03q4vrt3PXlv4nUOjblPII70k+p2ttE09xK scajLO5wBXidve6nY8Wt1cQ/9c3ZaSabUtQYLcSTzNnjeWb+dej/AMR4jKnywy2bq9ufS/8A4Bf8 Dl/1EcZXliY8ve3T77fidX4v8XeG7K8vrjwTYQw6lqEIhvdWt4wrlRnGD/ERk4PavCPCP7K2s+Jf iRCLjU/tGjibz9QupP8AWYznYfVm9frxxXsWjeA9V1CRXvx9lh/i3feP0H+NdxpFnp+iWa2OnRLG g5Y92PqT3NfVeHuZeKGYZ1PNMwksPhZKyouPxb2cU/ei03dzbvLazW3zHGmR8GZhhKWGmnWrU2mp 8z0StdPo00kuVLRdU992y+xadZxWFlAscMMapFGq4CqBgCpftiVj/bP9uj7Z/t1+tHiLlirI2Pti ViXU4l+NPw9Uf9Ba/wD/AE23NP8Atn+3Wdaz+b8bvh+N3/MUv/8A023NEfiRSsc94CmZLjxQo/6H 7xB/6c7iug+0P6VyXg+68rUPFSbx/wAj9r//AKc7itv7b/trU3dyepT+IPxZ+Hfwo0dfEHxM8caX oNk8nlx3OqXyQq74ztXcRuOATgc1T0X48/B7xH4LuviNoPxP0K80GxGb3V7fVI2t7f8A33BwnUdc V836Ro3hj4zf8FN/HFh8XYrfVI/A3grSx4J0PUYVkt0S5G+6u1jbIMgkxHv6gMB2GOZ/bW+GH7OP w7+GXxsvfhlrC6b4q1TwPby694X0+dEtRF9oTZcmBV+V2ORuzzjpVLsPlPtux1a21Ozi1HT7mOa3 njDwzRvuV1IyCD3BFS/aH9K+I/AHxb/aa+A3xS+B/hXx18WrHxP4c+JWh30VzoMfh+K0XR3tbKOa PyJlJkk+8FJkJyAeMkFeT8M/t3ftJ+LdCs/2g9B8b3V7bX2ubY/hha/DW7e2Gm+eY8/2kI+Zwo3k htmeMDoC0g5WfoK/lSf6y3Rv95az4vF/hQeKW8Ew61Y/2xHZC7bS1mXz1ty20SlOuzcCN2MZr5O0 f4q/td/tS678RPE/wS+Mml+BNN8E6tJpOg6Hf6BDdDU7qKJZGe8mky0CMWC/IMqMnkjnzX9on9q7 xp+zn+1pJ4/1nwvaXXizVPghYWrjS3efTbG7a+kMlw8u3cLZMM2SMkACpjTjzXsr/iP39rn6HfaH 9Kw9J+K3w917xhffD/RPHGlXmuabHv1HSLa/R7i2XIGXjB3Lyy9R3Fcv8I08bN8INPTxT8Vo/EWt X2m+bJ4kt7GGOJpJFyrxRoqqY1yNuckgcnmvhH4H+O/il+zX4Y+Pfxh0zxxZ654juPjXf+FrWXUf D8KLJfSXUCHUJHQh1TDE/ZwRGCBjrVK7J5T9MvtD+lH2h/SvkPU/i1+05+zT8YdD+GvxV+Ndp48s PGXh/UJLG+PhuCwuNMv7eBpBtEJKvEQD94EggCt3/gnx42/ag+MPw/s/jz8dPi7p99pms6fJDpfh ex0GKHyWSbaLuSdSGZ2CP+7ChAHHORijUOVn0/8AaH9Kq6NK0nxz8Agj/mJ3/wD6bbmq/wBt/wBt aZ4XuPO+PHgIbh/yEb//ANN1zRF+8hxOW8PXSxa14sRj/wAz9r3/AKcritX7bH6mua0y4ZPEni5Q f+Z+17v/ANRKer32t/73/j1J7g9zgfjr+y94R+M3i7Tfibpfi/WPCni7SbVrW18SeH5gkzWzHJhk DArImSSAehNc/pP7Cfwug+HvjDwh4k8V65reqeOrZYPEXijUrgNeSxqwKovG1FBXhQMV65LeSLEx DfwnvXx3P+1T8b0/YX+Jfxc/4TZh4g0HxrqNjpN99njzDBHeLGibdu04UkZIJpq/QZ9KeI/2bvAn ibxX8OPFt/qN753wzW5XRo1YbZhPAkDeZxz8qDGO9cbpn7Cfg7RdQXS9I+Lfi628Ipq39ox+Cob4 LZpL5nmbQwXeI93OzOK4PRda+P8A8d/2j/H3w2sf2hdS8L6D4Z0PQ7m3t9Hs7c3MlxdWhcnzJEbE e5GLLjLFgAQBzxvhP9qT9oT4vaf4X+BSfEL+xdcuPHWr6BrvjLT7OPfcw2J+/CpGyOR8jscYz3p6 9wPWPG/7LHwX+IHxY8X+C/Bfxy17w1d+I7NLnx34R0G5VY72KVPL81tyExmReCVOTXoNl+yr8HrD xTJ4gg02T7LJ4Di8Jf2S2Gtxp8bllGCMluep/nXy1o2r+OPgX+098adV8U/HG1uL/R/hrYtZeLvE lmNtsCSI2njgT94ykgAKuXOBgk4rU+GXxz+PEfx28H/C6/8Ain44vrHxrpF611qfirwfDpsazJCH WewVkWQKCfuyJjBFOz7gfU/7Ovg7wX8LvhjbeAPAXjifXdJ0u4lhs57i8WdrdQ5/cbl7J93B5GOa 5sfscfB2XwJ49+Hl+2oXFj8QfF114j1RmuMSW99M6PvhYD5djRqy9cEV8kfCL4m/Fj9nb9lDUtf8 I+ONU1LUPEXxWm0GzX+yorlrF3u5RJcwwqFM0zhTiNjtLEAYrvvBnxg/bMsr/wAUeCPBul+ONcju PB8114c1r4heE49NktNWQn90XGEeN1OV3dGAXpk0uW3UD27wR+x14b0HxY3jrx58UfEnjDVodIm0 3SrrXZkI0+3lXa/lqigbyP4jk133wR+GHhz4E/C/SvhT4XvLiaw0mJo7eS6bMjBnZznHuxr5k/ZV +NfxKX4t6X4I+MPxS8d6fq2qaU73HhT4geEooUvbpQN72F3BtTy1OfkOSR9K+r/tb/3v/HqUvMRr /bY/U1P4DuFm+PvgNVP/AC/3/wD6brmsH7W/97/x6tD4YTtJ+0J4FUn/AJfb/wD9N1xRH4kNHJwT qnizxgpb/mftd/8ATjPVr7Uv96pvG/wv+KPg34h+JrST4b65qEN94m1DUrO+0vT2nhlhubh51GVz hlD7SDjkHqMGs3/hHviT/wBEh8Wf+COX/Ch81w1Ln2pP71eA+Lv+CeXwT8YSeILK58X+LrLRfEl8 17f+HdO1oR2QumYM0yx7D8xPODkZJ46Y9y/4R74k/wDRIfFn/gjl/wAKP+Ee+JP/AESHxZ/4I5f8 KXvB7x87j9ju78W/tJfED4hat4i8Q+G7e80/RbTw1r3h3WPIuJoI7V47qFxgqVLCE8rnKKVI5z3F 9+xn8EpvhZo/wt0iPVNLTQLw3mk65puoNHqEF2fv3HnYO6R8ncSCD0xjFeof8I98Sf8AokPiz/wR y/4Uf8I98Sf+iQ+LP/BHL/hTvIfvHjNj+wP8EFtvFUfiPXfE2vTeNNHj0/xBea1rAmlmVH3pIrbB tdWCkY+UbQNtTaF+xJ4C0fxn4d+Id78U/G+q614Ynzpl/q2uCZlh27TbldgXy2GN2AGOBlq9g/4R 74k/9Eh8Wf8Agjl/wo/4R74k/wDRIfFn/gjl/wAKLyF7x5NB+xJ8GU8NeJfBlzqmv3Gk+JNS/tFb GXVPl0u83l/tFoQoMMm5t2cnmrHhn9jv4Xabb63/AMJt4h8ReMLvXtI/sq61DxRqpnmiss58iLaF EY3fMSBuLc5r1H/hHviT/wBEh8Wf+COX/Cj/AIR74k/9Eh8Wf+COX/Ci8g948x+GX7I3gH4c+L9N 8a3njbxR4ku9DtGtfD6eI9UE8emREYIiVUXnb8u5snHFetfal/vVT/4R74k/9Eh8Wf8Agjl/wo/4 R74k/wDRIfFn/gjl/wAKXvB7xc+1L/erW+EMyyftEeBwD/y+X/8A6b7iud/4R74k/wDRIfFn/gjl /wAK7L9nf4bfEfVvjfoXifUPAmraVp+hrdT3Vzq1mYBI0lvJCkaBuWbMm48YAU85IFOPNzINep9a UUUV0GYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9l= ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAMAAACelLz8AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAJqUExURQAAAAAAAP//AICAAIC/QL//QJmzM7PMM6LROrHeN6fOO6TIN57KNarVPKbS OaHIN67UPKXPOqfQOaXIN6zVPKjNO6LIN6PNNqfPOKXLOKrPO6XNOavVO6XPO6XPOqvVOqbPOaXK OKnUOqPNOKTKOKLLN6fOOanTOazTO6bOOKrTOaXLOKfNOKnSO6zUO6bOOqbOOqXMOarRO6fOOqbQ OabPOqXNOanSOqrTOqTNOabOOqfQOqfQOaXNOavUO6bNOabOOqXLOKvUO6bNOazWO6XOOazWO6vV PKbOOaXNOavUO6zWO6XNOabPOazWPKnTO6rSOqXOOa3WO6nSOq3XO6vVO63XPKfPOazWO5fGGJfG GZvIIZ7KKJ/KKZ/KKp/KK6DKK6DLLKHLLKHLLaHLL6LLMKLMMKLMMaPMMqPMM6TNNKTNNaTNNqTN N6XNNqXNN6XNOKXNOaXON6XOOKbNOabOOKbOOabOOqfPOafQOajPPajPPqnQP6nQQKnROqnSOqrS OqrTOqvUO6zRR6zVO6zWO63SSa3WO63XO67XPK7YPK/ZPK/aPLDaPLDbPLDbPbHcPbLcPbLdPbPe PbPePrPfPrTfPrTgPrXgPrXhPrbiP73bbMDccsPeesTffMTffcbfgMfgg8fghNbppNjpqNjpqdnq q9nrrdvrr9zrsd3ttd7ttt/tuODuu+HvveLvv+Tww+XwxeXxxujzzev00uv11ez01Oz01ez11u31 1u312O712O712e/22+/23PD23fL44/P55fT55vT55/X56Pb67Pf77vf77/n88vn88/3++/3+/P7+ /f////JD2N8AAABZdFJOUwABAQIEBAoKFhcaHB0eKC4vMDEzNzg8PUBERUdJSk9PUFJTVldYYmJo bW9xcXFxcnN0dXeHiYuSlpibqKmtra6xsrm9v8TIydHS1Njc4Ofr8PX19vb39/n6KiHTUAAAAAlw SFlzAAAXEQAAFxEByibzPwAAAepJREFUKFNjgANeeSNTE10ZTigXAZScgidMA4K+ADspqBAE8LtM nlBXBgYNk3vteKDCQKAcNLkoHyJTVlZSMcNPHCrBoNrTmpuTnweVKisr7A4Rg8gIRbTkZm/aXZ0D lQHJ+XOBZFg8JhTm5207UptdDAIQuRmOICm1mUB2fk5+TllaampqSnxCXnlZWUW/BAMDk2c3UCpt 8arMqrVb9u3dtW5+flp5WclkBwYGwaYKoFTSjuNpNaePrlm34fDZnW1AufpADgbNaSDDkzcfTK85 vTQqLi59zpm9eUDX9skyWE6BS51aEQu0NXru2UVxZWXTDBhsJ6JKlWUXn9iUAJQyZbBHlypO3b83 vbRsmhmD1WQ0qZyyk2BdxgyGCGeApYqj551dCLRrggKDaAfI8WCp00siY2MSZ5/Zk5NXVhfOzcDq 0wmUStp6DKjr0LKVq/ed3d4M9NdEZ2BA6c8qLCtLXb4+s3rjvsOHDmxakAOUKZsiB5Ri9+0GymVl gXBWVkZiPDAMCye7goKXQbK3vrCsoADoWyAAUsCAbw3lA0sxaM9oAOpDgMKWbkWIDAODTjfITDiY GKYClQACae+ZXSA/AEFlz3Q3YagwGLDpebVPmzJp0tRpje7qjFBBGGAW0bKwsTbXEIDyGRgAuQH6 Gl8RLYcAAAAASUVORK5CYIJ= ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image003.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABPAJUDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD91PAn xR+G3xM0j/hIfhz470fXrFm2/bNH1SK6iz6b4mZc/jWB+0xrWsaH+zv481nRtQms7qz8HapPaXlr M0ckMyWsrK6suCrBgCCDkEV/O14c8UeKPBOsw+I/BfiW/wBJ1C3cPb6hpt5JbzRMDwVeMhgfoa/d i18U6/42/wCCXMHivxbqU99qeqfA1brUr64bMlxcS6NvkkY92ZmJPua+vzvheWQ4mknLmUnbazVr b9z4nLOJP7YwtW8eWUY30d07/ij8wPgn/wAFjf24fhLeW41zx9a+MtNhVUbT/FFiskhUHki4i2TF yONzu4zyQa/Vz9gz9sfS/wBuL4It8YNM8E3Hh+a21ebTr/T57xbhVmjSNy0cgC70KypyVU53DHAJ /n+r9iP+Df5d37GmtKG/5qBff+ktnX0XGGSYHBZTSxFOCjO6V1pdNdUtDwuFc0xeIzWVCcm4Wbs9 dVa2rPvCvj//AIK6f8FDtV/YU+D2m6Z8Nbe1m8deMJZodDa8j8yKwt4gvn3bJ0dlMiKiNhSz7juW Nkb7Ar8Uf+DiTWby+/be0HSJJm8mx+HNkIY+cBnvLxmb6ngf8BHpX5jTSlI/UzyPwP8AGz/grn+1 Le6h4x+FXxO+OHiSNLgpfXPhLVNRisoJcA+XttSkETYYHy1AODkDFfQH7B3hP/grpYfteeAbv453 Xx2bwjHrqnXh4k1rVJLEweW/+uWWQoUzj7wxnFfob/wTG+H3hn4b/sFfCvRPC1isMd94Os9VumC8 yXN5GLmZye5Lytj0UKOgFe+kA9RRKfSwHwL8Ifi9/wAFUdT/AOCnF14C+IHh3xFH8E18X63Db3c3 gu2itDp8cV0bM/axAJCpdYMNvyxIyTk5++S6jqa/Hj9m/wCKfxNvv+C9+oeCr74i69Noq/ErxXEu kSaxM1qI0ttQKJ5RbZtUqpAxgYGOlZv7dn7bP7ZX7Zf7cl/+xx+yx4z1jR9J03xJPoOl6b4d1J7J tRmt963V1dTxsGeIGOV8E+WsUattLbmL5eYD9mqakqOMq1fk34H/AOCN/wDwVI8PeNNH13W/2ufD txZ2eqW895Cvj7W2MkSSKzKA1mASQCMEgHvXkP8AwUY1z4/+Pv8AgrH4m+A3ww+L+taTL4g8UaNp Oj2//CQXVvZwTXNnZopYRE7E3vliqk8k4JqfZ+YH7hl1HVqXIxnNfg1+1H8Hv+Clv/BMvXvC/j7x p+0bqbf2rcP/AGXqnh3xne3dv50JVzBPHcKm8EEEoyNG65BzyK+u/wBuf/grD8WPBX/BP74S+O/h bNBo/jn4taO019qcNuGXTY7dES8e3VidjvPIojLbtqb/AOIKwPZ7WA/SoEHkV8w/8FSfHv7Z3w++ Bei6t+wzpmrXfiqXxZDDqkej6DDqUi6ebW5LExyxyBV81YfmABzgZ5IP5y/s+f8ABPj/AIKyftc/ Diz+Olr8e9T0vT9cUT6XceNPH+pR3WoQH7twqxrKwjbqpfaWXDKCrKx9K/bw+F37Uf7Ff/BLTwf4 F+JvxnurjxY3xiaW41rQfEl5KZLWSwvGSIzSLHIQCmSpG0ECjkXMtQP0G/YF8TftD+Mf2TPCfiL9 q+zvrX4gXX27+3odS0uOymXbf3CwboY0RU/cCEjCjIIJySSfaMj1Ffmz8GvgR+01+2r/AMEYvhb4 W+D/AMX/AOy/FzeJr6/vPEGueIL2BpraLUtUiMZngSWVj88eFIxhOowBXjviX/gjZ/wVi8PeHr7x Dp/7Umk6pNY2klxFpum/ELWPtF0yKWEUXm2yR72xtXe6rkjLAZNHL5gfsPvU9DRX4qfsE/8ABbz4 n/s7+BtU8A/tBzat8QLVZ4ZPDt9qWpNLeWikP50TzyBnlTPllAxJT5gDt2hSn7OQHxnX7s+Dcf8A DpXSSB/zQOH/ANMwr8Jq/dnwV/yiV0r/ALIFD/6ZRX7B4jf71h/X/I/GOCv4Fb/CfhNX7Gf8EAP+ TMtX/wCx+vP/AEls6/HOv2M/4N/v+TMdX/7H28/9JbStOPP+RBR/7d/I04Q/5Hs/Rn3ZX5Bf8HHn wY8Q6b8ZfAv7QcNnI+k6t4dbQLiZIzthu7eaWdAx6AyR3D7R1It39K/X2uJ+N3wJ+Ff7RPw51D4R fGTwfb63oOpL/pFrcEqUYfdkjdSGjkU8h1IYevJr8ajLldz9iWx+ff8AwTQ/4LPfszfDv9l/w/8A BH9pzxRfeHda8H2a6dZ6gujz3dvqFmhIt9v2ZHZHSPbGwZQDsDBiWIX6n+FP/BWP9gr44fELSfhP 8M/jXNqGv65dC20uxbwvqUImkwTt3y26ovAPLECvnTxB/wAG337Od3qb3Phj4++NLG1Zvlt7u3tL hl56bwkeR+FdZ+zb/wAEJfhN+zb8dfDHx00P47+IdSvPDOpC8gsbvTYEjmYKy7SVOQPm7VUvZjPk v9mIE/8ABwxqTD/oqHi//wBJdRr5v+KXwc8ON+3/AOLvgr8Z/iUfBenyfETU7O+8U3WltcpaK1xK Ybh4/MjJifMZL7gFR9/IGD+vHw4/4JK/D34eft0zfty2Hxc1q61a48R6pq7aHNYxLbh76OdHQOPm wouGIPU7Rmtb9tz/AIJK/sx/tveKo/iR4rbVPDfitbdYbjXvDskStfIg2xi5jkRllKD5Q42vtCqW KqoWozigPiL4B/8ABMP9kz4ZfHHwX8TbL/grN8L9Ym8O+LNN1SHSYJLJJL1oLmOUQKf7SbDOU2g7 WwW6HpXKftMtu/4OCNLP/VWvCX/oGnV9KeFP+DdX4L+FPFOm+J7b9ozxPNJpuoQ3UcT6XbgO0bhw pIPQ4r1z4hf8Eivh18Q/24bf9uG9+MGuW+rW/ijS9aXQ4bGFrcyWQgCx7z82G8gZPUbjilzeYHif /Byb/wAkd+GP/Y0Xv/pOtfIf7enhLWB+wX+yn46W2lbT28I6tp8k2w7IphdJIqk9AXUsQO4jb0r9 YP8AgoF/wT98H/t/eEvDvhXxj8QdS8Px+HdQmu4ZtNtY5WmaSMIVYP0Axnirlp/wT1+BerfsZ6P+ xR8TbabxN4e0Wz8qz1C6UQ3cMweRkuomT/VSr5jAEcFSysGVmUpSjFIDzP8AYE/4KPfsX3P7HPw7 8O+Jv2g/DPhrVvDvhHT9F1bR/EmrQ2VxFcWltHA7BZGG+Nim9XXIKsAcMGUeQf8ABer4qfDL4x/s JeD/ABt8KvH2k+JNJb4qQQrqWi6hHcwGRdOv9yb0JGRkZGeM1LqX/Btx+z9JeyS6P+0P4yt7dmzH DcWdpM6j0LhEB/75Fem65/wRk+Gmufsb6P8AsbSfGnXo9L0fxtJ4kj1pdPhNxJK8EsPlFPuhQJSc 9cij93zXuB8KfG/4+/E/4Zf8EXf2ffhX4F1e90yx8aal4nOvXljO8Tyw2urXG21ZlI+SQ3BZlz83 kgcjIrB+Bv8AwTO/Zr+K3wi0H4keMf8AgqJ8M/Cup6xpyXV54bvntWn052GfJl8y+ibzF6MCg5zj IwT+nF3/AMEpPgJ4i/Yf8P8A7D/jzXtX1TS/C97cXui+JITHb39rcS3U85kX5Wjxi4kjKsrKynOA wVl+ff8AiG1+B4Jx+0j4q+98u7SrY4pqUQPyDUsoxmiv18/4hsvgiOB+0l4q/wDBTbf40VftIgfl fX7s+Cv+US2lf9kBh/8ATKtfhNX7s+Cv+US2lf8AZAYf/TKK/WvEb/e6Hr/kfi/BX+71v8J+E1fs Z/wb/f8AJmmr/wDY+3n/AKS2lfjnX7F/8G//APyZlrH/AGP15/6S2dXx3/yIKHy/I04R/wCR9L0f 6H3bXm/7VvxZ8QfAn9mzxx8aPDGnWt1qHhfw1d6lZ2t8rGGWSKMsqvtZW2kjnBBr0ivFP+CkH/Jh Pxe/7EDUv/RDV+NL4kfsa2PzT/4iP/2tP+iKfDr/AMBr/wD+Sq0/Bn/ByJ8fLPXo5viD+zx4R1HT ek1vot9dWc546rJI0yjB7FOemRnIw/8AggF8FfhB8afin8RNM+L3wq8M+LLex8P2cllb+JdBt75I HadwWRZ0YKSBgkYJFfQ//BaP/gn1+zR4f/Y81b47/CP4Q+H/AAf4g8G3VnLu8L6PFZR3trNcx28k UscKqjYMyyCQqWHlbQQGIrb3Oa1hn1X4E/bm+EXxb/Y71f8AbH+FRm1bR9H8O6jqV5o80iQ3cE1n A8stnMAWEUvyj+8Crq67lZSeJ/4Jx/8ABSrQf+ChsnjA6D8J7zwv/wAIiunmb7VqyXX2n7V9pxjb Gm3b9nPrncOmK+A/+CLPx0uvAnwK/aU8DT6XZ6xDZ/De48T6foutW/2jTpntrW5jnjnhyPMSYPbI 65G5I8E9K+jP+CKf7YGj/F7Q/i/4v8UfA74T/DfTfCdjpN3qF98P/Ca6Ok8BXUHeS7bzG8xYlhJU nGwPJ13VLjy3A/RSivyJ+L3/AAcP/HnxF8SrjQ/2WPgZ4fbRVmaPT28SWN3e6hehScS+XbzRLFle fL/eEf3z25PxD/wcC/8ABQXwzdrp3iX4PfD3TbhoxJHDf+F9ShZlyRuAe9BxkEZ9jR7OQH2p+3t/ wV38LfsH/G+x+Dmt/BPUPEcl94dt9WXULXWktlRZZ54vLKNExJBgJzn+LHauy/4Kl/tn/ET9hH9n rSfi78NfDWi6tqGoeMLfSJLXXI5WhWKS1upiw8qRG3A26jrjBPHTHyb/AMFj/wBs+4+Av7U+g+EP +GWfgv40N54Bsb5tW+IHgManfRF7q7XyUmMqlYhs3KmOGdznmuJ/4L4ftE/tHa747vv2bfEHwuht fhnoviDTNR0PxQuh3aNdXzaa5aH7Uz+RIB9ouPkVA37vr8rZFG9gP0K/4J0/tQeNv2xP2VND+PXj vQNL03UtUvb6Gaz0dZBAiw3LxKV8x3bJCgnJ6+le9V+Mv/BKn9t/9uvwDZfDX9nH4ffs/W+pfDW+ 8bW9nqHilvB+ozPDbXWoAXcn2qOUQL5Ykk+YqQm35s4Ne9ftnf8ABSP/AIKYfBT9prxV8Lvgf+yz Z6/4V0m6hj0fWJPAOrXbXKNbxSMfOgnWN8O7rlQAMY6g0Om+awH6QV8W/wDBW7/go38Wf+Cfx+H/ APwq7wT4d1j/AIS7+1ft39vRzt5P2X7Hs8vypU6/aHznP3VxjnPyjYf8F9v23fhP8Q9P0r9pr9mn w/Y6XIyyX2lroOoaVqL25yPMgNzO68HkboyG27crncNT/g4d8c+HPiZ4I/Z7+I3g+++1aTr+k65q Om3HllfNt5o9KkjbB6ZVhweRRGFpK4H6Wfs0fEnXvjV+zt4F+MOvW0VrqHirwlp+rX1vpq4hiluL dJWRPMJbaCxAyScdSetFYn7Av/Jjnwf/AOyZaH/6QQ0VmB/PFX7q+CGC/wDBJnS9v/RAYR/5RBX4 UscCv3d+GGk6p4i/4JXaBoei6fNeXt98B7WC1tbeMySTzPoqqqKo5ZmYgADkk1+x+I0l9ZoN9/8A I/F+DOaVKql/KfhHX7Ef8EAnZf2NdYwf+Z+veP8At1s6/K3xh+zP+0l4A0uTWvHP7PvjfRbGBd01 9qnhO8t4UHqZHjCj86+tv+CTf/BTz4PfsmeCbr4EfG3QdSs9O1DxFNqUfiixU3EduZIYYyk0CjzA o8kHcm8nfjYMZK4qrU8yyGnHDtSaadk03ZLWxfD0Z4DPHOsnFNNXaaV3a2+x+xIwQFA5HSvFf+Cj pH/DBXxdzj/kQdS/9ENXoHw0+LPw9+L/AIUtfG3wu8Zafrmk3in7PqGl3SzRNjgrlTwwPBU4Kngg HiuS/bP+HnjH4t/snfET4XeA9K+3a14g8I3tjpVm0yRedPJEVRd0hCrknqxAHc1+OOMoVLSVmnqn o0fsNOpCpFSi7p9UfnD/AMG2bIPjF8Tjux/xTdj+P+kPX1F/wXQ+OvgT4d/sJeIPhfqPiC3XxB42 urKy0XTVmVppEju4bieUpnd5axxMpfGA8kYPLCvzlt/+CJf/AAU3tWLW/wABo4y3DGPxnpS5/K6r U8If8EKP+CjPjDxHDp3inwHovh23k4m1bWvFVrNFEMd1tXmkJ9AExnqQOa35Yc17mhtf8Ei/h/c3 3wE/aq+KjTMsOmfBPUNKVPLP71rm1u5iQenyi0GR1/eCqn/BNa58R2f/AAT/AP2w5/CiO10fBeip J5Y5Fsw1Nbg/TyDKT7Zr9Jvhj/wT50n9lz/gnj46/Za+EZbXPEfiTwfrKXmpTMsDavq1zYvCh+dt sKf6uNVLbVVcsSSzHxT/AII7/wDBPP47fs9eDfjJ8Pv2s/hXDpuk+PtL03T47X+2rW6W9t1j1CO5 Qm2lcp8tygycZ3cdDiXK92B5f/wbX6P4Im1/4ra9dWtm3iK3tdJhs5pY18+OydrkyiMn5gjSJFvx xlI89q88/wCDjdQP21PCjcf8kvs//TlqNWfiN/wRM/4KCfs2/Fm48T/sZeOrjVLGSSVNJ1rQ/Fi6 Pq1tbMQfKuCzwjJGATE7K23JCZ2j5Y/bb+GP7Ynwn+Kmn+Hf22dc1y/8VTeH4rnT5PEHiwaxMunt POqKJhNLtXzUnwm4YJY4+bJqOsr3A+j/APg4P/5PZ8Lf9ks0z/0tv6+uP+DjLaP2IfDRP/RUrH/0 3ajXmn/BXv8A4J0fthftaftNaB8S/gV8LI9Y0Wz8B2OnXF1JrtlalLiO5u5GTZPMjHCyoc4xzjOQ a+vf+Cmv7H2p/twfsr33wj8LX9ra+ILPVLfVvDs+oSOkH2qHehVyoJAeGWZAcEBnUnpU8y90Dif+ CFpX/h294SC9tV1bP/gdNXyP8d/+Cs3/AAUJ+OX7X+tfAL9hmwhs7bS9avdO0ew0/Q7W8utRjtWd XupZLtGRFby2cABAqlVJZhuNX9if9gr/AILCfs4/GLwTpixa9ofw9tfHGnXvijS9P+IVn9iksxdR G6Y26XR3holYMoQs44wTgVJ+0t/wSA/bz+Fn7V2ufG79iXVmurPWdYvNR0m/0PxNFpWoaUtyzNJb P5sseVHmPGGR2DoAWCk7afu8zuB88f8ABR/X/wDgpX4hh8HTf8FBtIuLdIZL5fCklxpumwZZhbm5 ANkozwsH3+nbqa9J/wCCpRJ/YR/Y3YnP/FvdQHP/AF76TUfxd/4Jof8ABaT4+pp8fxq0LWvFUelt I2nLrvxE065FsZNu8pvuzt3bEzjrtFe6ft5f8E4P2xfjb+yd+zb8Mfht8KY9Q1z4e+D7yw8XWja9 Yw/Yp3i09VUPJMqy5MEvMZYfL15GXzRVgPvH9gX/AJMc+D//AGTLQ/8A0ghorR/ZH8DeKPhh+yz8 Ofhp45sDZax4e8D6Xp2qWvmJJ5VxDaxxyJuQlWwykZUkHsTRWIHwND/wbmmQE3X7Wrt/u+Bwv/t6 a9z+GH/BP39uf4K+E7PwJ8NP+Cm99b6PpsMdvp9jqHwts75beGNQiRI1xcuyoqgKFBAAGAK+y1Hb OcUFCPuHivTxWe5njbKvNTt0aT/Q8PD5Dl+E1pQcX3Ts/wAD580z4Wf8FEfDdmbdf2lfhz4qb/np 4g+G9xZsfxtL4KP++TVXxx8HfiJ8R7VR+0F+xz8J/G3kwkSXlnrhkunJ4JhivNPAiOP+nnj+9X0c EwMgUEdjXKsXVvdWT8tPyOmWW4eSs7v11/M+FfDH7Dfgv4UeJ18b/swj4rfAHxJMyotjNajxDot8 ozk3cUE13GUwWAMk8WwsGUAgV9IfDH4y/Eiygs9F/aC8MabazXEafYfGnhe6a50HU933SGb95ZO3 GEmzGSyqk0rHA9XaFTyFFNkgSVfIcK46MhXg1FWvKr8erXV6v79zWhhFh5Xi7Lstn8ieNgw4bNOr O022s7G2WzsrVYYYD5cca/dRf7oHYDOABwBwOBWjWJ3BTZFyvAp1FAH5I3P/AATD/wCC2097NNB+ 2XeLG0rNGv8AwtzWBhSeB9z0rS+A/wDwQu/af8Y/tB6X8Wf25/jTpuv6Xpt1DcX0Meu3mqahqwhI KWzy3Ea7ITgBjuZtuVUKSGX9XKKv2kgImK968h+OP7Ssvwm+Lnw8+CGg+DY9W1z4hXl8tq19qX2O 1s7WzgE1xK7iKVmfDIqRhfnY8soGT67JgjBr4E8d6J4Y8Y/tx+NvCf7Tuo2t9rX2+xufh3od94Zt 9YjutJMASCGwN1vt9Pme8/4+GmRTJhNrooLjbC0qdWUpT1UU3Zbt7L7nuebjq1amoxp6OTSvpouv 3nvvxX/bU8OeEfgZqniTRrBo/Hw08Q6L4L1K1m+0S6pPcSWdjE8ZEcnlz3CFo8+W8sKu6gBW28p8 Nf29/Evjvxvoei6r4G0TStNuvDLanqWoTeJI5kMlxem10qKJ4PMUS3PkXcn2dfNdVVfm3KQbfxX/ AGB/FHxT8ReIPGcPxzbRZdc1yTXIzZ+H1kms7w6D/ZUTCYzKzi3YfaIMBDGzydXKSx0dO/4JneG9 M12xvP8AhZTSWcN8/naW2ijyX09tDXR1tV/fZDQwl/IkcuIlmkBR3Z5W6af1SNJqWsnd9dPI4qjx 8qycVaKsumtnu/U9M8TfteeBtD07XNKtbFpPFmitEkPhnULtbJtQaW6htIJIZZgFMEtxNHEkxABJ 6A8VB8Xf20Pg14J+G/iTxH4Q8aabr2uaTpN5Ppei2cjSNqF1FOlmkMe0HzN17NDbZTP7xyo+ZWA5 H4i/8E7vD/jr4qJ8QofiTeabaR6hZzw2NrY7poY7a0u40C3DylhKt3eSXyTbS3nszSCU+W0WJ4K/ 4Jppo+ueE9Y134zC+XwvZ6LYx21r4d+ypJaabDdLHGhFwzxE3E8N5u3N/pEG8hh5aw4yhhHFPmem rVvTQ39pmPM4uCtsnfbzPpbwdeeMD4S0ufxpZ2y61JpsB1hNMH+jpdbB5qxb5C2wPu25JOMZNFal tAun2sdpaWyJHGuxIweFUcAD8KK5W1c9OEanKj//2T== ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAPIAAAA5CAYAAAAMR3bTAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AAB27SURBVHhe7V15dFRVnnbmzDmzL+fMmT96ARMS SMLeougZu3vUXrSdlgSykBAgqIgkqTUIjSjNHhaRJYGE7Pu+EbaEACYxgEBAkF1WF8RGu9V27XY0 v/l9t+6rVNV7lVRVqirptr5zvvMq793tvdzv/n53effd5Qts23X8k18uqaDHl9cK/u+KOj+zln6x qpmiVlbRyesf/bsslkBe2ylK2rLPytk4ZrRR/Eu7KXZtk4XrdqoYw+cf/22lRl72TExvJFPWAco/ eOnbI+9+my+zDSCAvzxEJOdSkK6KRhmqLTTyb0cq12zpSjgXwoSb+Giupp+atpMskhUTDQUUZqgV DDfWUQQz3FDllGEKOR9QK98wQ404juTjsLRaCkqrotAFFTSKj+HGcnrAlE3Ly9qvyyIEEMDQx64z t2qH6ypZSPUUYrRwBIvFkco1W7oSzqUw5kYKM9VQx+2P7YS8ru61jFBTHQVLjuAyCpqanDLYgSMQ zyHfUGODPNazoOsER+pqWdh8NNXTcBb4SHMDRejK6KfGHbS5/eZ/yCIFEMDQxAPmXLZWXHG5oo80 cWUeBIaweMYk71BZ48n6PArRlWjG8QdD+bmEsOjH6ErpqY01qvJ5gqamJpo/P4Xmzp1nx6tXr66Q QTzCs88m0zNzk71SRleRnJxMz85L9WueAWjgwOXfm0NSSymILWK4oUKzMvuDd5sa6eVd3XYVounM B9NHc5lgibXi+INhxgoWM1tyUzMLupbu5Ybl5he0XBbRbURHx1B0dCzFxk6n+OkzBRPiZwleuHDh ZzKYR4iLi6fYmAS/imr69ARxD/LPAAYLj/0WLiS7m+zWDqZgxhuLVJXhV0vK2C1G2bTj+IOhJvS3 K7mR4+fEffRhxmYanZxHXe/+OUMW02Ukz9dTTHQ8ofLfvHkzSJ624syZM7MLCws7QHnqrv3798/J zs7uyMvL6ygrq+zIzc3j34UdWVnZHa2trdZwgJaQ2cpvqqqq6mhpabELCxQVFXUcPHhwCdLOysoa e/r06TbkjTxycws76ut3quIA9XU7O0pLKzuKiso6YmPiVUJ+89K1hXm5RR3tB7vs4p84caIIeeF3 RkZGR3t7+8/FhQAGhst/6HkwnF3HUWYIuFq4t1qV2ReEQEfCnefGI5St8bzNtXaV4ewnNCJMBxEh LMJpp+NrKg0JBsdGskXGEQNj4boKt60QRAYhNzbubJWnVJg/P5lmzJhJi3+z9Db+huhjYmKIBfcD nc4gLDmIc3FxceL3wYPt1QgLIcOy4zeQED+Tw8SLcFFRUTR1ajSZTGni+rVr1z6Pi2URxidQQkI8 nzc92Ny8+6uYmDiKi50hiPJGRcZweRu7EefMmXOZU6fGct5cBr5m4QyrkM+ePTtp2tQ4cY9g4owk vh5PGzdu+gbXKyoqzsVyngkJicwZVF1dnYjzAQwQs7nPBxFbhKxdkX1FCET0y80NND6tmi5//G26 LJaAMa+Fw+wSlnAwhezIUGMjl5s9BV0D3W9Qj7D3BVRqIRAWH9xriBS0iC2euru7RR9ZXJ82nWbN fFJcZwG8ifMQMuLhN8AWvA3iVMSLNBAPvy0iSqC8vPxL+BuIj58h4ufnFz3DQu5EWTZs2FgqL2sC goyPj7emjzS5nCfERQb+VoQMgeP3gQOHboiLDHGd8z169HhScXHxuelxiXTx4ptd8nIAA0V7O/3d WFO5ZmX1J0PZyv3yuRxr5VQw3lxGwcYmywCcsNza8f3NEew9jNFX8LGBy7eTUrftUpXdGVCpIQy2 UFRcXEqFhcWCRUUlgizMx2TQuxSr+Nxzi6zpQ8gQk/xTANYN4fBbWG9OH7/jYhOF6PBbQXr6+gSE SUtbKM7j+saNL9sJ2WxaKAbM5j49n+Y9kyIaBlh/XEOj4Zgm8p6RMJsYfzNjBvf1E3o9AqCwoFQ0 RqWl5VRZWXkO4QNC9iK27jtN4X50pR05Sriq8ATqqOvtz6wtOFDy6tWPYbHDjZXsdrPHMISEHGIu 57I3sHtdzeWqplBzPTUevz5KFr1PxE+3iG7p0mV2ld0Rly9fzYaAIJo5c56yhtUSMv5WxAvBKNYR Lq9inRVAyLD2Sv6WRqVXyImJs2hqVCwtWriEVq9aR8uXrSZYUMUiC4vukCbyV4SMtOHOy0sCOTsK RJkbGpq4sSoKCNnbwOgrRKJVWRVitBbEooqR7N6irwiBwSqFMHF0h+iD383ucjD/HqMvF3O89+rU U05jU1A2LoMTAeMaBudCuPxID31XnPOIHHck5pPNsLK4t52aefYSDRDi4shMa6LJuizVPWihqrL+ BioyxLI2/eVPT3a/cQs8dfKsoAwmLCX6mk/OeUYIf/26zR/ivKOQ83KLvoGInnpynjgH0SkW8+mn nqWZiXMoL7fkA/wNzJ71lBBmXV3jtGvXrn+OtGxdawg7IX623b2gYUCXAL+RD/7O2Np7v0LoimvN 8fG7bf+hj8RFBv7G+YsXryVVVtSeQ3/94sWLASF7AzUn3r4SwpXQJUvHQraEs4xqQ8yagnCVIt8q /l3DDUQtrWk8ZVdxOq/+8UBoaqm6HDa0jGJj1VY5haB8BstAnWfEYBtE2UhhWPXFaWrl6YxhzAhT NXW/9+fP5C30iZKS0ndgOWG9ICRbdnefWjF79hzhihYWFonBLiVcU1PTJMw9K31rDErhGo4iYYaS rvyT+6yWMIiPa1FR02jt2vV/wLVr1966OH26vUUuyC96Ew0B4ilpIT/bPCIjp1rzh4VGmnDvce3V V18br1xDPOSLY1VVzR9xvbi47FxsbGxAyN7C/fodFMSWBxVXq3LaUVplCHlc8jZa2XCSNjYdpw1N p2j9TnfYTekcZ0PjMVq75xyFm2tpgq6AzvT0/LMslsAji0sofEGDuhySYmCOXdq4za00P7uV5m5r o5Rtuz1iMjPppXqabMqjcfoqCk9jr8HNgb8wLkuQuZl+uqjArkHyBSBkiOTq1atR8pRLOHDgQOXp 02cr5Z8+x40bN57Zu7e18uzZS37L8zuHrpuflo4x10jL6IpFrqUgQz2FpdVR1sELXqmspz+kqDFs +eLW1Nmld/53X0yBMET/Wasskogro3gNZz759p3xqTkUzu6+Vp7OiGcIqx5hLPOLkGEF5Z8BfJfx 0PMVNIatawi7kv0ttBB9aBYW1ij/yMV+oCtoOnI5Cn3sxu47v5SnBGa93MzuezOLQ12WUdyYCDea y7O05oRPKvO1L76eNC4Vq9vwUgW7/1iHrVEWW6K7gDGECEM5LS4/6lORbdq0iZYvXx4Q8ncd3e9/ YxjNliNEvP2DN4kqNStnL2FtIKAayj5w4f9kMgPGvvO/Y3c2365CEtHf/kifS5jWCdPwFNAfHpa2 m8amFvq0Ijed/+hPEWk1NIIbjv5ELMhh4EVgMO9ec0lAZAH4Hs9mH+QKZxGJEIsLrnWwvobu06nn eQeC9MaTVNp5+Zr8UyDz0E2K4Pxg4cTIsE0ZLKwUg21Tlvnehb3PkMONFzco3OBZxgccy9JLjHrD egeZd1K4oZLOf9ITKpMJIADfYEJyLlvYGlHxUElhbeGqOiPc6uDUcsrtuObV93JnLFevq56QUkBB xiYxgoz1zY6CCeayjtEX0aFbX5fLKD5DetNJChXvP2N0vR8hM8PZrYYngZdOqt647XREtrOzU8d8 0VN2d3e/KJPyGIcOHVKli3Py8qDhwoULL3Z1danKdubMmUdkEBUcwyK+N56RN3H79u3/ciwn2N7e 7nk52y598mjnpXcePeIiOy+992jLuTuPyuhew/K8ejsht1/7rCOsnzevQhfspMk695ZEeorXP/k6 JVzfQCFpZdyYuTGKzR6OMfeg0zKmpBjEPC/mhj2hmBqKtizzjJ4WK1Z9HT78WolM3iVgeghzv3bp xtovMhkMpKevE4tN7MuVQNu3Z2uWrba2tt42LIj7mjUradDvxRaFhYXjHMspGDf4z3zAeOedd/5R /hR40JwjXWrnDGWhlx25eUVG8TnGpZRTcBo3Lu4Imfk/ac67IakDFDIIISMNZZ5XmSM+deq0WWbT JzDqrRKyXPAxmFi9Ot3aSPUygbKztZ9nQ0ODSshgUtKTf71CPvbW53SPIZ8mGotorKmCWekiK2ic sYwmGoppkiGXj4V8rtzK8XxtnKmMJj/zkscP7/KnFB7B+fQn5Ikp6hVgvsTDz1XR3QswRaddHi3C Db9HY6WaAm8I2Rkh0K1bM/t9RqhA6jIMDYvsWK6+LLIzIWNBjQwyJOBVId+XkkHBxga2aljFpF0J tYlBpyrR/wtmon9t24cO03MfUl9Odadue/zw4layiDkd7fy5n6qvFANK5twDfv0Hzdqwh+8bFlm7 XFrEsx1vcD5y7UzIjhbSI8aBCfTyy5v6fE5xcXBf8fqhhZb4gy/kNWvShXCVcgkKIWtPe37nhHzm w29XjzFj9BWLF/joUPkGQux5NZot5Umif5LZuY2JqfnCkjmmjYUWOB+qq6AIcy2136F/kVH8gsXl R7gRgafgnmuNkWuZhAp9WWThMrOg+qJ4D5iP01mwyiuRjsTa66aGvRtklipY3mGO5fh4KcOSHs7J y4OGdevYItuWi4lVbNu3a4+LfOeE/KslxWJ0GlbVpZVcbnC4oYlWVr3q8YNb1fDa58HGRjFIpEof 5yDmtCZ67EX3X+IfKLbuv8RCLnVbyKPYu5BJqOBMyDi3YvkaOnr0aGh/bGlpmz9v3nyKjp6uacmR luMbSo64efPmP8ifQwbOynTr1q3/lD/t8J0S8qUPe/7Vsi0sLDIsnHbl85TjjQMT2CRzMTcwjVw+ 9TTPCO4KwLpBzHkHLj0ko/gNC4oPF0QYy90WMqbsrn7WM10mY4e+hLxq5Vq3nmVlWU2VenDIkha4 devWIVWhvY3vlJDTCjvY/a0Q+zRjEzlw1ECob6LRbHFG6IoozFRNCcs8X2VV/Nqt2vBkuNUQMQRg IwYm8gkyNdH9Kf0P4PgCEPIY+T60bbn6IxrNq5/4XshAbm7+n+B+aqepXVGys3MjQRa64LZt2/jv 7Eh52WW8/vrrkeXl5SK+kpYrzN6Wy3HU+e3Z0xK5bWu2XViEKygoGy2D3LVVXM8WaWRlZh9xvGd4 InOS5tI2kQfu0RJ+69ZtkVlZWXbTqO3t7Y+5U/bc3NzIqqqqyMOHD7v1rLwi5Pvm57HFq6dgcy/F O7fct/WEQWYs2ayiUQv2UURqHb165Y+rZFZu4yfmLArVV4rln5qegqFW9OszWi7sklH8ioyWc9yY uN9HHmlw7qV4W8jAtGkxqvRAWOvNmzMWymBWKDuKoCKBmMJCYyAv94n9+/dPnT17tohjO/WlpOUK ca+IK5O0Yt26DZZ5ZNuw3H/PzNxmDWt7b1rdCjHOwOnjCCrnETY52X7L3uLi8ju4b9v8+iLKrNwr jpglSEt7ji5fvv5jmaQmBizkgsOXaXga3iFuoJFmbMyOFyVYNAbPGQJxGRro7tQmejDN88UZTac/ jEL/ExsMoP+uJeThzHsMufT2Fz3fl9H8iudLuyhcV8aNiXtCjuCujExCBV8IGVsGOS6kUIh9rmUw K0SlVJWh/0ql1xt7K7ZdXPcohKbRcGhOP/HftqPWttfcIdJJTdXb5VlYUHxHK6w7RGOBjRPy84vP ymRVGLCQDS9V0fR1dTR3Qx09+XIjzVpfKzhzQ40Gcd6R6nBJ62pp9vpqmpWxi6o6zrbIrNxG4ppq FjH248LmAtxIsAAcxRyysJ4MuW2u3awPMHN9vZj6cm9lF3cJ/Czkrq6u4Y7pgcJqseWQwazwRMjY yC9ySrRDHM+IvIeGkMu8ImQ0olhlt3fv3h6ZtB284loPRZz4smcY5p4xCGcrAriwGFXHwBcYkeZ8 GscfeGhhIXsL2DHT9ZF+3MM9qe4vCME5T4UMCJfPIU1BrixXrlz5NxlMwF0hY3sg+7BqIj0lTdvf zkbVXRayw4IQ5byt22zPRLGjqNJdUM4jXUfXGkLGdkpKefujkg7i9OZnoaVLoG40gQEJubDtJOUc PE+5hy5THvhKLwsOXeJzb9IO/p3fdrr/xLyMNTVdFKSxAESMrPPRsv1OPT32vP1rjv7GxNQ84fo7 lrMvovw//43znUJ8JWRrv9eRXFnKy8sflsEE3BFyUVHxW0/8eqpDWA1ymkr/Uek7ow+J/bkdwyJv T4WclbXjJXDHjtyXNm3a8qZtWBGe489MTCJc37HDElYJn59faPeSQk1N7R3s8W00ml0iGgI8Z9yn bSMBosGKjo6jxYuXqO7LYyEff/+bpnBDCfeLLXtbYcBIcV0VoWBhyA/09TRlmf/fn53AFgsDbmKf LC6PwnDxymA93a2vE3tgnXnvs6syit+x5/KnKaMw0MXlsS1jv2TrvajwkNNn6ishi035HNIU5MrS 1nboVRlMQIhNVQbtSoUKq2VVUZlBDFDJoJrIyclVxUXengrZFprTT3xvGIyTQXyC9vb2H+PeYYXt PQPLxvsymBUeC/kh/UYKYvGOSGsi7KgBIYuvEUpiSgfzs8NYyKd//02njOYX1J64eceyeZ/FhbYV gRCyaGSq6Ee6XJ/+M/rDM5sbRR8en2h1Z6015pCzum5sl8mo4CshL1nyoipNQa4s9fX2b5q5KuQ1 a9ZkCutqF87C2Ng4yszMfEMGdQq2iuq4f+FCBtra2j4XYxB2jZxlIFAGscIjIR9794sfhhn63oES 786GGSvpv43+fQkBmJySwR5BM402WL7pZFc2tmbwFDAyXnX8Xb+XTcG+Kz1/j/eeseUQnhW8GLty OtJg8S5G8XPHVyhkMprwlZDXrF6vSlOQK0t1dbVduq4KeebM2Q5heonPz8hgfSInJ08V16dCZvpr QQhErHqO3hJy/IpS+qGx732Zg8wNLKJaqj330ecyml9w7N2vHhmtL+f8MZiF+WP7/mc4W2JYwbDk Anqnp8fuNUd/Yt4WfHWRPQZ9tdhmF16MbTkdCYuNVXNB7P1MXmj//SpH+ErIK1ekq9IUHICQxXa2 dmF6uX//fpfK+tcuZMe8tebH3RbylS97ZsKShCxo1qxwCrFCK/xZ722k5yqmrGSrxaIQO4BgSsfR ZdVXUjCffy7fv2852eL56iMUrMPbVjVsjTEt1v/bYugq4MNuIwwNtLT6iPhGkzP4SshGwwJVmoJc WTo77dfCuyLkK1euPIBw9mF6KYP1i78EIZeVVWUjjjJIh6Mr1Bq91hKn20J+rqCNhWB5a0irwinE aqrQBY30sDmb7llQTg+YB877JR9IK6KfGTcT1njLYlkxiq1wmLmaBYLXIeFWO278x6JJKaHjt76y +0bw5c960h5dXEAPv1DhMR9ZUkaPr6ijX69uFIxc1UBRqxppysp6ilzJ55eW0SRDPoXoisVLGtiy B3t2QaT9PU+xdRJb75Dk0n4rkK+EjHlexzQFubJwP9XtUevu7u4kVFb7MJZywhLJYP1iqAsZX+NA HExZKa6yq1TmkO3y94aQJ+gLhZvnzvuzoPI1xoFQSQsW7Inl9q4csLzkFfHBM9t8HRnMVu3Hi9Sj 6IbtuyiYhaIVZ0iQhY7Vc79YlNdvBfKVkLG6yDFNkS6LUQaxwhUhHz9+PElMJ9mF+esSMj5S53w+ 2kMOVMjFh86za2dxA2FNNCucHxisq8YmAzNlsayYkJJLQXrnX48AMZpe/tpbv5FRrBifnMVWsr/v MQ0eQwyNNFZXQtc++7ZJFtkpfCHkrq6Tw7XShOAgRhnMCleEfP369Z87s8g4ymD9YqgKedeuXfeI ctgIGXnhRRNs0CCO/LeFjnlYzqufIXOgQp6sz6eRZst7vRjI0qpw/uD9BvX+SrXdb9OIBbvFh8G1 4iictEDtmhZ2XqURsPoa4YcKw03VFL1a7YVowRdCzszc7tSy4L1lGcwKV4QMaFlkhTJIv8A6cMe4 QkCDLOSUFB2Htc8LC1jwbDAXvGVLxtLm5t2a3Lu3RdA2rpUDEfKy/PZ78TI7RIx5TEv/U7vSeZvK ssofpmIxRzXVdF5+TRbLikn6XBpu2kURenshY/oJc8aYcsLfOYcuqR7CuNRseV/2+Q4mLX1mbjD5 mYewiMOTi+n4B39y6bOqvhAyrIfWCCpGncvKynJkMCtcFbKo2HZhegnRyWB9giu8Kq6vhYzVZDKI U0RPUw9U4YN2ynegXYFjfMGBCPmB1CxVZfMXsYADQgtZsJMi5qtHwleXtXwvJAW7bNSLUWC7+Bwv zIR3jutpgkH9XvPhdz/9cpQZ87OYqvJf49QfsUgE33oakdZAoVy+gs63XP7ne1vIqSnGHse0FGqJ BXBVyDt2qFdlKcTgkAzWJ1pb21RxfS1krdVVjtB0mfm5lJS4/vEDVXyZhrxshUtCPn2HJgbp+vvs i++ovLmE5aCL8vd8LYtlxZQXCinUAIurHvnFXLJYacb93/mb7D/mBjy4sIL7n3L6R1hB+/iDxTBu WLCrCTZriFvf9wIQRzgTMoiPistg/aKzs/N7Tz9tGXF1pDL6mpmZbf1GsS1cFTKA/b+iIrXed7Z4 ALW1tRNlUE20thx0iOc9IZ88eVJTyLi/EydOjJXBNKHVx8UINDYlkEH6heYAo6dCfvz5chqmK9Os cP4glnriCxCj9NpTL2NhTdOaxXJMxw/GKRsehOnUX50492nP0yONmAbCsk2L+24bd/BZT48udv+l DmdCRh8XFANUNm6y8jcEhSMsodIfdtYvxsfN8SF1maUK7gh5+dLV72uPiKOMlgYDrmxeXgEtW7Yi ZdmyZVauWJGesmXzdod43hMyYBvWStxfbCzt27fP6TvCeJ7quJYPtmPT/xMnTqZcuXKlT6KBUz1H T4U8MqWY3c7Bm5oZpyul7y/YS9EvqtdGG3P2izCWBRVqIY7SV9Iw0276pTlDFTdyDT5Xw+EGQcAY Yxhhsny6Bg2IZf03W2I9GpUaGm5uoikvqhsfV9CXRR4oY2MsIsGc8r59+5+QWargjpCBqKipotJZ Gg6LgO3jukfk7S0hKy8vqMuFdHo5PW4GvshxS0a7a+PGjacxhtD3PdmnYU/HsJKeCPnZTQ00jF1P uKhaFdIfjDBi55Faanjjdw+IQtlgrK5QM44jT7z/lermMZ2jFdYfxCqtcCP2N8N+XfA6sLMKNkFo ptGpBZS5+5jTitUffCtkS6Xes2dfn+VzV8g3bty4+4knIm3CDh0hr1ix6t3eOM7LBW/GVsgAptd6 vY2B3ZOVngh5NLukQWbsQDl488Yh5ma6P2WLqvDZB8/TcH0/A1TmBrpPp/4nvVDRzqIZvHljdAHQ Bw4yNPL9cV94gWXDwcgXKujSxz3RspgewdtCRlogBIzKeuzY8fdkVk7hrpCBc+fORaDix0RrLEt0 k8jbW0IGkpLmcDxbUaqpJWQgOpr7/5rPw0O6K+TsAywUHaac5A6Ug8RgtlSVh28clmW2YnJaCQWl lGvGURjClm5b6znVjY+fX0BhLB6tOP6g2DZYV0kT2Cv4iSmHMltOfiuLNmB4W8hwDbHmd/Uq16aD AE+ErGDVqjXqZYlu0ttCBjZu3NRnuZwJGcC73DHRA7snK90VckHLKcraf55yXrlKua+8ybzIvKBB nHfkwMPlHLogWNj6uuZDTi9rNS2t7jItrT0quKRa4THBpcz0yoOm6x99OVxGETj31h8eTC9rM62o 7LKJ4xsutf7mvGq7TMv4WHb0PdOpD3riZXG8jg0bNpiWLFliam5uJk+4a9cuqqqqOrt582ZTa2ur SSbrFpB/XV3dVce05WWXsG/fPlN5ebnYOxvcsmWLips2bSGDPk1dgZlaK86ampoyudK/4liunTt3 rpdB+gWnYWpoaPjYMY3Vq1cvPX78+FwZTBMlJSUD/t/gKJOz4sCBA/+pFRaUQQIIYGhjy+ZtKhHD BdayyAEEEMAQhdZ+X+gOJCa6tqAkgAACGES0tbWNxA4jWu/sTo2KobVr1weEHEAA/gQWl2Bgpk9K kcLaYmAJv50N6rmznjmAAALwElwdZUc4ZeQYv53FW7x48Z9l0gEEEIC/YLGw/VEtWEdC5E89OS9g jQMIYDBg6zq7QltrLH7HIn48rVmz9rZMMoAAAvA3EhMTxdcbXOZMC5OSnqa0tEWUkZFRIJMKwA53 3fX/tLBHrErlemoAAAAASUVORK5CYIJ= ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAALAAAAA/CAIAAADPM9UEAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AADfUSURBVHhe7Z13eFVV1vBvkpubQkmhdxBUFFCZ sQEjoCC9KtJEBKUOAoKgCFYEKUMNTZKQnttrCugrMurj2HF0FMs46quOZWZURMZC9futvW4OlwSQ 4Mz3fH98y/1s9tln79X32mufe060HTt27Pjx49QWHD16VBv0nxlk8HEpx34+bhXtqVbo/zWg/ADR awPRrpNB+ik1OYnerwUoFSB6fTJE79WEY8d/rlGEp/8CqJjVypnB4pzGkWOHDx/+CXMfOXL0+HGZ yXRxCIA7R+g+evTQkcOHj3L/RDn289HTFbkbAxalU4LerQbVEJ6uxPIjRE90UsdY3ZRjVeqPEj49 4CXV5ppygtwpqccWJVQNIH+KUsNyppyQ8cwlivpcwcKjbGvj8NFDR48ePnTokHEIHYZDHD18/PjR YCgwavSNo8ePHj1h7NiJ48dVlbG3jDtzuXnC+Amm3HzzuFMWvXu6AdWwnbmcmavYu+MmSBkbU8ZP qE6aIrdq4KHEoqpZrLvjEL8GTuiOuaV6qYbhHEo1KpTxyr+R1CqISf8pRsagUrnGTRw3dvyYYSOG Ll68+KeffiJCEA5+/vln25HDP/7rX1+mpCZ379l902Obir0l2UW5ucVnKjlFOZToZVFebuEOU/J2 FO7IK8rLkwadWnbsKJJLU3ZIKdLBpk3DYLPq2pacQsNAUV4OqEwthUZxXlW9gzrb3IW3KNFoMXfh p9jUJ0p1KqcrOYU5VdKBtkrkorxsKFaV7UU7pGGogDyWkCFdHWdssfQsdYGQyCvKr5JCdGv4N5JK EUlpCHIGFJlS1bBwZhdmg21HyY58Z/5jOY/dfMv45JSU3bufIq7iEAQJ25EjP7z+xquJjoQVf1ju DXu9Ea+n3OcrO1NhDCV6WR70RPyeSMBbFqDhNZe0vWUn+mnLXSZW+H0VjKH4PGVeChj85f4oqnMp AV9Eir8sSO0N+ynuiN9dHnCXRWtXmd9THqRTWaV2h2FMirc6trMt8ByoCHjCXn9FCGxI5w6LKmhQ u8JIF0AVog0RnCIyqt5OqO7sCrSY4q8IK6Eq9Qp+T0XQXRZwIa8RFklpW7rFjujcjZJR+8k4PWEP xRvyeQKe9MyM++9/EIcwceK4jV3k9ddfS0lN2rhloyfoRa2e8AnWT1dA5w65KSUBN/Kj7tKgR9uq Dm3QT+0MeakLvaXOkMdfGTbDvMV+F7WFpxr+sy2winURLOSD81KfS+qAxxn2ohqhG/HBmMWDVWBG XKQsGCgPuYMe8SRUGS1nEh9tlvhKSv2l8BysDBX5nL6KECQQGYloCLmgl4Ia3UEvnuoMSI9gRjMh 0bD6saF1EnKrqMHEZlXeA7eQgG2YhwQN1Bh6vJwan4AN+mnTwFEQVlkq8JQEd5UxNxa5FvGzkM8f CTRt3uyO2XOIDuSR5FU2Eoi9e19JSnZs3CwOEaoIG45PcqiaRZc1eJEZbbr87hJPqdPvRv5gRdgV 8IAEbFyqtSgMkwGW2XwuLsFgYTuHAk4lQSNUGRHOIwGob35s84PLHpo8/fbho0b0GdB34LBBs++a u3TlMjYUiSUwbDikTUO8IezXuab8AjN4AwWedz61q8TrRAObtm95cPnDd8ybfW3/Pj2uvWbIyKEz 58665/57t+Y+howMUH+loBwuIapsV8NcsxCHIBSsDIIHAVFaqdeJFEJu/pwRo2/o3vt3/Qb3nzZr xvy752dt2wRmoWikK8ImVUvFQhjrENIf9rdo1XLWrDs4B+INEiFwiNdee9WRnLRpy2ZvSPSrRjpF CXsp3GVx4On4F34QDPl9uFo44PV5snMem3vnnMFDBnXr3r1T585NmjZJz8ho07btpZddel2fPqNG 3bBg4fxSZ7HLXeoPeEORYLgyBDZX0FXFn9gVLlmj1UlXFQmD5RIGmeIlugQ86BcVBIyZ8el+A/vV S6ufkJCQ6EiMi4+z2WzUcfHx8QlxCYkJtnhb0xZNx4wfk1+U7w9JaIHiCa3FKE6LpQrZTNmMyrwl QSeX8Iy7Z+dmDxk6tFHjxlCJT4iHSlxcnI3/aCbEp6SmQLZxk8Z9r79+46as8M4ybMks8KBkZ9jN BipSmKJUtPgRP6aHy1BZIBwJ5RfsuGn0qHbntU2wx9kToaFE4xwOB3QRGdJp6Wk9evZYuXp5OOIP hn2UQMjrx1goFinMDuJV7UECoUK+Zi2a3XHHHbhCNKnkOBp1iK1bcAhCaDX+Ygu3TKgk0gaxQbA8 VFpanJ+/A2M3adIoAf7EBDYUAYvUdrtdbGGAW/HxNv5t2rTxrbfeUlRcGAhhSZcGRlRsSMhiPYND nCh4T8gj+jV+Wegs6v67bnZHgt1hRy8KaEo5EYjHNWzxdmk4khOTU5JHj72JnAtyrCqNc6q1aiWq uwj7rtdXGRBXCHtKPMVDhg1OShH8UWI2W1JSUpSWMY8RWYAxScnJva+/NqcglwAMw6gOnJJU1fAG KUZ8GcCuEXQjptfvmjRpYmpqKjoEK7SMMuMSExNpQ4haJaVOTk1yOOxdunTatm2LG72yVqsyAbxB l5MSEsw4RPOmp3CIxCRH1pbNvrBEUVZDlLOTi1t2Mq+3QmIRfoMxduTn/va3v4WJlJQUFd7ij7ay SwO3MByjJh0iwCbVt1+fUm8JBQ8r9hZDwhVyo/RT53oRP9uNrmMsJ+2gz+lxV+ysnD13Trxd1oea BHKNGjXq06cPcmZlZfn9/jVr1tx+++1XXHFFWlqa2gnl0qiXVm/TY5uJwyAUnzAJtTvisYiqtVgD vnI/a5p2fmn+slWP1Muob3ckggFagqdevauvvvrWW29dsWKF0+mE6O9///tevXpBTpXAUk5MsmOq e+5dVLlrp9snW6cndIJQbCE/JXOEHySN7CzLzctp1aalahhaADgvvvjiCRMmPPzwwz6fr6CgYNas WX379s3IyMAWuLtDeItPTEyYPPlWf9DnDXhlneP6JG0mSCAmSlaHaNqsSU2HeA2HIEL4QuoQp1oo WCsCrgAJCwGW6DdqzCgkhEv4g0sR2ywXZRpggSKGqkz9V4GmGSaN1LrJ0++YVuwuwgtxC5cJpB6z bqovnbDPH2bPC/gjQZffE4gECDA+v3/M2DEQgooSwg/27Nmjz9moEVIbwKFDh7755huPx3PZZZfB AJzYE+2JyUkL7l2I9imsSInkMUThgb2MQtLgDDi5nHPXnOTUZFmJrMXkZNZDIBD44Ycf2ID//e9/ U0MO5dL49ttvf/zxx//5n/+59tprjYqIlDILQ3p8Hh/kMLkhUU1ScyoJlJD7VpY9uPThjAaZcWYi AsL59u3bkUKFUkJKFFrUL7zwwvjx41E741keKKTfgP6lLqfT5yIQBndGWNLqEOITp3EIcgjLIYI1 HUI5xkgeDjbmtPbYju1dL++akGhPsMtqg6ouTZYdHC9YsKC4uPjJJ598+eWX//KXvzz//POPP/54 UVHR9OnTO3bsaOKe6BOnIFpgSlb2JV27bMneShLOQmSHU6JWrSUQDgbDITikeAL+UCTM5Q033KCm ReMXXHABRDk7oRcspBJyiaa0k1rdAlMVFhYSRWT3jY9LSsUpZwQ4yEW8TnaEauYx2T7JHXFi2syp 8XbZAaHYsEEDl9P13XffHTx4EFqgBbnaBrpKnTadMFNRUdG5c6eU5GTlFrZ9ZFHlYTBDQjWs5HA+ OSKFvMGK0H0PPkAiIlHInli/fv3169d//fXXoEUiJQd+9Qk9MWond1966aXrrruOaUIuPu7q7t2c XqfsrQGPnLdNKmZFiJpbxrHTOYTFqNacZEiS12ata922TdTbTX6AMQhWK1eu/OCDDxAevLBFLa4b 88SaHu6+//77jGQ88x2kRgYDTGc2zCBJJj2URE8PRScbxs/WGyFzDBAn8PfyXRXTZkwVXRmxWYX/ +Mc/IIeO0IhSZyVNnjy5W7du69atU/XpANRH45133sGHMA/rKbVuyuIHFrFh+1k6xkhaaCsnBLB7 7ltEWkpUwI3atWn75ZdfIiiEEA3kqBLpwPzhhx9+/vnnSot+BVhi/LW9ryURxLoguX3qFPIePURA RUiYpIEwWRIodQVcWVuyxF/NDti0afNnnnlGdQuAkBqcSgXgkpoeangQp9//7bix49jLRL0J8f0G XF9eWcY+hXHluGukq4VDxBpDGZVcsiLMaaduRj0MgCG1ZptcvHjxv/71L5iDY2VOGaVhPEEomX/l 5xNuAZ9++ums38+qX6cOcSLeJjGGyJFSJ3Xj1iyYJjhbarLY0BwCASjhysjSR5cSulEWPPTr149l CkXFbyll0qRJKBQ+gdzcXIslGugOtX75xZddOnVmDKPSM+vnFuZ45QAluYIW2JAEosy3OXtz/fT6 ujle0rnLV//66uDBAwiqOCFKDdEXX3wRXCNGjIC68kODu8rY1199M2TQUEKqaC8+jgWAgOBXMbWN 1LI9eUvOa98WnUCxQYMGb7/9rnL+/fffKyoAkZUoJGhoWxeDuM6Ro8eOHCWVgZYkWDbbzFkzyLr0 mKNr/iwdIuwNByWHjzEGXGKkjVs2NW7aBHHAzoaIpi/p3Pm9995Th9VaAbynBL0LRThm/FtvvXVx x4uSEh2EYXA6khyZDRts2LxJqaslNIuUEuYcJTUikaV36HghmRrbTefOnVmRilaBNsj3799PABBW DZDxoUQdhvAK7B/73nyrebMm4t5xth7XXM0JzUryWb5yJCb1C3uv7nEVisXYbDT79u0DD2YAg1IU VAbYwqE4bNgwbAMwDICuDqDByrn88svxY4zduGmjEl+JHq+8EY8fhYc9oXI/gXDkjSPgmWH166fv 2fM0zgAV8YKqxOhPf/rTnXfeSQZDpkwIHDVqFKnMP//5T7hSQjoS/xg6dKjo1uEgLJFMhMpDnOyi LmhWl8khfm/84QwOYR614ge6TEMVwYLS/As6Xog3kDrgtol2+6ABA7/56muo6iKgASqQIryavybo XWplGpWBYdiQoTiELFKMkhDftHkzuIx15GiJ+PEGcYvyEGkgIyl169b96KOPFJtYxgBtFAFXqAmd oguUm5eXxy36uQsntKNW/OnQzspyY2sbp9aszesDVU8qVQOob13WWnui5MhYcc6cObANElJIFQfg kryEbH/cuHFI0a5du0cfffSpp57C77kFWMqBK7YqIjn00OLdSxaq/5niDZb7OdAWlRRmZKar/+Xm 5n3/PYteIo3S/eqrr0aPHg0nEJJIYzyekQB0t27dqhTVHaHLTtq6dWtjMfvNt9zs9rvxb11s6hAm QvySQ6gxdAIovH5P199eJsGnaqcgGuOPKqQqBTBGPy1YY5gFx0zU6bA+ceJE0JKZ1qlTB9av6fU7 OZXpg05zFKREDwLmqUNmkwYsaNIzdiswqAoAEEKCHt284JDAAMJly5aR/RFvURB3LWYAcYmffhoy ZBAMsCF0/U2XQNVDTzQgDxYDni6XduYugNJRa/PmzVevXs1cSDAXU+3evbtx48bcZQwDAB183nnn Pf3005BQWioyMG/ePB3TvJV4vytozGO8kP1i8NBBSMd0cJqtMOq+eDMiaIBRWyiQA7H66VQFTpky hfFK1FA7tmPHDpwGPaRlpBWWFhLziPe1cwg5+YQkOPtCfk538+bN5WgLSXU0MjjyNUgyV7HQMCJX 94nYHqutDWpMSK2rloM1sikJ1DH3rvkcL8UhWKYVPk8lPhHwhP2lPte23McYwAEHw3z22WeQhhNF BYhYR4+yibzxxht79+7985//zEmHxptvvomYsM1dHclEZRuj7t37St26dbBQampyqZucjrgY8JUF IUfql2AXxrAQGodJlKuwcOFCUkh2AXjmrvKPbcRKBmjv3LlTKSo5vIf673//O2k1Uzj3PpazHS8n WXFJMiFPThs1aaw0nvnj04d+lPwX6ZgIEs0J1O0Y0KZNm0suuaRnz55sZLgFPeCEmaysLKYAzGUW cxnJLI5Iix9YUuwuJnWV2G8icfMWp3cIfzgUdQjy+UiIRrHLWVBYKKfKKt8n/mAGlIghLeXGgjH6 CYj2xniDBUyHOjXY8H2yJz2+snmilJy8XNkjJDx4PRXyM5XbPK4ZOfoGXUBEKZW5GhtEb30ApVpD gwRY1SO6ix0cywC5iDFq3NLlj3hCgQKP0yWP6cLz714IErTcpUuXrl27Wk9WAMZjchRCG+S07733 XtIIDpls8MgSiUTAjL+q7NDiEvMAbO3gxPC3T5+CH8gDUHmiHMh6bDP5JnxkpKfjDT/9EFUyNYc4 VMQsyCEOhzXwgFxh7Nix8AN71JmZmdiIKQBE0dLMmTOF4fi4Xn16kQBoJqAO0exsHEIDpjccIMHp P7Cf0ZTsVcjMuRGpYFFVqWAZRkHvAqL1qjbErDbjaVu1AvkpckIFQOkTJ92CQ/jlmbHHV+4t8jmJ EDhE81bN4+1xyakp5ZUVsbQA2gC7g2LASHAO0KAH5CwU/Fg5UaANEiRiuaNrZvW9vo9ECPkVW37m 6Hxp5/g4Gzd0myDeDBkyRMMA4wGQU4P/wgsvJMJjGxWHyEEbrsDPpcUhtOjJyckRruyJXbpeQvTW 8wV0b7p5jD7gmTljprzRdeTokUOSGzK3qKgIWdQde/fuDS0cQtGq28EAdxnDgPvuuw+iEOIut/73 f/9XdOJIzGiU6fLLfiHHaXWIM28ZgXK2T9xC0gj4c3pdySnJKXXkiQouP2PGDMPACUury8MxVC3Q W9SxThALOkzZBRhDhKChSRnASm3UpFFxaZHTV6pvaTjZ+fxuBKifXi8uwVY/Pe3Djz7SuVoDkKN9 4MABjQcGT7ShwKau7FnAePUJsnTjOvGXX3E5hPyV4WK/C4do2boFvUmORJa+jtez3+TJk3ELfVSg NfgJ3ViaEMUACGESOQFWxSFqdKVIsBC8xSfYMxs3MDmEnO1R+HUD+mI27uzIyT1uHOIoaA4feeKJ JwYMGEC/5siDBg3ijGZhAzlJ7qZNm7ilkhILMQp3uaWAr7Bl1Klfp9hdpL/Wst7IkH4xhzDhwbzc gU9MnzU9jkiDUybaGzZsiBgICRmlpM6ubCE/DbGzOe3Qr8OUXcAaAAbADJQFBDCMAWAj/NSvX5/l SNTkGHH33Qt8Afl1xx1yuSIe4qrT5+J0Cj+onoMlc9XnqC3AHpZeLMBgQNu2bSFq+IoC46mh/uyz zzKLMe07tCdvdZtXKMghMhtmMJ1N529/+xtsw6TyD3zxxRcrVqzAyZhFkKDW5Zuenr5o0aJPPvmE MXrAhk9IGFklOlKjCiGXEO9IScIP3GVeZ1geynX57aVsGeyJHFLYMvAGpjOYw1THjh3xBpjBEUmW wawBCf41id6zZw88GHFt7du31yfc9DMAsnK0J8wnJeSXFEBRT/InRwi2tmOncAj8gKSSCbhPq7at wAKLHPrnzp1raZNZADjglWR+165dbGlLlizhdMcRmaANK6oCatpMZFcLh8No8OGHH2YY6R6d3NKR 4NS4N2LECLxBDqI2W69e10TKAn42PFZPRLY9hEGJ6KtFixaKXy1qPCEKOEq1wACgKYD9HoaNBAIM jraOH8femJORTZo2xiFKgx5fRajAWVS3fl06yQHJBKEIh/CpEZFZWOLrr7/2eDzdunUjgqpLydI3 GeWwYcPQBoNVA0oIUJEZwKaemOIochWLu0fkR9fmbVuKQ9hsZME4BPsFg5Xiu+++26FDB0hMnTqV eIAgxgjR9YbUDFAGqMk2Pv30U+4yzJA+arTALmXLzs8hBGLl2jgEBxITTzh/CyKzB//xj39kEuMh QEMZzc7ORsvIb7HCyefSSy8lxDEMMQB4uv/++63Dt2JDfVdddRUy6DDUpGjLy8vrptZhJMPSM9Pc AXluI79Amp+eC0oLUSIqa9q0KeNhRo1qPEGA9pdffgl+w3UUwKbGbtWqldJSYLo2oPv222/rKm/R sjkOgTcQIwtdxexQTMzISCc66rMHnUUNcEkbTpCRGDN8+HBiCUiQjlkQBTp16uT1epmLunQiDWpN dZNSk6FChKCg8zbntxOz2WwsGLYMCoPBD6Dwffv2PfDAA9CiU0mryPTgmviQ6g0g0KpD6MSDBw9g H8Ecf8IhauQQp3EI9QbcZ0PWerDANAQwgKqS8QA0qDEzdzWlYoz6BICoKIKgxxh23PHjx6vHUGs6 xmBmMYb61VdfZRjsAKAl3ohAos14uF+btcYdJqJ6vBXyFLnEU5qUksz+xQr46quvmIhGtFaAQ1TD dEs1ChDCSC1btkR3jKkJTz/9tEpx0cUXydKJ+IO7yorcJZkNMhErKcmB78IewGClBV3a1CidBpgB Is2UKVNYFUoXNhCTBjsLp0F2GR2PsKKp+LgEhx1tS3gwDnHZlb/RUwYLg/AgaUSVUSFBQ7cJVReg bGhdWVkpOA1wJkc/Ootb2FtibrzNnpzIosIhJDGofsqo4RCcMgLlITYYhqKUybdPwojycDLBfuMN NyKtQR09Fzz33HN69sXAyDxy5Mi1a9fOmzePIx89aP+CCy5gWZAbcwkwEjVxVlyzZg0ZGU7DjsjE gQMHahRRnUKCszUiGXXa7l6yEIfg5Cm7bMApT6UaZJJDEG/IqhiMLpiooG2Izp49+7bbbhMMBsAG aba8VatWWTpisI6nDRQXFyvR7j26I7vLvIOJNlq0ai6uabPt3r0bnSkVBZ2ogJF0KYteDx8uKCgA GyIjoPoZGqCHnW7+/Pl//etfWetcotzGzZtgFU+5jxyCLeP6wf3ZEzllbN26VSMEDOPi1CUlJRyF 7jFAugAh6MIPQBvVETygJWjj43v16qULWG8dOXJI9BBvq5NWB3IlXueJCHEGhzCnjBBs4T7B8tDv evaQCGEIPPTQQ+IFZvNDYGh0794dGgBMkBnQCQfchVeWL6yTB9FDHqcaYY0Gg0HVGv3r169v1qwZ ZzkWjeKkBj+3OMsY9Ul8mzZrqrfc562QInm4392mXVscArExIVNUI4BlJGWS8yFjlEOARA/M3I2d ohS1MX36dDhk5NhxYwNlQY4YbBnood+A64mAYNKnogxWJEoIiqhi+/btY8aMYUVqP7Js2LCB1QI2 ZCcZhBPrPIJoxHM6ucuy6d6zh6RrZd5SEueA59apk2UJ2hPIPw5XRQhFe/fddzNXQx3HMdUYNbfw GKTLzCSYCTDgwQcf1FnUwL59b3Ik4nzAob26Q/ziloFDUKOUCzqej0+pWlnojFQmaBDYWaMqJBwQ x+hXS6AyjuCMQVPoiAHGunHkvQwAlEvuko7RVnvQ0H4G4F5GlbLnjZkwOlgZcEfcLKASX4k/Epg2 Yzr9yNy/f3/4UZwAeDAPNQAqHAIkFmADVGYN05FcgoEGQYWQzjAkWr9hvajM7+aUgdYeWb6UfvY3 Ah6DmWjxCSBFbm4utmci9uBkeOedd44dO1YfEBEFCQko55VXXtEfmRTUV6jRzJz5c3EICQ+cPEO+ 7IJc+XHSKO3gge/kOYThGdLPP/88nYqBJReJROBENQAb11xzjTo0gPeTAutdWKUeOXK4TI23Db9x OH4QrAhj4l9OKr0h8yZuWfR9WnI6OFAmXnrpJUsR8EfyrPIAdevWhSG9qwPgQNX93nvvoRcADFdf fTU9DGAkwBRlV6WltiAUCjFe6Mbb+g7soy+dctBAXzgrBw36WUbpaRnvvP0O6la00ckGwH9Kh6Cf u+oQhotoMsQpCW3i2XXr1vF45fgXqoxw1IJcUWkR/YkOBy5I2qjjQfIT6/fIYcIbIRD8ujWoSXAO Q1Ma7OtMYTw1O8Utt9yClzBSlCKxN25HwQ5OTyVBp7wqZkzVrn1b3AF02Vu34RBGUZKEwv/1118P G2BWDCTvEydOZM8lM6MHHmCA/nXr1qloAJph4TXITMcI7P3LVi0n9uMTLC0UW/Uc4nQ/f4fND81l vkCZv9RbUre+ZEZiGJvtgw8+wGwMpoYzThxIyy2YIN+kHwCjAjJQ00NeKYKbxymDBg1iv4BFpa15 Mpc6l05AG+hdiWL47r26eYJud8iln2DIYvK7W7dvQ5AAM2tR172SUwwKpNyCoQpwCOIq/YZONJYo dfR1xRVXoEpkub5/P7ffQ3SM7CqXSG5edOs/cIDIkBB/4YUXgsTy4yPHonGO5JrwoMYAiQIRET9j vGqDWZCj/e2331522WWiFntC+44d/OZNLXZDfVhEMJ8yYyoJlz2BE559/9fymxEKQ12w+v777zdu 3BhlKrdKDm+wvIRbhCgGGzeKLsslS5ZIjI63NWjS0Olzyfuw+pZ5WKQ7vUNs2ewJShoFcziEN+Rp 2LgB9FAF8OSTT4IaYBrwxhtv6HkBJggVhFzrLnyosTHVJ598op5LzUkdLrkFbcYwhUumwACXAA1m cdfv96sVk1OTBgztj0MQIfwmbkm0CHtXr1+FtkRndjt5CXOFp6ogQQNU1SIEqa4+DNUBWv/4w4+H fzpENgMeDi+UYmepv+rJvaQsQRfOkbMjR+xtHhGuXrmK0KA2NtSiToywWItkAp1cd911BAMVh1rV okaiJmak1q1jdyRymli9frX8plD1gow8PSzzFTmLW7dpjWlJ1yffOgm2mY66QAUGVIr7wglCQQuf 0JXJJU6/efNmBhtTyEMBnPWdd95hB2G8Izlxzl1zcQXNCkTGX3hBJua7DPROufCiC5QSkJ2dzUjl ifqbb74hh6AfhqgPHDgARjjgFngDgQCssDhINdhQDAJ5rMtcNbw6EFsDA5jISC7ppw0sX75cRSUM jL1lDN4pbzGFZBeDK6evNFwZuvp3V8XbhTTHBw6uOhEMAAxQ47LKmwLK0kfOOoaGKO7w4VAgiDcw kvU68qZRniAxUp7EWC/pSGgN+8eOHwMzgMOe+PjOXbgRHmBoRvc7cCLdiy++yNodPny4urtyQs0Y FfDjTz7Rl4wg16ZDW3nEoq8myGM3jyfsLtsVIYzfcecdGgLBpq84MFc9QyMisadv377EZnIUFEvY KCwsFImq3iCkoQuAu3hDvbS6KfVTS71ON4mk+a5OPgaUd3/8NV+yjc0hxH3gTxfiwEEDUIH6BCku EwCVkHrw4MHcUsv17NmT3RSHQBEul4vgwU7JFNyiS5cuSKUjiWb79++HY4ZxRsW1cZeNGzdaOSlo 4YyjqaLF5HcunAvfaCoIS2IefMJb5CrMK85r3qqZWMjhIB9kgzDcyapVl622ZRAh1IRKAlrA7id3 Z6bLz9As1o6dLiooLZbf9iLiDSiBQpBQnyh2lXS5TA7DhOfGjRvteeopMiX1LiVKTZvkkaPTlClT UIVhR0AGcRD46ceXXnm5RauW8qQ1Pq5+ehradgZd4DcRIlqKffLbNMeNXtf2xihEYLTHIRZuQUUN ZgQBlAQ9uszU5+iHFurlFnnl5ZdfDs94vN1h35K9lfDgDHrd5iNH+WniF1+h0w910ILxHe/UaVNA B0Mo/dprr7WoKk+kmRLWTOyCYqtWrTj7XnXVVexnomKbjaSBYU888QSLmB5GMoydFde+5JJL1EXo nzx5si4mMAPwg4F11ZJDPPDI/S4/ZyThx7ippxSlmZx39ZpVmJmR4GGtsKmBBAAD9aeffjpnzpy5 c+fihfPmzVu0aJGqibtwBSFOrbDKbuZISmzaoumGLRvldRicz7yRrKsWC2EtL2HJ796as61lG8wp +WydOinFxYWHDon2AfgHIWqhod6mPVYndbgs0rBxI7wBVddLT1u9bi3r1Xwx7HEFzMuC+F+ZPHFx hl0e2d19553fgTiB3jDBPffcw4oHFSZACmrLCwElpNZR0s899xwZDwKiHPb0RYvvIfAQD9xVH9wS J37ZIZigDsG2HaoIZuduhxW1LqpnX1DaKiEo8vPzIakBwDK5usiVV175j3/8Q5lbvXo1/YQNayQD aOBPOAcxgzGqR0Rij9QBAnG2LdmbxfysIfn9XtzCiOHxcHSviCxeshhyoFLS06ZNYw9iA8LkiAd1 JDQaExeBZ22/++670GWWPdGOzzVq0vCRlUuD5UGP/Iom32UYh8APxCHo4UDorwzR+YcNq9Mz6tkd CUkp8hbP6NE3sUODEOahRQMRDAUB2ACg+/HHH8+cOVO+7LPLr1lJqSlLHnzA7ZdXv0xswMvlTWh5 K6zc6y73+Coxm7fIU1pYWtL2vHaIBqAT1iSHO1Skng1RBWipdOormOmhhx4i9Ko3qFpcHmcgLM+W 2A31u+EzOMSRV197JTEpcdPWTXDGHNINCZUBV6mzCGXDSnJqij0xifRNtyUAyZlPg11TowLWBXBG dms2C3Jp7lpnwp07d+KwOAT8gZC6Xbt2K1asYIxGOcVGu7S0FPnVHzIapHvFr01GadIaDRLyvWLQ 4yPzC4fwNrZJBiM8NdFo0b2L/vjM04RU1osgJeM79BMR+9vvDuzevXvChPFQJ6xgV/Ks1u1b4XNu E7pDO0PyoU7MX0Mw4UFsJt8OlXlLfCU7inLatW8d/TAwPg4zT5h4y5NP7T5w8DuTJhylYJfvv//x wIGDL7zw0m23T02pW8+RlIwrOJKT2DKWPbrcF5AXhlmyVftFlJx83Ffud5V5nRFPcUCOA0XO0ksu uxSNsWKhSCo6cPAggs3X+7/57t8Hv//xB6Q7elx+JGcRvLL31QV3LySrQA9GRjmFLliwoKKiwut3 UfSHIYsi3lCVQ+hziCqH2Lv3hEPAhDoEqvf63FdeKZsQBFj/o0aN0kVmrQNcUh3zo48+evnll8l0 yO31ETqgg9XetKHH2ZXAvmfPntdff11fwtORAGMYwGDSEcSQNZEQP2r0jX7cOWi0FuMQwpt4t5e0 NBwOZ2VlsQepTwAwjIM2b96cHZRIMGzYMGpSGXntUexoYxMHfaLD3qtPz/ySPLU6RZ8O1fyUT4r5 lI9TgCfoyinI7tm7hz0Rt46uXaBJkyaQ6NevH6lV//79u17WtUkj/QhYnvUSG9Bw19/+Jjs3B3OG ImG8mSOfRdqiKJ/aVRAn5FF9sd9JSuf0eoaPHIFEKiBmhhwBoFOnTtdcc42S+81vfsMCU2aQMCHR jvO1atN67fp1wXDIH/QHCQlBeQcHzwaz0sIhqiJEDYcg8GdtzSKe4BDeSAAnlYUS9t93/xLJiOMT KDBByCI2ApjQilfaAGLbGqtpUCtY/dqwgFvqGXjD888/L9uK+YEbh1i64pFSzs0VclKP0Zo0TA/+ wVrzhSIcl713L1rY9jx5PiFzDaDBWDA+Jk+DOLJ2uaQzKUipt1R0JD+eiZqkSNyWd3qtQqdVuyKe 0M6gPDCI+FauebRT54vE3OZhrmlI2xASgJD8EGRM2K5920X33+v0uXzhIDyjWCnW+8NV39ZFLyu8 rnKPS/IJ+XMA4jdB76ZNm3r37g02I4p4hppfFwCgnfSSPzZq0mjmrBlsE8Qh9BOAVvSbMOPxVQ4B Dyc/qaxyiNdiHMJXEZJjiUQtmVBSWtyoYUP5xMp8TsPyVdNW8wnt1BqItbrVqWDGCmhbO3EI2tQ9 evQQmeNsREhOZaRyFLd8UxqrMsszzHNVo1z5dtHvJk1bsWZlnwH9MAWLUkIBiqIhbVk66Zlpo8aO +sOGNXoQD+4Ky2sWFfKdf7TUcAiKdde05VsuQn2xtxiieNUNN91Qp16qPDzlTJBst9nxCFucHX3Z 0jLTho4c+tDyh82XdF44xABwa3xCpIilUlUg5PKUu+VN0nKv3+xfQtFL2uRft3HDuAk3t2zdinNK giNRBDRv08QhoHkroFef3kseuq/QWQQVDQCqH5jXH1QtQQSteeWlukPQki0jMXHj5o0yvyJE0lEq nwnLX97wBn1Tpk7B+xMTJFIBbrebmRiPBa2hXgFcZw84gdZAdP6xY2x1+BycxOH68XF3zJvNMYl8 mOIrD7hZTyaimpdRTcCQ82HUIVC0PpGlUeJ1lvhc2YW5m7ZveXTtqqUrl61Ytypr+5btBTnFXmeB t7Q0JNLtcBaCtjTkYo9AWVXIT1eUOtqUd9hZuBwOWT95pYVkf6SENDZnb12zaf3yP6xYsW719vyc 3OI8BqDDIncJ5wh3QJ6IiytIkZSIcjKJaMEhoOIxjyUo6hAsDKhQu4LyKXduUd6O4vzVG9YsXbX8 kVXLt+Y+tn7rRqTziCrcZbvKguVmjwhyZjbvpVYhh+iJWHvKV+hovfrqy0nJjvVZ62EXpiURleep 0vYFfV6/p0XLFsQkQh8GI3PUt4CYjxWxqGAySa+xdS2A6UzULIQTPEFP9gvCnj2+wwXtcXMTHuSM ZP4kT1SJ5sQhDURVbwiYn+Jo4BAqgroRc7WIc5uDlv4hJk/0z0D5/BJjjHvJQcbCf8oiA8ww7BFw B91mI5Nv4UElZ3rzZ6wgQaENFWg5wz5/ZRjmcQIYE28w4cEUWK1GIlrIoKXoAOMNFBXHoqJyaTin wV19tCAvelXpBG2wSDQmCWb5fN4Ug1YdgiB3Cod4+dWXHMmODZs3EHJZXuoT4hb6yXrYv2rNSvJq s0PJ6a5ly5Z///vfsSIo1KjUauOzBA0MYCDGsPt89tlnJGUSG6Kbom3t+jXIw1JAwtKAbBzq76a4 fIgthc01mhnBp1WUcykhU8xffJJCm0WGZhnPCTbo9smfHJF3Ng0295lKwG3ONUwxf8GDidTyeBts UBGckIjWxh3lI25xZflNTjk0rLJwJZ6ZUoOKKfL3PaoKG41HRDA/7AlyDiZRKtpTxYAIyKXIHpC/ o1JFLqoZ0PoRQaWgmA2Lu/gNDjF79qzqESIlNYkcAocixMlvo5FAxROVYJc/piEfb3mmz5zGCtZc F+AM+cUXX2BXPUTQAECnbWP06L5gQeylDoOD/fv3c0xv1kyeOSpyHG7MuNGhsiBiiC0DnmJPaagy Eq4MlVVUL+GKcFhunVQiFWVlFeU1SuSkUh4pL6dRHWEtCxiqUaFAPYaQKZGK6kxqqYFQy0lzw9FG NSpaTgyzSjUSWmLxR8qDWnwBn8fnbd269ezZd7BCjx45+vNxk1S+8spLycmOm8aMum3abRNvmzhp yuSp06fcNmXy9rxs3I1UqGxXOfWgoUNI1khh6tSrm+hwNGjQ4JlnnrHihNpYQa1uNRSsS0YSGADm cgStX1++qmYnIjzgDVdeeWXQvN0lnh7y3XP/vbfPnHr7jCnTZkw92zJ92vRTwNSaZRql2txaFUFS E6B+EhXKryU0AySnhJOoaKk2sVqZagZoPW0GE6ZlZmbqg6lj6hC02L8ltwfMmU2KOcPUS6ufW5Dv CQWcflaqr9jt7NL1MlJZSeBlmPzOtm3btu+//548QIO/Wlqwm61EncBqa4MBuMLnn3++Zs0a86SK bYgDmvxycXHni4pKCnG+UEWY4LR+y0ZHqiPO/IGt04LFs1X+34RqTGr5b0A1ElpOBaxAbZz0pJLW q6++GnUIAzqOmlSfqBCuLDef7sjflyx0FV91TTcIJKdKeE81f2ita9euoVAIPDgElrYA7NAAuAXQ 0Ee5QEFBQfv27S2iuALlqu5Xkq/IthfySSoT9Hbu2iUhKYHz2+lE+v/wH4HqDvHyyy9bzsI/WhQ4 7D68fFmJ1+0KS/5MKst2PnD4YHwlMZHDvviN2hW32LBhw7vvvkvA0CCBT6gHcElswF3eeuutlStX XnTRRbpHCP5E+WtcHOIHDR9M1kLSS95A7kIeM27iePrNO3yGlVOBsg0DFhtaa7/WJMKxbW0Ql6jP AXQ6YHmzgnVpDfjPAgwr5tg6FlQJ0YtawpkcohokJNrTMjM2bttSGpRjm78ipH+CbtLtk5KSHObZ XJQPaoDE8Pzzzx81atS0adMefvjhzZs3P/TQQ7fddtuIESP07/eo4qij4EhIqZd6593z8QOOEmwT fkknffcvfTC5TrJ+FQL600mqRDEzmNTGsgNVPcIDtE2nXmqmoj2AIqkVgITp1GAGFDP9NPSURKf2 0G7YsKG++KqXMr+WoOTAAPL09PTmzZuTclmd0UFVetB+bURvnB2oQxwhlv+iQwDxifY257fP50Aq b47Ix5/eoD8QCqz6w6pOneQbfgDmlGnqWFTKHCBsGjMwgH5qOhl/Rfcr123eIG/lmIMu53XcYsPm TfXS0+QB9i+BoqXx+OOP79u375133tm7d+/rr7++e/duhAR/79696eeyadOmeopp1KgRY/7yl790 7hz9qw+1AshhFbIuqOhHfKDFVK+99lo4HE41X+kg3YQJExjwwQcffPLJJ88++6z+8UaVvVag2CBB vvXee+9xsvvoo4+sDZe7OiwSibzxxhuFhYUp5vVd+q1bZwBG6KCoQxz7JYcQrPFx8rJXQnzjpk22 5+cUOIs88tdGPZHKMo/PEwj677nnHn3LVMZWrZVYbMq33lKlyGVC/Hkd2q9cvQpXkGcD+neyOdEE PEtXLktKjv6kzpRYVDWBuzrg/fffJ+JhA/YsVEab8/DYsWMJCRiPy6VLl2It0Obl5bGRPfHEE+dg HgDpWrZs+d133yk5LoGMjAz2RHmLwASJ1atXs0syACP97W9/o3Hw4MFevXpFUdQGVHslJSUHDhxA tKysLMRhL37uuecQhwFQb9KkybfffstOjbvAm6W6s4ezjRCibPOonJNFSp3Uhs0asZqxGekeBwFf 0Lfz8coSZ3EwHFiz7g/X9+9br35d/V1Kp0jRNv+aHxfki6tGDQcNGZxfWOD0uN0B+S2NkEBeIs+g vM77lz6QlJocZz6MOSVLpwP0jiCoRnWxePFitLZp0yaQsFWhLEzSpk0bfZUec7KmdWKtQFlC6frY HlSTJ0+GYqtWrbD6m2++iXk6duz45ZdfQoKtk1v0LFiwgPEcsJPNnyWsFShFEHKOq1OnjjoB9tq/ fz+EwI9bz507F9k5GZCl0WZAbQnVIocQwJykkI7EOEd8nbS6C+5diDdQoo/AzINSfeZF55bsrUtX PDLtjhkjx9zYs0+vK7td2a1n9559e0+8/dYVa1dlF+TK1mCeMfjNO83eYMDl8/pDQX8wMH7Czfr2 KfEkSvqsgeCM0jEVIYFNITc3Fw0OHz6cW2iNbBf7Pfnkk2S1WHH+/PmaTOjc2kLr1q3xMPB88803 mKpx48bkCkQItiEitn6ztHbtWlxBx2PIoUOHDho0SPesWgHMAx9//DFRze129+nTB2xpaWl4Bvi5 BU42SlyhXbt2jCEmESFqG/xq7RDqEza2Akc8NRt/kasYu0q0MH/JUX5BDrnlUzvzp6DZAkg/qV1h Hw1qT8TPpkBaWux3+cx7O6QLTA+GQ4FAgM1PX5+BGkIq2VoBEQJ1EFdZmjSAnTt3slBQjbrIhx9+ iMB4CSP1baJzdgjiAfixwbhx40Do8XjUIfA2aFVUVNAmrWYkJFQcatrnRpFZPXv2RC48HkDGP/3p T9dddx39oOXIBg9//etfkYgkQwOhkovOPwuopUMYEBrmD7+JcyTak1JT5syfV+gqDVSGvBX+4ONh d5mXhn9n0BURP/BVhPyVYT2pau01/x8HCp6BQ+gj97KysgEDBui2pwsInSrFWoEufQJ4jx49xo8f /+c//xnFgVzXCp6B8bATcUK/QGR5ncN6VSBCYBgcAgwvvvgiNuAMRY9GCBwRQsOGDUMiUZpJpXFB VnZ0fm3Asgu0+vbtS+qAmFgOcldffTV3STBxiBtuuIHTB/kcXG3fvp1+a+LZwLk4xAkaVclBnD3B kZoy9ffTcovydPtgxZMkyk955v9dI25hfleUkGB+TDfPGAKUQmfx5u1bho0cBk5SCws5GhQStQcC AIZp0KABeHAv1IeaPvvsM3IF9bAWLVoQ54nw2IwxELJCem2BJPrf5jMCMHTo0IFogXlwAsI1tBYu XMgtwgZsGLHkLz5ZkSmK4uxAmWRLIiWaNGkSyMFGv8vlwvAPPvggl59//jmksaXWAPk1C6BWmjwX h7BARDSAT3AMj5eXE+0Xdb54xqyZW7ZvzS8q8Abkd1XMLxuKcRRcJFjB1uIrKC7asClryvRpHS44 H5sgbRSXRZ1/z5aRkwB1o5GLL76YvBLbs2Gjsrfffpt1owMIpFiFXV8dQjvPAZgLflBhdXU1/Qya hUtYooezKI7I5cSJE5s1awY/+i5qfn5+bekyHq8iYwD/V199xe6AS2HsdevW0XPXXXcNHDgQK77w wgs4x7Jly6jJJ+gZPHhwrdz9FA5xbmcwkZAlnhh9FuRIcmRkZnQ4v0OP3/UYOGjg2JvH3XrbpDHj xgwYOODyKy4n60kznxDJe2Van2s8qAksCxwCrf3zn//UP2zLSezOO+9UG1A3bdqUZU3nr3cI65TB JSKQ3xGfMDlbBpEJE06YMEHfMf76669pMBg7sdBrKy/j8TDq9evXg40QuG/fPtIFfB2KzZs356AL G2xYcMUwnGDWrFkM0z8UEcVyFsAsdQhqcYjnn3/+3HTELABWtIahmo5Fv9UZO15B+88ZLCTLly/n sB4KhViIRNSlS5eynuiHtIZu7JGTk4NmrUgOGBy1BlLUrVu35uXlgYpLnKBbt24cASBqicb5dtu2 bazdZ599lnMHmsERayrnDAASsGmbiWRapEQvvfSSz+cjQmQYQCIyBmuDoMbv2a1g7+xTFgipQ+Bb uJ2NfzjCRm/WEsAV21AZrE6AS0Db9Mfe+o8ACFGWRSLW87SObQC0GaONswcdbxCc5M2A9mNv+q0o rfzoAAWLQ6txNgCripk2SLQToEdx6gq0LoWSAZ0CRK/PKC93Z8+eTXhgm5MIQYuAFr1ZS7CIaa0Q 2/5vg0VdQduo4wxWP13/6UDwnkwF4NIyg4IZGwUdoHetwebOuUAsNu2JBb1rAZcW6KX2x4LeBaxL 9lZ1CIkQtPbu3XvOHMeiPns4hyn/KfiV3Iq0BqLXMXDKToXTTfk1cEqE50CFKffeey+uQKYsDkGG QmvPnj1/rA08XQXPVEH02kB00KmGxQL90XG/AixUsaCdQPQ6BmI7oyjOAqITTp4eC7FjgGrDzo0o wMRqqCzQWwrRrtN0AlF0BqJdZrD2kIkTFxRsBApAL9hC/m8C/hhtnStYGM4G1a8ndzbwH6Ry9tKd csDZzCKDVLtr+/jx4/8HweFGLF+cV58AAAAASUVORK5CYIJ= ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image006.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAfQAAAH0CAYAAADL1t+KAAAABmJLR0QAAAAAAAD5Q7t/AAAACXBI WXMAAAsSAAALEgHS3X78AAAgAElEQVR4nOzdeXyU1b0/8M955pnMZCOQsG9KWGSRJTmJqLECsojF 7Vr3UlvKkrBKqLf23t+995XXbW/be0sJQlgCQSxVVGyta4uiiFiwkEwCaFxAUARkkWD2TGY55/fH TGgYZrIvkHzer1deSZ7nnPN855kk35znOec5ABERERERERERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERUQdnae8A iOjqJ6X8TZ8+fYafPn06t71jIaJOICkpKXfs2LH9GlDuHQCivnJSyj5Syrf8X3dPTEzc0wJhNlpb HLv2OQk8npQyTUpZIqX8TUPiaGi8tc9vRyeldAX5eLG94woU7L2TUlqllHkAjKa0OXHiRDPgdZdK Kd9KSEgY2SJBN1FD/w4QXSnM9g6gLWmtTbvdXu8vqNZ6ciOatQKAw+E4DyClqbE1R1scu/Y5CXK8 X1kslvj9+/cXNaStRsZrbXiUVzWr2+2OOnToUEV7B1KXYO+dw+FwA0hqZtPW6Oho665duzwAjKSk pJGGYexJTk4ek5ube6KZbTdJI/8OELW7TpXQa0gpu2utNwkhjgCYLYQ4ZBjGffv37y+q6RVJKd1O pzOisLDQNW7cuKEWi2UzgNFCiKe11j/3/xELbPPV/Pz8FABISkq6QWv9NIAoIcTjAP4jLy8vGQBC tVdXXACQmJg4AkCOEGI0gGcA/KxWvVfz8/NTkpKS7tBa/xrAMAD7PR7PzIMHD54Kdh5ClR0/fnwv j8ezGr6fj7EA8mqfE7vd3qXmeFLKgwDivF7v2cTExFsA/L7mHLR0vB1dZGSkCrUvOTl5lFJqNQAJ 4NmwsLAnPvzww6rA90opdaNhGMsBfAbg5wDeBrAQQA6AW4UQT+Tl5T1d025d5z/Y+wcgpvbPeai4 6vtZDqZHjx7a/6XKy8v7WEo5z+v1ZgCYXdexQsVa8zvalN+3pv4dIGpPTbpE1hEIIe4WQrzhcDji tNbPe73eXwGAw+F42P85rLCw0CWljLBYLPuVUvPi4+NjtdZHAPw2RJsmAIwbN66r1vplpdS0kpKS 6wDcr7U2AaC+9kLFNWbMmEghxAemac5yOBxdAXymtV5a+9jjx4/v5f/jnOJwOKKFEM+apvm7YLE2 oOwDSql0AMMDz0nt1+pwOMYCKC4pKYkUQnxRs72l4+3MpJQxSqldhmHMiY+PjxVCfOpyuZ6vVeTi e2UYhgbwmNb67/Hx8d3hu2T8vtfr/QmAQVrrVUOGDLEBdf8M1PX+1bzH9cUV6me5Ef4uhLinvmPV FWtTf9+a83eAqL10yh6638m8vLxdAGAYxita60f823Xtz0KIFK31loKCgk8KCgoAYL2UshTAv4Zq 2DTNyVrrzIKCgm8AQEr5/wC82sD2gsZltVpvAPCH/fv3HwYAh8OxNvC4+/btOwsgAfDdl6yoqDiu te4dLMYGlP28oKDgeEA1jeC0zWa7ZF9Lx9sZuFyuMinlxV663W6P27NnT5kQYorWelVubu6x3Nxc AFgrpfytlDLCX/TieyWlBICT+fn5H+Tn5yMxMfE1IcT+AwcOFPv3H4iLi+v6xRdfnK3r/Id6/6SU 3Wvia0BcoX7HGsRut5c7nc4436HqPFbIn7Wm/r6hcX8HQl5ZIWpLnTaha62/rvlaKeVB6BH/AwAs kVLOr7XNmpKSEul0OkM1P1AI8UXNN2FhYd+6XK4GtRcqLq11X/guo9ZFSCkXAVhSVlbWDf5L5U0s e7qeY9WpFeLt8Nxud0ywe+hBzqUCcMQ0zWj/95e8V0KIi/ecDcPwArhQa7erdtFQ578h719dcXk8 Hm8jfseCcjqdUQDO+w4V+lhut7uuWJv0+9aYdvbs2VPWmNdF1Fo6bUIXQoTqbQY6A+C/HA7HLwN3 SCmjglVQSn0lhBhS831lZWWsaV481XW1ZwsVl9b6jBBiWl2BJicnT/Z6vVOqq6sTCgsLy8eNGzfU NM2cJpZt6PkJqqXj7QxC3UPXWp8EMKLWJgPAMI/HU+ZP6jqgfIN6jHWd/4a8f3XFBSCiEb9jodwC 4E/1HaueWJv0+9aYdoiuFJ32Hno91KhRo6wAYLPZPgCwJCEh4RoAkFIm+geChRwtL4TYCWCplLL7 xIkTTdM0/6NmX1PaAwCXy7VPCPFT/7Q7kZiYOF1K+VTtMlrrGCHEhcLCwkr/Pb/faa3twdprTNnA c9IQLR1vZ+Z2u3cJIdKTk5MHwHcuZwPY53A4KpvTbl3nvyHvX2vFBUAkJSVdByDLMIxf13esumJt 6u+bX7P+DhC1NSb0IIQQv7fb7WVSyhj/5bTbhBBbpZTVAP7bMIzbUUcP1uFwlGitHwWQV1ZWdlRr nQ/gHAA0pT0AKCwsLDcMY6ppmq9KKcsBPADg32qXqaqqeh2ATUpZBeBtpdSv4OvVXPY+N6Zs4Dmp K87Wircz++ijj75TSt2htX5ZSlkuhLjZ7Xbf1dx26zr/DXn/WjquY8eOVUspPVLKSq31U0qpSTVT 1uo6Vl2xNvX3DWj+3wEi6ngMKeXixMTEkIPoiIiImqvT3kNvTVLKGCHEC1rr7wFwA9jUpUuXX7R3 XERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE RERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE RERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE RERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE RERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE RERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE REREREREREREREREREREREREREREREREREREREREREREREREREREREREREREdFUR7R0AEV19MjIy jJKSkjQACwEM0Fr/2e12P7FmzZqi9o6NqLMy2jsAIrr6lJaWZgsheldUVCTHxMR0FUI8ExYW9o8H HnjA0t6xEXVWZnsHQERXl8cff7yX1vrmzMzM6wFo/+b3ly5d+lj//v3DAFSlp6c/COA3AEyt9b+v XLnyuSeeeGKQUipdaz3RMIztWmu71nqiEOL5FStW/CY9Pd0VExMTlZGR4Wq3F0d0FWNCJ6JGEUKM APAa/pnMAQArV678EADS09NHAUirrq4ea7PZvEKI5x5//PHDXq+3CMB9AIa63e7+FovlPQBDT5w4 4QKAzMzMsLZ9JUQdCy+5E1GjaK0V6h5/M01r/au1a9eWZ2ZmVmmt/1sIcY9/35uZmZlVFovFW/P1 Sy+95G39qIk6PvbQiahRrFbrZ16vdzWAX9Tenp6evgDA2wBgGMbF3rthGEIpBQDQWpfXbK/9NRE1 H3voRNQoy5cvPwfgk2XLlj2ZkZERBkCkp6d/D8CTMTExXwF4W2v9i4yMDPu8efOsWutfANjZnjET dQZM6ETUaBUVFY8BiCwpKTmanp5eDmCux+NJysjI8GRmZhYKIf5YUlLyeWRk5Emt9e6VK1fWm9DT 09Nd/n8QqIGSkpJyx44d26+BZd9BPVOVpZR9pJRv+b/unpiYuKcFwmy0tjp2zTkJPJ6UMk1KWSKl /M+GxNLQeGufXyIioouklAXjx4/v38CyGg1L6J3makqocyKlPH/DDTfEtcLxWvX88h46EVEHIKXs rrXeJIQ4AmC2EOKQYRj37d+/v0hK+aK/jNvpdEZYrdZrLBbLZgCjhRBPa61/7nA43EHaezU/Pz8F AJKSkm7QWj8NIEoI8TiA/8jLy0sGgHHjxg0N1l5dMQFAYmLiCAA5QojRAJ4B8LNa9Wof+w6t9a8B DAOw3+PxzDx48OCpwHMQqtz48eN7eTye1fDlvLEOh2OIlPKFmnOilBoohHgpPz8/RUp5EECc1+s9 m5SUNEprXVQTS0vH29J4yZ2IqIMQQtwthHjD4XDEaa2f93q9vwIAh8PxsP9zmN1uNy0Wy36l1Lz4 +PhYrfURAL8N0Z4JAOPGjeuqtX5ZKTWtpKTkOgD3a61NAJBSRtTVXqiYxowZEymE+MA0zVkOh6Mr gM+01ksDjz1+/Phe/uSY4nA4ooUQz5qm+bvAWBtQ7gGlVDqA4QB07XNiGIar5ngOh2MsgOKSkpLI vLy8z2tiael4WwN76EREHcfJvLy8XQBgGMYrWutH/NtrZh1oIUSK1npLQUHBJwUFBQCwXkpZCuBf QzVqmuZkrXVmQUHBNwAgpfx/AF4FgAa0FzQmq9V6A4A/7N+//zAAOByOtcGOvW/fvrMAEgBg4sSJ ZkVFxXGtde8mlPu8oKDgeK3vdcDn2rTNZrtke0vH2xqY0ImIOgit9dc1XyulPACCPYp3AIAlUsr5 tbZZU1JSIp1OZ6imBwohvqj5Jiws7FuX6+ID/epsL1RMWuu+AD5rwMsSUspFAJaUlZV1A5DXxHKn G3CskFoh3hbHhE5E1EEIIYL1NgOdAfBfDofjl4E7pJRRwSoopb4SQgyp+b6ysjLWNC+mj7ras4WK SWt9Rggxrb5gk5OTJ3u93inV1dUJhYWF5ePGjRtqmmZOE8o15NyE1NLxtgbeQyci6hzUqFGjrDab 7QMASxISEq4BACllon8gWMgR8EKInQCWSim7T5w40TRN8z9q9jWlPQBwuVz7hBA/9U+7E4mJidOl lE8FltNaxwghLhQWFlb679f/Tmttb2q5YOeknjKtEm9rYEInIuoEhBC/t9vtZU6n0wBwmxBiq5Sy GsB/G4ZxO+rowTocjhKt9aMA8srKyo5qrfMBnAOAPXv2lDW2PQAoLCwsNwxjqmmar0opywE8AODf AstVVVW9DsAmpawC8LZS6lcARiAgfzW0XLBzYhhGl7pibY14WwPXQyeiyyxbtuxmrfUzAMK01j9Z uXLlrtr709PT7wHwUkC1f8vMzPw9cHG99LdiYmJm1Kye5l+05WkAgwH8MjMz8ykAWLx4cX+r1Tpu xYoVb9Q0FLgtWBlqN4aUcqHW2p6fn98mo7epYZjQiegSCxYsiLLZbAVa62Sv16tM09zr8XhuXr16 dWmw8osXL7aZpvl3i8Uycfny5RVPPvlkjMvl+iOA22NiYqIzMjJcGRkZ9pKSkmMAkisqKs5FRkY+ YxjG/3i93kEAEgHEGoZxfsWKFf+zdOnSGbW3KaUOBJZpq3NBPlLKGCHEC1rr7wFwA9gUHR39i127 dnnaOzb6Jw6KI6JLhIWFJQHYtHLlymIAWLZs2WqLxfI9AG8GK2+xWP5Ta/2vy5cvrwAAl8u10GKx PO71el+uKVNWVpYE4NeZmZk1D9f4IQBkZGQcLi4unmIYRqLT6ZwBAF27dn2r9raePXs6A8tQ23I4 HCUA7mjvOKhuvIdORJcwDKO/EOKTmu+VUkeEEAOClV24cGGcEGJK7UvymZmZv16+fPmXtctprUcA sKanp7+Vnp5+funSpYsBoLCwUBuGcU4p9VubzRYTbFuwMkR0OfbQiegyWuvay59qpVSw+cwICwv7 iWEY/9mA9mwAHrZarVMiIiKqS0pKNi1btuzmFStW7AXwm9pl/euj/yagicDviSgAEzoRXUJrfVwI kVxr0xAhxNchii8tKyuLb0Czx4UQT//f//1fGQCkp6dvAJAEYG8zwyUiPyZ0IrpEdXV1gc1m2/Tz n/98o1JKeb3exS6Xa1JgufT09FgARzZs2OAO0kygPVrr937+859vjYiIqCopKZmntV7d8tETdV68 h05El1i7dm25UmqO2+0+4PV6j2it/23NmjVFwGVrlvcDsK8hbWZmZl7QWi9wu90flpSUnAOQn5mZ ub+VXgIRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER ERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERER0RVDtHcA ACCl7G6apmvfvn2l7R0LXbm2bNkSWVZWVu/P7DvvvBPx0UcfdQeAQYMGFd97772lCxcurACgWz1I IqJ2YrZ3AH7LPR7PIQAr2jsQujKtW7fu2qqqqmmmWfePbHl5uXXnzp0/KykpGRQWFlb8gx/84Dem aRa/9957T0+aNMnTRuESEbU5o70DIKrPli1bIg3DmFBfOaWUWL58+aySkpJBFoul+pFHHsmKj48v bosYiYjaGxM6XdG01qKysvI2ALb6yq5ateqe06dPSwD69ttvz7n55ptPtH6ERERXBiZ0uqJt2LAh QQjRp75yzz777M2ffvrpHQAgpXzpnnvuOdT60RERXTmY0OmKtWbNmt5CCFlfue3bt1/397///UcA MHjw4F1z5szZ2frRERFdWZjQ6Yq0atUqm2mat2mt6xzVnp+f3/v1119P01obPXr0+Hjp0qUvGobB 0exE1Om0SEJPTEwckZiYeHGEupTyt1LKEinlf7VE+9T52Gy2CQCi6ipz4sSJ6C1btiz2eDwRUVFR p9LT0zeGhYWpNgqRiOiK0uyEftNNN4UDeEIIYQJAcnLyOAAV0dHRcQC6JCYmDmnuMajNCQBxaPy0 xpp61lrbrP5ttXvafQD0qvW9BUAygBgA2LBhwyi32z24pKQkUikVtIdeXl5uzcrKml9VVdU9LCys NDU1NSsuLs7p9XqNwHoXLlyI/uEPf1jvfXgioqtZs+ehV1dXZ9hstn91uVwZAOD1epMtFstzu3bt 8iQkJDxtsViSAHxRu86QIUNsXbp0ubfWpoEAOIjpyjEdvoTrAvAn/+eGmAZfsnb76wkAP4AvqZ8C sAPAJAAz/eX/CGAXgPUAhgFwTZs2bbHT6bzl4MGDSUopS2RkZPHo0aM/qX0QpZTIzMx8rLi4eLBh GO6HH344a9iwYRdcLpd54MABqZSyRERElI4ZM+bjzz//fPDRo0dTvv3229EAXgCwvclnhYjoCtas HnpSUtLDSql1paWl5TXbhBBxQogSAFBKlWituwbWi42NjRJCvFDr46bmxEEtygqgJ4DzAMIAdG9g PRO+fwLO+9vo7m/H9G/rA19PPAXAWQDnANwMIBzAYADfmKZp7d279+ySkpKuSimL3W4vr6ysjPF6 vZf8nGZlZd158uTJGwDoqVOnbkpJSTkOACUlJVE19aqqqqLcbrflzJkzg61Wa4UQ4hv/8YiIOqRm JXSt9X9aLJbDdru9EsBiKWWa1rrI7XZHAYBhGDE1yb02r9dbKoQYX/OhtX6nOXFQi3ID+BK+y+Sl 8CXehvAAOOavVwZf0j4DoBxALIAjALwA3vJ/383/dRWAPAB9Ro8ebb3++uu/6datW6nVanVWV1dH xsTEfGuxWC7eF9+6dev4wsLCOwEgISHh5fvuu6+gZl9sbGxpWFhYVXV1dWSXLl2KrFar99prr/3Y 6/XatdY9APyt6aeFiOjK1iLPch8yZIgtJiZmhcPhWJicnDxOKXWHw+H436SkpF8qpZ7Nz8//tK76 UspnABxyOBx89OuVIwK+ZNvYEePhAJy16gkAdn9btdsGgMqaDT/+8Y9Txo8fP7omeSulhMvlMu12 u7umzI4dO4b++c9/Xqq1Nq+99toPnnzyyecCR7QrpUR1dbU1PDz84m0Cp9Np3bx583MHDhzgU+OI qMNqkVHuNptNw9f7Qm5u7kGtdVcpZZnWWtWXzOmKVYmmLWYS+E+AxqXJvKbti8k8Ozs75qabbhpW uyduGIauncwPHTrU85VXXpmvtTa7d+/+6bJly54PNj3NMAxdO5kDgN1ud2dmZpYHliUi6khaZHGW wsJCF4Al/m91fn7+kwCebIm2qWPbtm2bpbi4eAouHRl/iTNnzkRu3rx5scfjiYyMjDy9ZMmSDTab zdvQY2itve+//36LxEtEdKXig2U6FwFgBIDJ8N3Dbmk9AEwFMLShFYqKim7UWseF2l9VVWU+9dRT aZWVlT2tVmvZnDlzsnr16lUJACUlJZGFhYXDv/76696hprcppTxWq/VvGRkZXGmNiDo0JvTOpTd8 I71j4Eu8LTKGws/wtxkN4Fb4BsfVaePGjYMMwxgVar9/9bQfXbhwYZhhGO4HHnhg7ciRI8/X7Dty 5MiI6urq8G+++WZwcXHxZQ+hUUq5TNN8c/bs2d80/WUREV0dmNA7FwO+e9oKLZvMawh/27q+9jdt 2hTt8XjqXBJ13bp1d5w8efJGAJg4ceIzEyZMOFZ7v9ZaCCF0zdcB+5xer/f1uXPnnm3C6yAiuuow oXcu3wBwAKgG8C6aNugtFOVvsxrAP+Cbex5URkaG4fF4JhuGERaqzIsvvph06NChewBg7Nixrzz0 0EN5tfcbhqEHDx78mcVi8fTu3furbt26lV0MRKmKqqqq1xYtWlTU3BdFRHS1aJFBcXTV0AAO+j9a wxk0YK53v379blBK9Qy1/7333ovftWvXLAAYOHDg3rS0tKBPd4uNjS2LjY39uPY2IURpWFjYm/Pn zy8LVoeIqKNiQqc2lZWVdY1Sakyo/Z988kn3P//5zwuUUmZcXNzny5Ytu2yueShKqWLDMN6YPXt2 Zf2liYg6FiZ0ajNr1qyJMk1zYqj9Z8+ejcjJyVnsdrujIyIizi5YsCAnPDy8QaPThRBFdrv9zVmz ZjlbLGAioqsI76FTm8jIyDBM05wCwBZsf3V1teWpp55Kraio6G21WiumT5/+zqlTp0YePnx4UH1t a63Pdu3a9XUmcyLqzJjQqU3069fvBvgWa7mMUkr8/ve//2FRUdFwIYRnxowZW2JiYjw2m63yu+++ 6xW4OEtA3W+EEH998MEHG7oiHBFRh8SETq1u3bp119Z133zDhg3Tjh8/ngIAEyZM+MOkSZMKhRCq uro6Mjw8vLz2I2Fr01p/ffbs2e2pqanuYPuJiDoT3kOnVrVp06Zol8s1MdT+P/3pT4kFBQX3AcD1 11//+iOPPLIfABISEvLKysoiak9Hq01r/eWZM2fezcjICJrsiYg6G/bQqdVs27bN4vV6p4Sab757 9+5r33333Z8CQP/+/fctXLjwzZp9YWFhnri4uNJgI9yVUl8wmRMRXYo9dGo1RUVFNxqG0SPYvs8/ /zzupZdeWqiUssbGxh5ZtmzZloZMT9Naf5aWlvZBzRPiiIjIhz10ahXZ2dmDQz2nvaioyL5hw4ZF LperS0RExLlFixati4yMrHd6mlKqkMmciCg49tCpxWVmZnbVWt8qxOWPc3e5XMaKFSvmlZeX9zVN s/InP/lJVr9+/Soa0OzB+fPn72v5aImIOgb20KlFvffee2Z4ePgUIcRl65srpcSKFSsePn/+/Cgh hPfee+9dN3bs2HoXT9Fa56empjKZExHVgQmdWtThw4e/J4SIDbYvJydn8pdffjkBAG655ZY/Tp06 9XB97SmlctPS0vLqK0dE1Nnxkju1mPXr148EMDTYvr/85S9jHQ7H/QAwYsSIv86cOfPD+tozDOMf qamph1o4TCKiDok9dGoR69at6ymEuDnYvr179w58++235wAQffv2zVuyZMlr9bWnlNo7d+5cJnMi ogZiQqdm27x5s90wjCkI8vN05MiRbs8///xCpVRYTEzMsZ/97GfP1Dc9zTCMD+bPn/9xXWWIiOhS TOhXJxPAVAAPAah38ZJ6xAH4AYB7AET7t40E8AiACQAuH6pei9ZaVFdX3wYgKnBfUVGRff369Ytc LlfX8PDw84sXL14bFRV12WNaT5w40Ss3Nzf5k08+GVZdXf33uXPnftrA2IcAeBjAbQAsDaxDRNQh MaFfna4B0AdAJYCbmtlWMgAvACuABPj+WZAAygBcixALqtTYuHFjkhCif+B2l8tlrFy5ck55eXl/ 0zSrfvSjH2UNGDDgsse4er1e45tvvhlktVqrd+/efX7JkiUlDYzbAHAjgHIAAwD0a2A9IqIOiQn9 6lQCIAxADIDSZrZ1wd9ODIAi+JK70/+9Bb6EGVROTs41WuuEYPtWrlz5wLlz50YLIdRdd921Xkp5 Olg5i8WirFZr9T/+8Y9jBQUF38L3j0RDKH9sMfD9M9Lc80BEdFXjKPer03kAr8F3ufxYM9tywJfI FYDjADSANwHEAzgNIOhDX7Kzs2OUUpOC7cvJyZl09OjR2wDgpptu2jp9+vTPQh1cCKHj4uLWFBQU aABn0bjEvB3AYADnABQ3oh4RUYfDhH71Ouf/aC4vgKMB2yoBhByUlp2dbQUwTWt92aIrr7322ujc 3NyHAOC6665768c//vEHodpRSmnDMHb++te/Djx+QzkBFDaxLhFRh8JL7tRoQogJALoFbt+3b1// 7du3zwUg+huF2qgAACAASURBVPTpU7B06dK/hGpDKaW11u+mpqY2NZkTEVEtTOhXh3D4RnIHfQJb I8XCN4q9se99VwDXL1++XGqt4wGgtLQ0oqysLBwAjh071nXr1q2LvF6vrUuXLseXLVv2tGEY2ul0 WouKiroopS6Olq9J5gsWLGju7QIiIvLjJfcrnwXAswB6AKgGcD98g+KaoheA//F//TmA3zWwXk8A v+rbt2+Uw+GwT5w4cfvx48f7nD59Oh4A4uLivtywYcMsp9PZzW63X1i4cGFWly5dXFVVVWGHDh1K BCDCw8NLx4wZU8hkTkTUOthDv/J1h69XfQq+ke1BlyRtoBHw3TM/Bd+gt4a+/8O7dOkSdtNNN0VU VVV193q9RklJSZzNZis3TbNqy5YtM0tLSwdaLBbnzJkzV1977bWlAFBaWhoFQNhstoqqqqpoj8cj bDYbkzkRUStgQr/ynQVwEEBv+BJxcxYqyYdvFHkfALvhG9ler9GjR3+UkpLSTSnVLS4u7ojFYlF9 +vQ56Xa77e+++27KuXPnBgsh1Pe///0NycnJ39TUi42NLQkLC6uqrq6OiIuLO22a5js//elPmcyJ iFoBL7lfHZbC10u/0Mx2SgE8CSACdcwvDyAWLVqUrJT6q9PpDIuIiKgGgB49ehS/8cYb9mPHjl0P AOPHj3/hzjvvvGTEudVq9SYkJBxwu90Wu92+Y86cORwAR0TUSthDv3o0N5nXqHkgS4OsX79eArjW MAxdk8wB4M033xy5b9++hwFg6NCh78yaNev9UG2YpvnOnDlzvmhO0EREVDcmdApp7dq18UKIxMDt ubm5fd98881UrbXRq1evg0uWLPlzqDa8Xu/7aWlpR1o3UiIi4iX3jiMSwHj4RsLn+T8HEgDGAOjr L/NtqMays7O7CyEmaq2hlBLHjx/vV1ZW1tVisVx49tlnF3m9XnuXLl2+Tk9P3xQWFhb0XrxhGB+k pqZ+HrA5HL7nxwNALoCqRr1KIiIKij30juMm+B4Fey2A0SHK9IVv4RUbfPPag66klp2dHaGUul1r bQLAhQsXupw9e3ZgVVWV/ZlnnlngdDrjwsLCiufPn7+mW7duwf5xqFnPPNiqaUn+OGpiISKiFsCE 3nEo+N5PC3xT00KVEf5yQdck37ZtmwXANMMwImu2CSG01tp48803J5eWlvawWCzVP/zhD7Pi4+OD Pj9da72vjvXMvbXi9DTkhRERUf14yb3j+BC+5U9dCP0c9jMA9sDXOy5AkKReVFQ0wTCMS5ZM7dat W9nevXuvPXv2bDwAffvtt+fceOONJ0IcIy8tLe1gHXE68M9/OA7UUY6IiBqBCb3jqAKwt54yGsBn /o/LZGdnJwIYErj9ueeeu/nw4cPfA4Dk5ORt99xzz6EQ7R9MTU3NryeGagD76ilDRESNxEvuBADI zs4eDN/97Uts3759+J49e2YCwODBg3fNmTNnZ7D6SqnC1NRUJmoionbChE7YuHFjL631xMDt+fn5 vV9//fVUrbXRo0ePj5cuXfpisPqGYRyeP39+fVcHiIioFTGhd3KbNm2K1lpPE0JYam8/ceJE9JYt WxZ7PJ6IqKiok+np6RuDTU/TWn956tSp3QgxyI6IiNoG76F3YqtWrbK5XK47DMMIr729vLzcmpWV Nb+qqqp7WFhYSVpaWlZcXJwzsL7W+mRsbOzOtLS0Bj0TnoiIWg8Teie1bds2S3Fx8VStddfa25VS YsWKFT8uLi4ebBiG6+GHH14zdOjQ7wLra63PXnfddW9PmjQp1BQ5IiJqQ0zondR33313K3zT1y6R lZV116lTp5IB6KlTp25KSUk5HlhGa33B5XJtnzRpEueRExFdIXgPvRNav359EoChgdu3bt16Y2Fh 4QwASEhI+PN999132TxxrXWZEOKvS5YsCfqEOCIiah/soXcya9asGRFswZUdO3YM3b1792MAMGjQ oN3z5s17J7CMUqoqOjr6zZkzZ1a2RaxERNRw7KG3njD4nqk+GP88zzHwzfXu3h4BZWdnDywuLr7z 2LFjA6qqqsJqth86dKjnK6+8Ml9rbenevfun6enpLxiGccmoda212zCMv82cObO07SMnIqL6sIfe em4G0B++hVAsAI4CuBO+x56OBvAC2nClsXXr1vUsLi6+98iRI6NN06wuLi7unpiYWHDq1KnIzZs3 L/Z4PJGRkZHfPP7449k2my1woJuyWq1vzZ49+3xbxUtERI3DHnrriQZQDqDS/7Xp/yiHb862ra0C yc7OjhFCTHc6nZGGYXitVmu11+u11kxPq6ys7Gm1Wsvmzp2b1bNnz8v+yfB6vTtnz579TVvFS0RE jceE3nr2wpe4LwAohO8Z5rkAIuBbPCXoSmUtLTs7OwLADCGEvUePHt916dLlvNfrNQcMGHA0MzNz 5oULF4YahuF+4IEH1o4YMaIosL5Sau+CBQuOtUWsRETUdLzk3nqKALwasO0T/0eb2LZtW9iFCxe+ L4SIAgCLxaJGjBhxBACysrJmnDx58kYAmDx58tMTJky4LGlbLJYDqampoVZuIyKiKwh76B1URkaG WVxcPF0IERu478UXX0z+6KOP7gaAsWPH/uX++++/bIU0pdQXc+bMyW2LWImIqPmY0DugjIwMo2/f vpO11r0D9+3cuXPwrl27fgIAAwcO3JOWlvZWYBml1Ddnz57dBT6fnYjoqsFL7m0rCcBwACcAtNaC JqJPnz4TtNbXBO746KOPer388suLlVJmbGzsl8uWLdsaOD0NwHdxcXFvz58/v/bz2U0Ak+GbbpcP 4NMQxx4NYCyAMwB2AuAz3omI2gh76G0nHMAo+AbDDQLQrTUOsmHDhpsQ5ClwZ8+ejdi8efNit9sd HhkZ+d3tt9++N3B6mta60uPx/O3BBx90BVTvB6AXgBL4/ikJ9nNjAhgH3+vr7y9PRERthAm97VQD cAKIha/nWtHSB9i4caPUWl8fuL2qqsp86qmnUisqKnpYrdbqKVOmvNu1a9fi2r1zpZRHCLF94cKF 5UGa/g6+hN0NvoQdrOftgW9KXjcAAgAfQENE1IZ4yb3tKACvwdd7PQ1fgm8x2dnZo5VS8rKD+lZP e7SoqGi4EMJz9913Z48cOfLbnj17XqgpI4TQXq/33fnz54d6cEwpgJfhu+T+dR1h/BXAAADfohX+ YSEiotCY0NtWFYAjLd1odnb2cAA3Bdu3YcOGaV9//XUKAEyaNOmZadOmFQaW0Vr/Y9GiRZetqhag GPXPna8G8EUDQiYiohbW3EvuQkq5Skr5nZRycc1GKeVvpZQlUsr/amb7VI/s7OzBAG4Ntu9Pf/pT YkFBwX0AMHr06NceeuihYNPQPklNTf2oNWMkIqLW16yEnpiYeIvWen98fHx3AKMTEhJ6JCcnjwNQ ER0dHQegS2Ji4pAWiZQCRT/00EM3ejyeKYDv0npRUVGXkpKSSADYvXv3oHffffenANC/f/9/LFiw 4K+BDWitT54+fXpv24ZNREStoVmX3PPz8z8A8EF+fr4hpYTL5aoSQiRbLJbndu3a5UlISHjaYrEk IeAy7E033RTucrnm19p0HYBDzYmlk4kZNmzY7IiIiOs//fTT0tGjR3/y1Vdf9T937twA+Aakndu2 bVuqUsoaGxt7ZNmyZX8MnJ6mlCqOi4t7Jy0tjVPLiIg6gJa4hy6klKeFEPtGjhxZdezYsTghRAkA KKVKDMPoGljB6/VGAPj9xQaEcGqtX2qBWDqFyZMnjxw4cOAIu91eWVVVFQ0ApaWl3Ww2W0V5eXn4 X/7yl5+43e7oiIiIc4sWLVoXGRnpCWii2u12bw8yPY2IiK5SLTFtTTscjl4A1h09evR+rXWR2+2O AgDDMGJqkntt11xzTbHH4+lf86G1fq0F4ugUNm7c2Ovuu+8ebbPZXNXV1RG9evU6AQD9+vX72ul0 Rvztb3+bWlFR0d00zYpZs2at7tevX+Boc+VyuXYsWbKE08qIiDqQZvXQk5KS7ldKlefn57+llIoT QpQbhpGrlHoUwP9aLJYfKqWeDaz30ksveQGcqvleStlm64JfzZ5++ukeHo/nDrvdjoSEhINer9ew WCwKAOLi4ko2bdo0uKioqL8QwnvvvfeuGzNmzLnANjwez57FixdzKVQiog6mWT10rfWrAB6VUlYK IW6Ij49/PTc396DWuquUskxrrfLz80M9JpQaITs7u3t1dfUMrXVYzbaaZA4AGzZsmPLll19+DwBu vfXWLVOnTr1sepxSqnDhwoV8P4iIOqBm9dAdDocbwGP+DzgcDgBAfn7+kwCebG5w5JOVlRUHYIZh GGHB9r/88svjCgoKfgAAo0aNevPRRx/9R2AZ/4IrH7ZyqERE1E746NcrXE5OTqxpmjMA2ILt37Nn zzU7duyYDUD069cvd9GiRa8HltFal9nt9ncyMjKulhHtAkAigHvge7IeERHVgwn9CrZ27dpuHo/n TiGEPdj+I0eOdHvhhRcWKqXCunbtenTZsmV/CJyeJoTwmKb51qxZs5xtE3WL6AHfqm0KwATw55SI qF78Q3mF2rx5c1chRMhkXlRUZF+/fv0il8sVEx4efn7RokXroqKi3IHlPB7Prjlz5lwI1sYVzA3f z6YNvqTOddmJiOrBZ7lfgTZv3tzV6XTeZRhGeLD9LpfLWLly5Zzy8vL+pmlWPvbYY6sHDBhQFlhO KXVgwYIFx1o/4hb3HYB34Vvo5WMwoRMR1Ys99CtMfckcAFauXPnguXPnRgsh1F133ZWdmJh4JrCM EOJEWlpasGe3Xy2+AvABfMmdiIjqwYR+BWlIMs/JyZl09OjRSQCQkpLy7PTp0z8LLCOEKHU6nTuF EOzZEhF1EkzoV4i1a9d2c7vddSbz1157bXRubu5DADB8+PDtP/rRj/YElhFCeAzDeHvJkiUtut56 CHZcPvo+Gvy5IiJqc7yHfgXIycmJ9Xg8d2qtgw6AA4B9+/b13759+1wAok+fPvmPP/74K8HKaa3f b6NBcNcCmOj/+h0AJ/3fXwPACeAvAPiseCKiNsKeVDurSeahRrMDwLFjx7pu3bp1kdfrtcXExHz1 xBNPPB04PQ0AtNYfpaamHm3diC8aCd/97RIAI+D753AggCIA4fBNPSMiojbChN6OsrKy4upL5t99 951t3bp1C51OZze73V60YMGCNcGmp2mtT585c2Zf60Z8iU8BxALoCuBzAB74eund4euhf9uGsRAR dXq85N5OsrOzuwMI+QQ4wDc9LTMzc3ZpaelAi8XifOyxx7Kuvfbay1ZJ01pXCiHebeMnwX0J4Cx8 U8pqFtfZCSAGQDkAbxvGQkTU6bGH3g7WrVvXUyl1J+pI5gCwatWqH5w9e3asEELNmDEjW0oZbJU0 5fV630lNTa1snWjrVIl/JvMaJWAyJyJqc+yht7E1a9b0FkLcIYSw1lVu8+bNE44cOTIFAMaPH//8 jBkzPglRdN/ChQsvm4dORESdC3vobWj16tV9DcP4fn3J/I033hi1b9++hwFg2LBhO2bNmrU7WDmv 13ssNTX1o9aIlYiIri7sobeRjRs39tdaT9Na13nO9+/f3++vf/3rPK210atXrwOLFy9+OVg5IUSx xWJ5v3WiJSKiqw176G0gOzt7oFJqen3J/Kuvvury3HPPLfJ6vfYuXbp8nZ6e/nRYWNhlA92EEB6P x7MjNTX1stHuRETUOTGht7KNGzcOAjAN9Zzr0tLSsLVr1y50Op2xdrv9u/nz56/p1q1b0Ke9KaU+ WLBgAZ9xTkREFzGht6KcnJwhHo9nCuo5z0opsWLFilklJSXXWiyW6kcffTQrPj6+OFhZr9f7aVpa 2pFWCZiIiK5avIfeStauXXud1+udYBj1/8+0cuXKfzl9+nQiAD19+vSN48ePPxmsnNb6fPfu3fe2 dKxERHT1Yw+9ZRkAsH79+pEWi2VCQyps2bIl5fPPP78dAJKTk1+8++67P1JKCaWUqF3O6/W6XS7X Ow8++CDneBNRhyCl/E1iYuLC9o6jo2APvWXYAUwHEDVz5sxSIUTvhlTavn378L17984EgMGDB783 Z86c97799tuuX3311TAhhBo+fPjHUVFRzsOHDw/avn37ucLCwhsB7IDv6WxE1MlJKYMtgPQXh8Px UJsHUwcpZXet9av5+fkptbZZAUzNz8+/oSltTpw40SwrK6v9QC0ngA+VUukFBQWhntvR6pKSkt7J y8ubinb4O82E3jIGAYiaMmVKd7vdPgFAbn0VHA5Hn9dffz1Na2307Nnzo6VLl24DgJMnT15jtVqd Xq/XeurUqX6DBg06XlBQ4CksLDwCoC+AOADnW/XVENHVwup2u6MOHTpU0d6B1MXhcJwHkBKwzQ0g qZlNW6Ojo627du3yADCSkpJGGoaxJzk5eUxubu6JZrbdJFrrye1xXIAJvaV8O2HChBEDBw7sGxER Ue/o8xMnTkT/8Y9/XOTxeMKjoqJOLl26NKdmelpUVFRJUVFRXwCiS5cuJaZpnn7//ffPwZfIFYCy 1n0pRHQ1iYyMDLmGQ3Jy8iil1GoAEsCzYWFhT3z44YdV48eP7+XxeFbDlwPGKqVuNAxjOYDPAPwc wNsAFgLIAXCrEOKJvLy8p2vaTUpKukNr/WsAwwDs93g8Mw8ePHgKABITE0cAyBFCjAbwDICfAYip 3UMPFZe/J79JCHEEwGwhxCHDMO7bv39/UajX2KNHj5qesMrLy/tYSjnP6/VmAJhd17FCxer/RwPj xo0barFYNgMYLYR4Wmv9c4fD4a4rRinliwAgpXQ7nc6IwsJCV6h26ntfm4L30JtPZGdnD7/rrrvO DRo06LPhw4cfrqtweXm5NSsra0FVVVX3sLCwkrS0tKy4uDhnzf7BgwcfHzx48CfXXXfdwV69en2j lNrh9XpfA7ALwJ8ABJ3KRkRUm5QyRim1yzCMOfHx8bFCiE9dLtfztYo8oJRKBzDcvxzzY1rrv8fH x3cHIAC87/V6fwJgkNZ61ZAhQ2wAMH78+F7+ZJ7icDiihRDPmqb5OwAYM2ZMpBDiA9M0Zzkcjq4A PtNaLwUAIYTZkLiEEHcLId5wOBxxWuvnvV7vrxr50v8uhLinvmPVFauUMsJisexXSs2Lj4+P1Vof AfDb+mJ0OBwP+z+HFRYWuuprp6Wxh94MGRkZRq9evW4FMCw6OroqOjo6cKGSS/inp/24uLg43jAM 18MPP7xm6NChl/ToDcPQPXr0KPaX37Vw4cJy/67jrfMqiOhq5nK5yqSUF3vpdrs9bs+ePWVCiCla 61W5ubnHcnNzAWCtlPK3UsoIf9HPCwoKjgOAlBIATubn53+Qn5+PxMTE14QQ+w8cOFDs338gLi6u 6xdffHF23759ZwEkAL772BUVFce11r0BwGq13gDgD/v37z8MAA6HY62/fvea+BoQ18m8vLxdAGAY xita60cacz7sdnu50+mM8x2qzmMFjdUfY4rWektBQcEnBQUFALBeSlkK4F/riVHX/lxPOy2+OiYT ehNlZGQYffv2vU1rHd/QOqtXr7771KlTyQD0tGnTclJSUkImacMwDqWmpn7VAqESUQfmdrtjgt1D 11r3he8Seg0F4IhpmtH+70/XLi+EuHjP2TAML4ALtXbXHnwnpJSLACwpKyvrBiCvjmNepq64PB6P V2v99cUdSnkAWOpqL5DT6YyCb5yRrutYbre7rlgHAFgipZxfa5s1JSUl0ul0ohExhmxnz549LX77 lAm9CTIyMsy+fftO1VoPaGidrVu33vjJJ598HwCklH/6l3/5l4N1FD936tSp/c0OlIg6vFD30LXW JwGMqLXJADDM4/GU+ZO6DijfoB5jcnLyZK/XO6W6ujqhsLCwfNy4cUNN08zxt3FGCDGtrvp1xQUg QgjR3NHht8B3e7LOY9UT6xkA/+VwOH4ZuENKaWtEjCHbaQ28h95I2dnZ1r59+05vTDLfsWPHsN27 dz8GAIMGDdo9Z86cd0OVVUq5TNN8NyMjo8UvxxBR5+F2u3cJIdKTk5MHABCJiYmzAexzOByV9dWt i9Y6RghxobCwsNJ/j/h3Wms7ALhcrn1CiJ+OHTu2n/+Y06WUT7VFXABEUlLSdQCyDMP4dX3HqitW m832AYAlCQkJ1wCAlDJRSnkQvrEF9VGjRo2ytkA7jcaE3girVq2yAZjhv4zTIAcPHuz1yiuvzNda W7p37164bNmy5/0DUIIyTfP92bNncyQ7ETXLRx999J1S6g6t9ctSynIhxM1ut/uu5rZbVVX1OgCb lLIKwNtKqV/B1ws2CgsLyw3DmGqa5qtSynIADwD4t9aM69ixY9VSSo+UslJr/ZRSalLNlLW6jlVX rP7L4bcJIbZKKasB/LdhGLejAXPLhRC/t9vtZVLKmOa00xSt8l9CY0kpnwFwyOFwrGjvWELZtm1b +IULF2YIIWIbWufUqVORy5cv/0VlZWXPqKiob/793//9f2uPaA+klCqcP3/+npaJmIiIOhPeQ2+A NWvWRPmTeUxD61RUVJirVq1aUFlZ2TMsLKx03rx5WXUlc631+bi4uH+0TMRERNTZMKHXIzs7OwbA DABRDa3jn572WHFx8RDDMNwPPPDAmuuuuy7kgxG01m4hxLt8TjsRETUV76HXIScnJ1YpdTcakcwB YM2aNTNOnjw5HgAmT5789K233vpVXeVN0/wgNTW1pOmREhFRZ8ceegjr1q3r6Xa7v28YRlhj6m3d unX8xx9/fBcAJCQkvHz//ffn11VeCPH5nDlzvmhkeBYANwPoAWA/gKDLrbYgA8CNAPrA95z6r+su TkREbY099CA2bdrUF8CdjU3mO3fuHFIzPe2aa675+7x5896uq7xSqnjo0KFNGQQ3EEA8ADeA7zWh fmP1he+ZzS745nheEYMpiYjon9hDD5CTk3ON2+2eYhhGo55OVFhY2OPll19eoLU24+LiPvvZz362 ta7paVprr9VqfWfSpEmeJoRZCcAKIBJAnY+bbSFV8P2sRMD3LHku30pEdIVhQq8lJydniNvtnmQY RqN6oGfPno3IyclZ7Ha7IyMjI08//vjj2Tabrb4Bbh/OmTPnQj1lQh4SvtWQegJoi3V/iwC8BaA3 gE/b4HhERNRITOh+69evH+n1em8xjMbdhaiqqjJXrlw5v7KyspfVai2bM2dOVq9evep84pHW+su0 tLTmJuKv0bb3sk/4P4iI6ArEhA5gw4YN47TWNzS2nn962g8vXLgwzDAMzw9+8IO1I0eOPF9PtXKX y7W7iaESEREF1ekTenZ29nit9dim1F2/fv30r7/++mYAmDhx4jOTJk06Vld5pZQ2TfPdJUuWcE1z IiJqUZ02oWutRU5Ozi1KqRH1l77cSy+9JA8ePHgvAIwZM+bVhx56KLcB1fLmzp17tinHIyIiqkun nLaWkZFhZGdn39bUZP7+++/H79y586cAMHDgwA/nz5//t/rqKKW+SUtLO9CU4xEREdWn0/XQm7KW eW2ffvpp3EsvvbRAKWXGxsYeXrZs2bN1TU8DAK210zCMnS2wzi8REVFQnSqhb9u2Lay4uHi61rp3 U+qfO3cufOPGjYvdbnd0RETEuccff3x9eHh4vfPIhRC7UlNTm7vWLxERUUid5pL7ihUrwi9cuHBn U5N5dXW15amnnkqtqKjoY5pmxaxZs1b37t27or56Ho/n49TUVD4qlYiIWlWn6KGvWbMmymKxNGr5 09r809MeOX/+/AghhPfee+9dN2bMmHP11RNCFPXo0WNfU45JRETUGB2+h56ZmdnVNM27m5rMAWDD hg1Tv/rqq+8BwK233vqHqVOnHqmvjhDCU1FRwSVRiYioTXToHnp2dnZ3rfX3Adib2sbLL7+cUFBQ cB8AjBo16o1HH320QT1uj8ezJz09vbipxyUiImqMDpvQs7Oz+2itpwshrE1tY8+ePdfs2LFjNgDR v3///YsWLXqjIfW01kcXLFjweVOPS0RE1FgdMqFnZ2cP1FpPFUI0asW02g4fPhz7wgsvLFJKWbt2 7Xo0PT19S33T0/zKY2NjP2jqcYmIiJqiw91Dz8nJGaKUur05ybyoqMienZ29yOVydQkPDz+/aNGi dVFRUe766imltGEY7z744IOuph6biIioKTpUD33Dhg2jvF5vSmNXTKvN5XIZK1asmFdeXt7PNM3K xx57bPWAAQPKGlLXMAwHH+1KRETtocP00LOzsxO11inNacM/Pe2h8+fPjxJCqLvuumt9YmLimYbU 1VqfnjdvXkFzjt+OLOhAPwtERJ1RR+ihiw0bNtyktb6+uQ3l5OTc9uWXX04EgFtuueWP06dPb9DA NqWUSyn13lX6aNd+ACYBUADeAlDUvuEQEVFTXNUJPSMjw+jXr9+tSqlhzW3r1VdfHeNwOB4AgBEj Rvxt5syZexta1zTN9+fOnVve3BjaSQKAMvh66WMB7GzfcIiIqCmu2susNYustEQy37t374C33npr DgDRp08fx5IlS15taF2t9Wdz5879srkxtKOvAMQB6Or/moiIrkJXZQ9927ZtYRcuXLhda92nuW0d O3as6/PPP7/I6/XaYmJijj3xxBObGzg9DUKI4mHDhjW4J3+F+hjAGQBeAN+1cyxERNREV11C9y+y cocQ4v+3d//BUdf5Hcdfn+83P0uioYkCcRTJiY4wpWa/Cx5q5Rg7551453gFqjieRdcEQkUutnO9 zrTSXmd6nRtPipxcPZUyAm2H1qsjI1716MLpcSbZVRyF8ZREBRK0QEj4kZ/7/fSPkE7KQcxmN3zz XZ6PmZ1hN/v97GtCZt77+Xy/n++7ItOx2tvbC9evX/+nvb29ZcXFxUfr6upGtD3tDN9au2P+/Plf 2G0tBI4EHQAAkJmMCvqiRYvc5ubm9ZLukbSpqqrqka1bt6Y8z/uBpOWSnkgkEn+bjaBS5k1Whjqz PS3WKax6hgAADTxJREFU2dl5peu63ffff/+6q6++ujONId6qra2lEAIAxoWMzqG3tLTcbq3dnkgk yowxe/fv3z9v9uzZN0g6VVpaWi7pkkgkck02gm7YsKEsPz//rmwUc0lau3btws8//3yWMcZfsGDB TzzPax3psdbag7W1te9lIwcAANmQ0Qy9qanplcF/W2vfcRwnL5VKzXZdd3M8Hu+vrq5+3nXdqKSP hh43a9asCfn5+X8z5KUbJL17vs9Zv3795T09PV8zxoy6ycpQzz333Fc+/PDD2yRp7ty5WxYsWLBv pMdaa7uNMXFJYdyiBgDIUVk5hz5z5swSa+2KRCJxn+d5XzbGdEiS7/sdjuOUnf3+oqKiolQq9djg c2NMt7Xnr4+O48xTBh3Thtq2bdvMhoaGeyTpuuuu+68HHnggrfuuG2PitbW1p7ORBQCAbMm4oHue VyHph6WlpUs1cKHY0b6+vhJJRx3HuXSwuA/V0NBwTEOW+z3P2zDcZxhjzHAFf6QaGhqueOWVV2ok mcmTJ7+9atWqF9M53hjzXk1NzacZBwEAIMsyOod+Zmb+eFVVVSwej3dLkuu6jY7jLJHkuK57n+/7 75zjUHvWY8y1tLRcunnz5kdSqVTRJZdc8smqVatGvD1Nkqy1x8rKykbUCx0AgAsto4JeVFT0HWNM XXNzc5fneb2RSOS+xsbGPdbaMs/zTlhr/WQyOeLz02Olvb298Omnn17R3d09saioqL2uru7HEydO 7Bnp8dbaVF5e3o7FixenxjInAACjldGSeyKR+L6k75/9ejKZ/K6k72Yydrb4vm/WrFmztLOzc6rr ut1LlixZN23atN86DTAcx3F+HYvFjo1VRgAAMhXaW7+O1Jo1a751+PDhakn2jjvu+OmNN954MJ3j rbWf1tTUvD9G8QAAyIrQ3SkuHRs3bvyDDz744KuSNGfOnH+9884709o77vt+V1dX186xSQcAQPbk 7Ax9+/bt1+/evXuJJE2fPv0XDz30UDzdMXzfj9fX13dlPRwAAFmWkwU9kUhM2bZtW6211rn88svf Xbly5b+nO4Yx5r0VK1YcGIt8AABkW84V9AMHDpS+8MILj/T39xeXlJQcqK+vf7agoMBPZwy2qAEA wianCvrJkyfzn3rqqbqurq7ygoKC48uWLUtre5rEFjUAQDjlTEH3fd888cQTf9LR0VHlum7Pvffe u2769Olp9/c+evTo27FYzEgyWYg1TdKkLIwDAMCwcuYq97Vr197V2toalWRvv/32Z2+66aa0z38f Pny4/fHHH/99SbMkfSjpzQwi/bGkr2rgS9M/SjrXHfMAAMiKnJihb9q06aZ9+/Z9XZI8z9t61113 nbdz2/kYY7qeffbZjyX1Sjoi6coMY3mSDkk6Lml2hmMBADCs0Bf0V1999bo33njjfkmaNm1aPBaL 7RjNOH19ffEDBw7sldQvaaKkTPudb9fAcnuhpNczHAsAgGGFesl9z549k15++eVl1lqnoqLi/fr6 +n9Lp+HKoLO2qG3VwO+lN8N4/y3pLQ18Qch0LAAAhhXagn7w4MGSDRs2PNLf3/87JSUlh+rr659J d3vaGe2tra0NQ577yl4Bpm86AOCCCOWS+5DtaZcVFBR01tbWrisvL+9Odxxrbcp13V+sXr26fyxy AgBwoYRuhu77vnnyySe/ffz48S85jtO3aNGiH1977bX/rxNaKpVyWlparuzp6Sm+6qqrPiktLT3n 7VuNMQ10UQMA5ILQzdDXrVt358GDB+dIsrfddttzt95668dnv6etra3iyJEjV/T09BR/9NFH155r HGvtwdra2kwvfAMAYFwIVUHfsmXLje+///6dklRdXf3iwoUL3x7u/dbac94cxlrbbYyJS0r7AjoA AMaj0Cy5v/baa9N37dr1bUmaOnXqGzU1Na+d771Tpkw50tvbW9jV1TVh6tSpH5/987y8vJ2xWIwL 1gAAOSMUBT2ZTE5+6aWXlltr88rLy/c99thjW4bbnua6rl9VVXW+O8XtjcVin4xRVAAAAhGGJfff 3bhx41/09fVNmDBhQtujjz76TGFh4agapxhjjre1tf062wEBAAhaGAr6N7q6uqbk5+efiMVi6yZN mjTapXLfWruDLWoAgFwUhiX3jXPnzp09bdq0kzNmzDgy2kGstY3Lli0b9fEAAIxnYZiha+nSpbvm zZvXPNrjjTGttbW1aTdsAQAgLMIwQ8+I7/u9vu/HjTFsUQMA5KxQzNAzYa3dtWLFipNB5wAAYCzl dEH3ff83dXV1o16qBwAgLHK2oFtrT3z22We/CjoHAAAXQk6eQzfGWMdxdqxevZo+5ACAi0JOztCN McmHH374s6BzAABwoeRiQf/80KFDwzZtAQAg1+TUkru1tq+3t3fH6tWr/aCzAABwIeXUDN1xnDdX rlzZGXQOAAAutJwp6MaY5pqamt8EnQMAgCDkREE3xpzq7u7+ZdA5AAAISk4U9FQqFV+5cmVP0DkA AAhK6At6KpV6d/ny5YeCzgEAQJBCXdCNMUcrKioag84BAEDQQrttzVqbSqVSOxYvXpwKOgsAAEEL 7QzdWvtWXV1de9A5AAAYD0JZ0I0xB5YvX/5e0DkAABgvQlfQrbXd1tqdQefIohJJUxTC/wsAwPgR unPoeXl5O2Ox2Omgc2RJmaS7JVlJn0raEWwcAEBYhaqgO46zLxaLfRJ0jiyaJKlfUrukyQFnAQCE WGiWea21Hddcc83uoHNk2SeSTkuaKOndgLMAAEIsFDN03/f9goKCnfPnz+8POkuWdUt6UZKrgZk6 AACjEooZuu/7yQcffPB/gs4xRqwo5gCADIWioNfV1TUHnQEAgPEsFEvuWVIm6cuSOiU1SuoLNg4A ANkTihl6lsyTVCzpS5KmB5wFAICsupgKep+k/DMPZucAgJxyMS25xyXdIOmEJM7JAwByysVU0E9L +lXQIQAAGAsX05I7AAA5KwwFPU8DF7MBAIDzGO9L7pdK+qYGvngkJNEyFQCAcxjvM/TpGrgi/aik GQFnAQBg3BrvBb1FUpGkckkfBZwFAIBxa7wvuR+V9C+SCjVwhzcAAHAO472gS1LPmQcAADiPrCy5 RyKRu6PRaPXgc8/zfuB5XofneX+djfEBAMDwMi7o0Wi01hjzd9ZaI0mzZ8++QdKp0tLSckmXRCKR azL9DAAAMLxsLLm/aYxpttZKklKp1GzXdTfH4/H+6urq513XjeqsC9puvvnm0q6urmeGvBSR9G4W sgAAcFHKeIbe1NT0njHGDj43xpQbYzokyff9Dmtt2dnH+L6fb4yZN/iQdFmmOQAAuJhl/aI4a+3R vr6+EklHHce5dLC4D7V79+5jkioHn3ue98/ZzgEAwMUk6wXddd1G3/eXSPoH13Xv831/00hyGGPm eZ6X7TjAF3Jd92cNDQ0tQecAgExkvaA3NjbuiUQi93qed8Ja+6NkMrnvi45xHOd7vu//vaRZI/kM a+0fSfrUGNOYad4LrNwY84fW2t2SPg06TJquN8bMkvSf1tpQbSO01n7FGFMo6efn+nl/f//rFzgS AECSPM874XneT4POka5oNDrH8zwbjUbvCTpLujzP+57nedbzvIqgs6QrGo2+7nnenqBzAMBYGu+3 fgUAACNAQQcAIAeE4davv8V13atPnToVqvO4kmStfdt13Ypjx46dDDpLugoKCtakUqlnGhoa2oPO ki7Xdb/V09PDl1cAAAAAAAAAAAAAAAAAAAAgDNygA6QjEoncfcUVVxS3trYelgb6rldWVv5HZWVl QVtb286g853LokWL3OLi4n+qrKzcXFlZeeUtt9zy6t69e20IshvP89ZWVlZuqaysPN3W1tYgheN3 PigSiVw/ZcqUv2xra/u5FK7sAJCu0GzlCWvf9ZaWltuttdsTiUSZMWbv/v3754UheyQSucVa21BV VVUh6feqq6svC0PuQXPnzi2W9GfGmDwpPH8vADBaoSnoGui7vmrwSSqVmu04zuZ4PN7v+/7zjuNE gwx3Pk1NTa8kk8mfSfKtte84juOHIXsymfxlMpnctHXrVitJvb29XWHIPainp2d1YWHhnw8+D1N2 ABiN0BT00fRdH09mzpxZYq1d0dTUtCtE2Y3neW3GmMkzZszoCkvuaDR6j+/76zs7O//vBj5hyQ4A oxXKO8VJI+u7Pl6caWjyw9LS0qUamKmHJbtNJBKTotHo1/fv379QUihyW2v/ynXd6a7rOpJcz/P2 huh3DgCjEpoZ+tlc1210HGeJJOdM3/V3gs50Lmdm5o9XVVXF4vF4txSO7NFodGEkEvmaJOP7frkx picMuSUpkUjMTCQSBR0dHRMkPZ1IJH4SluwAMFqhLeiNjY17rLVlZ/qu+yPpux6EoqKi7xhj6pqb m7s8z+uNRCL3hSG7tfYlSUs8zzttjJlTVVX1chhyD1VYWGglpaTw/L0AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk2/8CA7MF3ZVKyQIAAAAASUVORK5CYIJ= ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAfQAAAEsCAYAAAA1u0HIAAAABmJLR0QAAAAAAAD5Q7t/AAAACXBI WXMAAAsSAAALEgHS3X78AAAgAElEQVR4nOzdeXxcZb0/8M/3OWdmkmbtmi4s3VhL0848k4ZaroRF 2WRTAhRQr3D1AnqVqyIqKAURRAV+XC5eEcF7RbYGURYpCEIQsKaZM00TQiktLaV7umVtJjPnPN/f H5kp0w3a5KRZ+n2/XvPK5CzP8500zfc853zPcwAhhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEAdZRUVFTkVFRU5/xyGEEEL0 Nbu/A+hLbW1tP2XmTgA39XcsQgghRF9S/R2AEEIIIXpPEroQQggxBEhCF0IIIYYASehCCCHEECAJ XQghhBgChnSVe0/9xwvLQ8Pbh3+XwGcC3M6u+f2tc0ueABH3d2xCCCHE3khC3833H20eHmxPLhxb pCYV5FpBY4At7e7sm6u2XHYL83mS1IUQQgxEcsp9N6Fg8rdHjAweVZxnBS0FBGxgXLFdVJynPv2j +Zu/0t/xCSGEEHsjCT0bMylSkWEh2uPnMirfKrQI/9oPUQkhhBCfaFCccg+Hw0cqpX4HIAzgvsmT J99SVVXl+d3PvFtAdMLefyZkAQwq8LtPIYQQwg+DIaGTUup1IrowPz+/ob29/RerVq36MoCH/e5o 3jwyN89v2uYaPsxWtMu6jk42zPyG330KIUR/iEajjzDzJVmLPACbACxwXfe2JUuWrDuQ9mbOnFms lDolHo//yddAxX4b8Al9zpw5+YlEIhSLxRYDgNb6AQA/QR8kdAAw4KtXb049O3FUYJRldSf1RMpg /Xbvwy6yf9QXfQohxCeZN5+DXd6msGJrTMqoxT+/YuTa3rRnjLGVUk/GYrEvpheR1joXwGW2bX8Y DoenL168+J39bc+yrB8BGAZAEno/GfAJ/a233mrXWu8Ih8PHL168eCmAy5n55X1sTtFodGbW92OY efWB9PeTi0sWzpvfdOGKTe4DMJ3jkzvaiw3wDgfHnPHzK0a09PiDCCFED934+KZPMbY8MqogUBy0 MKy107TMe3LzK6BRV867mJI9bdcYk33XDjuOswPAb6PRaIlSagGASQBMb+MXB8eAT+gAGMBlSqlG rTUALOvq6ird58bM8az3BsAdB9rhvIvHvAlg2qc/e+6pO7Zv+hsb7ynHcXp1NCyEED3xg/kbRgdJ PTm5JHiYlS7XHVmAnG3t5qJNLZu3AviW330GAoH/SSaTt5WVlena2tpaABSJRC4nousATAOwBsB9 juPcD8Bore8HcC0AaK2vCgaDRQsXLuxE9yDr88x8I4BjANQw8w/j8fg/M32Fw+HxSql7AJwJoIOI nlNK/XDRokVb/f5cQ92Ar3IPh8PjAfwhlUqVOI5jMfMPQqHQX/a1PTN/MfMC8FJv+u7Yut5h4wHA 9N60I4QQByISiehIJHJuJBI5t33d8nvHFts7k3nG8HwVIpO8Ilr+qfMz286ZM8eXwt2FCxduA9Bh jNHpeH5ARFcCOM1xnGFKqdMA3KC1vhQAHMf5OhH9PwAPOo4TTCdzaK2/z8w/U0pd5DhOgVLqBiJ6 JRKJnAEAFRUVtlKqnoiqJk+ePALAkcy8zvO8N/34HIeaAZ/QLcuaDeC39fX1TQBMPB7/ExF9qqKi Imcvm3M8Hv9D5kVES3vTt+M4LQA+hCR0IcRBpJS6noieJaJn3a62uTnBPf9UEwDLdI7IySv+c2bb ZDJ5hI9hvA/gqMrKSouIblZKfTv9N5Fra2vXAHiEmc/MbJw+I7rz7qNp06blA7jdGHNRbW3tSgCm tra2loiuIaLHAajt27eXABjpuu4rVVVVnuM4KcdxbnUc5zgfP8chY8AndGauBXDV7NmzRwCgsrKy 0wG8X11dnThIITQAmFJaWpp3kPoTQoiHAFwD4BqyAn/tcvd+GdujnOZUZ/s3Mtvatr3BxxiIiLx0 og0ZY1ZprU/SWv9bNBp9BMB1Sql9/l0MhUInAEBRUVFj9vJUKvUqgOHhcHjskiVLNgBYZVnWW9Fo 9KLp06cP9zH+Q86Av4buOM6HkUjkP5LJ5N+01scaY/4E4NSDGEIDgHNCodDxAGoPYr9CiENULBZ7 GcDLAHD6DdEXNm73/jl5LI1T+Oh22tZOdhHIWVCz8O/391EYRzHzrwBAa/1NAPcCeAHAi0T0MwAb AEzZ185ENBIAqqur3ezl+fn5rYlEAoFAIB+ASaVS04PB4NeY+c5gMDhZa+0opb5ZW1v7jz76XEPW gE/oABCPx19CL6+H90IDADBzKSShCyEOsjsvHvHhTU9s+sb76/m/RhTao2yLQ+07eGtrl2mwwF/r iz7TI+UcZv7HjBkzJgC4l4jKY7HYosw20Wg0wMy0rzaMMduUUtBaBxzHSWWW79ixo0ApBSJqAYD6 +voOAPcAuCccDo9WSn3HGPNWaWlpSfpSq9hPA/6Ue38jonoAYGa5ji6E6Be3XVryNCNYun5L6op1 W7xvN7fz2T+pHHXqvIvHtPdFf8Fg8GsAVsXj8QbbticBQH5+fn32Nsz8WWa2shcRfTRtdjAYbAQA Ijohez8iOglAR01Nzebd+128ePHmlpaWmwHAtu3DfftAh4hBMULvT8y8DEAKUhgnhOhH8y4u2gbg qZ0LLve/j4qKipy2trbPA/gpgBMAsG3b9a7ror29/WIAj0ydOjVYWFj4HQDHE9HOETQzbwIwvbKy 0qqqquKamprWaDR6CzM/VlZW9tna2to14XB4BhE9mL4LycyaNWuS53kNAKKO4ywDQMXFxVcwc2tr a+vb/n/CoU1G6J8gfaroXUhCF0IMMUT0Ra11MvNqa2tbBuAkpdQkx3HeBYCamppWY8ynmPlarXWi qKgoDmALEVUCKKusrLQAIBAI/B7AhJUrV3aGw+GxABCLxW4holuMMQu01knLsv4LwAWZ6WEXLVq0 iog+B+BerXWb1rrZGHO6UuqYFStWdPXHz2Qw2+f1j6FAa30XM3fG4/GbetnOo+ieDnFsTU3NJp/C E0IIIXwjI/T90wAAnuftc4Y6IYQQoj9JQt8/mUp3Oe0uhBBiQJKEvh+UUpnqTknoQgghBiRJ6Puh trZ2LYAWSEIXQggxQMlta/uH0X3aPZq+JcP7pB2EEGKgmzFjxgTbtm8CcC6A4ej+O/cogF9nTwaj tV4D4GrHcfb5YKze0lpvN8ZctHjx4r/52Gafxz2QyAh9/zUAyFm9evU+pzoUQoi+xAxaM78y14+2 ysrKJtu2vZKInm5paZniOE6+MeZcIpoFwMncjgYAjuMcfhCSYsC2bV/vvDpIcQ8YMkLffw0AYIwp BfBeP8cihDiEbHu5sqjLtR5u+msgGiq27E0vXtaBVOqGknOr/tTTNo0x3wfwcHreeADdM7VVVFR8 ta2trXPlypWzAchjTAcRSej7L7vS/alP2FYIIXzBr1XYmzqDb4aGTz5eBYu6z6qyQbJ5xUMbn78o NPZzTz3Rk3aJ6HBm7tx9efpJlruMlLNPXaffXwXgQgCXAthGRDd0dna+mJubexczXwpgKYCvOo7T kN5/j9Pp0Wh0HoAjYrHYlfsKMRKJXE5E1wGYBmANgPscx7kfwM7Hz0Wj0fMAfJ+ZZxDREma+x3Gc qt3jBkDRaPTzzHwjgGMA1DDzD+Px+D+zPycRXZl+LOyXAOwgol/EYrH70X3pFQBQVlZ2ujHmNnTX VdUopb5dW1tbl1kfDofHK6XuAXAmgA4iek4p9cNFixZt3ec/iA/klPv+a0h/lcI4IUSfqqiosLXW Aa11YENbyVV2wbipO5M5AJBCYPhRw8kO3cm8S/Ld71PWxpjfAbgwGo0+UlZWNjP7FPte2FkPYrEB PAPgQcdxRhLRt5m5Kicnp9Z13V86jjOciB4EsBAf5Zg9Tqczs2WM2eegMhKJ/ICIrgRwmuM4w5RS pwG4QWt9adY2X2Xm+1zX/bLjOPlE9HkAP00n+V3i1lp/n5l/ppS6yHGcAqXUDUT0SiQSOWO3z/kn pdQfHccpAfAvzHx7NBr9fFaflxtj5qP7gKWAma83xiwMh8NRoPvfTilVT0RVkydPHgHgSGZe53le n5/tkIS+nxzHaQHwISShCyH6WHt7+x8AJAEk317T9VMrVJyz+zYEQsINjdry7HnjMsvC4fBx+9tH PB6fD+CrzPx5Y8zilStXdmmtn45EIp+rqKj4pLO39zqOEwdg8vPz/wIARHR/XV3dcgCms7PzSQB5 WuvD9jeebJWVlRYR3ayU+nb6by/X1tauAfBIevQMrXWAiP7HGPPFdL9cW1u70XGco2Ox2LPZ7U2b Ni0fwO3GmItqa2tXAjC1tbW1RHQNET2OrFxIRL9KP7rVOI7zIRE9ZIw5H+hO1kT0MBFlzj6YeDzu ENH1Sqn/BYDt27eXABjpuu4r6WfJpxzHudVxnP3+t+kpSegHpgHAlNLS0rz+DkQIMXQxcwzdo+Bn lMJaNvu4sYZMCkBb5lvbttv2vuHeOY7z24KCgiJjTBmA2wGUEdFzbW1tjtZ62L72I6Kdp5czzzs3 xizJ2iQJAJ7nhQ4knox0IgwZY1ZprU/SWv9bNBp9BMB1Sqk8AFBKHQ7ACgaDdR/fGhAKhU4AgKKi osbs5alU6lUAwzNzzwMAM+/ymGxm3gigCADa2tqmAggqpaqzt/E871UA00pLS/OWLFmyAcAqy7Le ikajF6UfRXtQyDX0A9MA4JxQKHQ85NnoQog+4jjOLwH8EgBKf3rUv7jtG/4UHD51ZPY27CWQayeX jz7n2Z1JPD2KPSDphBxLv36stT4FwKsAvgPgJ3vbxxjTsfsyZnYPpN+Pe5Y6AGitvwngXgAvAHiR iH4GYAOAKQDguu4IpRRc192jDmB3RDQS+OjgIyM/P781kUggEAjkZ8W1e3ueUioT6ygA8Dxvk9ba ZG2TeUBNIYCOVCo1PRgMfo2Z7wwGg5O11o5S6pvpkX+fkYR+YDKFcaWQhC6EOAjGnPnEG5teuLzK bV5xsVVw2AhSQXjJFnZbP1gDs+PST27hwDiO81okEnmEiE7BPhI6sgrE9pfnebtfo9/nGYAZM2ZM AHAvEZXHYrFFmeXRaDSQORAIBAKtnufBtu1cdD/iep+MMduUUtBaB7Lvr9+xY0eBUgpE1LKfHyOz XaHjODv2tVF9fX0HgHsA3BMOh0crpb5jjHmrtLS0pL6+vmlf+/WWnHI/MDKnuxDioCs5+9FrjLvl iuS2pc8mNtfVui2r7km4PLPk7D+/35P2Zs6cWZx+ZOqxe1tPROvh7y1rWzKj5Kw+PrWvjW3bngQA +fn59dnLmfmzzGwBQEdHxwcATCqVmvFJnQeDwcZ0nyfsFsNJADpqamo278+HKCgoWJ6OQ2cvj0aj Z2utt+ytsHDx4sWbW1pabk5/rsP3p5+ekoR+ABKJxDJ0HwlKQhdCHFRjznhqQcmZj54/9qzHZpWc 9dh3jvzcY9t72lZdXV0zgF8DeDYcDke11gGgu+irrKysDMDnPc+726fQAeBxADek649UJBK5HEBk Xxvbtl0PAO3t7RcDoKlTp4YikcgPARxPRIUA0NjYmATwbSJ6MBwOjweAOXPmFESj0QVa6+9mt1dT U9NKRLcw82NlZWWHA0A4HJ5BRA8y8xeRdRvcx6murk4Q0beJ6JGysrLJAFBWVnY4Mz/EzNdWVVV5 s2bNmqS1bk8fLBEAVVxcfAWA1tbW1rcP5Id2oCShH4D0L9C7kIQuhBjkHMf5plLqWqXUTQBWa63d tra2ZcaYL9i2HU0nfV8kEombmflvgUBgvdb6Q6XUGCK6el/b19TUtBpjPsXM12qtE0VFRXF0j/Ir AZRlRsKO49wL4EdKqb9qrZOJROJ1Y8zTjuPscTASi8VuIaJbjDELtNZJy7L+C8AF8Xj8gCbnicVi 9wC4zhgzX2udNMY8RURXp+8awKJFi1YR0ecA3Ku1btNaNxtjTldKHbNixYquA+nrQPk6zd5Ao7W+ i5k74/H4TT62+SiAy2zbHltTU7PJr3aFEEKI3pAR+oFrAADP80r7OxAhhBAiQxL6gZPCOCGEEAOO JPQDpJTKVF1KQhdCCDFgSEI/QLW1tWvRfS+iJHQhhBADhiT0A8foPu0+7RMeZiCEEEIcNJLQe6YB QM7q1aun9HcgQgghBCAJvacaAMAYI5XuQgghBgRJ6D0jle5CCCEGFEnoPdOQ/ioJXQghxIAgCb0H HMdpAfAhJKELIYQYICSh91wDgCnphw0IIYQQ/UoSes81AKBQKHR8fwcihBBCSELvuUxhnFS6CyGE 6HeS0HtOKt2FEEIMGHZ/B7A/Zs6cWWxZ1oMAziKiV5VSX1m0aNHW/owpkUgsy8nJSUEK44QQQgwA g2GETpZlvWaMudtxnELP8+41xvyhv4NqbGxMAngXktCFEEIMAAM+oWutJwOILV68eCEAs3jx4r/F YrGz+juutAYAo8vLy0v6OxAhhBCHtgF/yp2ZjyOilVrr+wFcwczPdHV1XdvY2Ni+l80pEokcm7Xv CADr+jC8BgDwPK8UwMt92I8QQgjxsQb8CJ2IRgL4MRH9j+M4w5VSr+fk5Dz8Mdu/k3kB+FIfhyeF cUIIIQaEwZDQuwA8EYvF3gZgYrHY7wBcoLUO7GOXr2ZeRPRKH4cnU8AKIYQYEAZDQn8XwLDdl0+e PNnsZXN2HOe3mReAt/syNsdx1gBogSR0IYQQ/WzAJ/S8vLy3AZwaDodnACCt9ReJ6Mmqqiqvv2MD wOgepU+rrKy0+jsYIYQQh64Bn9Crq6tdpVREKXWP1jpBRKcHAoGv9XdcWRoA5KxevXpKfwcihBDi 0DXgq9wBoLa2dg2AU/s7jn1oAABjTCmA9/o5FiGEEIeoAT9CHwSk0l0IIUS/k4TeS57nZQrvJKEL IYToN5LQe6murq4ZwIeQhC6EEKIfSUL3RwOAKaWlpXn9HYgQQohDU18VxVF5efkY13XzjTGtixcv 3oLuW7yGqgYA54RCoeMB1PZ3MEIIIQ49vo/Qw+HwaVrrJtd1NwJYoZRq0lo3RyKRc/3uawDJFMaV 9ncgQgghDk2+JvSysrIypdSzzPw9pdQRAIrTX68hokfLyspO9rO/AUQq3YUQQvQrX0+5M/MdzHxa PB7/Z9biFgCPRaPRpcaYuwGc4mefA0EikViWk5PjQgrjhBBC9BNfR+jMPDsejy/a27pYLLYYwBw/ +xsoGhsbkwCWQhK6EEKIfuL3NfT3Zs2adeTeVsyYMWMCgOU+9zeQNAAYXV5eXtLfgQghhDj0+J3Q b/c8b4HWenrmYSUVFRV2JBIptW37JWa+3ef+BpIGAPA8TwrjhBBCHHS+JnTHcZ4C8BiA+pUrV7pa 62RbW1uKiJYQ0TPxePwxP/sbYKQwTgghRL/xe4TOjuPcatt2ERGdREQXMfOnPc8bHovFbsTQvxcd kOvoQggh+kGfTCxTU1PTCuCtvmh7oHIcZ43WugWS0IUQQvSDXif0SCRyRjwefynzHgB93PbxePzF 3vY5QDG6R+nRyspKq6qqyuvvgIQQQhw6ep3Qiej3AEqy3gc+YZcRve1zAGsAcNLq1aunQJ6NLoQQ 4iDqdUJ3HKdkb+/Ly8sLE4lEgeu6LY2Nje297WeQaAAAY0wpJKELIYQ4iHyfy72srOx0rfUHruu2 2La9Nicnp01r/V4kEjnR774GIKl0F0II0S98TeiRSORMY8zTzHyLZVmTLcsapZSaQkQ/I6KXtNYn +dnfQON53tvpt5LQhRBCHFS+VrkT0W3MfFI8Hq/PWrwVwMqysrIaz/N+gyE6/SsA1NXVNWutP4Qk dCGEEAeZ36fcj5oyZUrj3lbU1tY2ElHU5/4GogYAU0pLS/P6OxAhhBCHDr8fzvLUqlWrLtjbunA4 HAXwFz/7G6AaAFAoFDq+vwMRQghx6PB7Ypn5zPyc1vohY8xTtm1vBFBkjDkNwE3MfHskEjkzs/EQ vSc9UxhXCqC2n2MRQghxiPD7GvrvAbQDuEQpdYkxJnt1BxF9a7ddhuI96VLpLoQQ4qDzNaFn34d+ qEokEstycnJcSGGcEEKIg8j3+9DTqLy8vERrPSUcDo/GJ0wHO5Q0NjYmASyFJHQhhBAHke8JPRwO n6a1bnJddyOAFUqpJq11cyQSOdfvvgawBgCjy8vLD/kzFkIIIQ4OXxN6WVlZmVLqWWb+nlLqCADF 6a/XENGjZWVlJ/vZ3wDWAACe55X2dyBCCCEODb5eQ2fmO5j5tHg8/s+sxS0AHotGo0uNMXcDOMXP Pgeo7MK4l/s5FiGEEIcAv+9Dnx2PxxftbV0sFluMITxL3G4a0l/lOroQQoiDwu9r6O/NmjXryL2t mDFjxgQAy33ub0ByHGcNus9MSEIXQghxUPid0G/3PG+B1np6ZWWlBQAVFRV2JBIptW37JWa+3ef+ BipG9yh9WubnIIQQQvQlXxO64zhPAXgMQP3KlStdrXWyra0tRURLiOiZeDz+mJ/9DXANAHJWr149 pb8DEUIIMfT5PUJnx3FutW27iIhOIqKLmPnTnucNj8ViN6J75HqoaAAAY4xUugshhOhzvla5a62n FxQULK2urm4F8JafbQ9C2ZXuT/VzLEIIIYY4v0for2/durXA5zZ3mjFjxgSt9eq+at9Pnue9nX4r hXFCCCH6nN8J/QOf28tGtm3/EUCwD/vwTV1dXTOANZCELoQQ4iDwe2KZ+4LB4DuRSORuAO8qpRJE tMt189ra2ld60nY0Gr2SmZ8C8B0/Yj1I6gGcXVpamldfX9/R38EIIYQYuvx+fOrdAAJEdDMAMDOY 96iDyz/QdktLS8cw84WJROLSnJycj0voNHPmzJ33wRtjComo80D781EDgHNCodDxkGejCyGE6EN+ Pz51uJ/tpVEgEHjEsqzLCgsLvWQy+bEbW5a1KvOemQ2AO/ogpv2VKYwrhSR0IYQQfciXhF5WVnay MWYegJkAapRSP6qtrfUlgUWj0UuMMb9ftGjR1tmzZ+fuxy7fzHp/gR8x9EJ2pbsQQgjRZ3r9nPJo NFrBzK8x8xMA4kQ0G8CFAE50HKemt+1rrd8EcCIAg+4iPgtAKpFI5KefPf5x+97FzJ3xePym3sbR E9OmTQvm5OR0APi74zin9UcMQgghDg29HqEbY24EcFo8Hn81sywajZ4N4EYA5/W2fcdxTsq8Ly0t zQsEAisdxxkUzxlvbGxMaq2XQirdhRBC9LFe37ZGRHrKlCmvZy/Lz8//KzOf2tu2d5eXl2fQPVIf TBoAjC4vLx8UByFCCCEGJz/uQ8+vqqryshdUV1e7AHJ8aHsXCxcu7HQcZ5zf7faxBgDwPE+mgBVC CNFn/J5YJttgG0n3FSmME0II0ef6MqGLbg3pr5LQhRBC9BlfblvTWv8ufc93tsDelsfj8av86HOw cBxnjda6BZLQhRBC9CE/Ruh/IqJCpVRx9ouInt7bch/6G2wY3aP0aZWVlVZ/ByOEEGJo6vUI3XGc S/wIZIhrAHDS6tWrpwB4r7+DEUIIMfTINfSDowEAjDFS6S6EEKJPSEI/OKTSXQghRJ+ShH4QeJ73 dvqtJHQhhBB9QhL6QVBXV9cMYA0koQshhOgjviZ0rfX0iooKXx/JOoTUA5hSWlqa19+BCCGEGHr8 HqG/vnXr1gKf2xwqGgBQKBQ6vr8DEUIIMfT4ndA/8Lm9oSRTGCeV7kIIIXzn6+lxZr4vGAy+E4lE 7gbwrlIqQUScvU1tbe0rfvY5iEiluxBCiD7ja0InorsBBIjoZgBgZjDz7pvl+9nnYJFIJJbl5OS4 kMI4IYQQfcDXhO44znA/2xtKGhsbk1rrdyEJXQghRB/oq9vWqLy8vERrPSUcDo8GQH3Uz2BTD2B0 eXl5SX8HIoQQYmjxPaGHw+HTtNZNrutuBLBCKdWktW6ORCLn+t3XINQAAJ7nSWGcEEIIX/ma0MvK ysqUUs8y8/eUUkcAKE5/vYaIHi0rKzvZz/4GISmME0II0Sf8rnK/g5lPi8fj/8xa3ALgsWg0utQY czeAU/zsc5BpSH+VhC6EEMJXvo7QmXl2PB5ftLd1sVhsMYA5fvY32DiOswbdBziS0IUQQvjK72vo 782aNevIva2YMWPGBADLfe5vsGEAbwOYVllZafV3MEIIIYYOvxP67Z7nLdBaT88krIqKCjsSiZTa tv0SM9/uc3+DUT2AnNWrV0/p70CEEEIMHb4mdMdxngLwGID6lStXulrrZFtbW4qIlhDRM/F4/DE/ +xukGgDAGCOV7kIIIXzj9widHce51bbtIiI6iYguYuZPe543PBaL3YjuU86HOql0F0II4bs+edRp TU1NK4C3+qLtwc7zvLctywKkME4IIYSPep3Qo9FoxYFsH4vFqnvb52BWV1fXrLVeA0noQgghfNTr hM7MfwEQOIBdgr3tcwhoAHBWaWlpXn19fUd/ByOEEGLw63VCdxwnz49ADjH1AM4OhULHA6jt72CE EEIMfn31cJaB0t9AlSmMk0p3IYQQvvC7KI4ikcjFAD4LYBgAEJEiIpuZ8wGc6DhOkc99DkZS6S6E EMJXvo6YI5HItUT0/5RSW4noAgAbAGxJJ67PMvNX/exvsEokEssAuJDCOCGEED7xNaET0X8opWbF YrHvAXiamX/rOM7XHcc5BsCPiajQz/4Gq8bGxiSAdyEJXQghhE/8vqZ9ZG1t7VoAYOZqy7JOTS/n lpaWnwO4zuf+BrN6AKPLy8tL+jsQIYQQg5/fCX1peXl5AQAQ0VJmPjOzYsWKFUkAR/nc32DWAACe 50lhnBBCiF7zuyju3lQq9cdIJPKd9Ixo50QiEd3V1dUQCoUqAdT53N9gll0Y93I/xyKEEGKQ6/UI PRKJlAIgAHAc5/cA3iSiWF1dXTOA7xJRLCcnp4uI/gDgOz3pQ2tdqbVeorVu1Vo/OG3atPzexj0A NKS/ynV0IcjtsnEAACAASURBVIQQvdbrhE5EMa31Rq31t7XWY+Px+C0FBQXDAMBxnLsAHElEp3ie N9xxnDcPtP2ysrLJzHxdIpGY4zhOMTMvysnJebi3cfc3x3HWAGiBJHQhhBA+oN42MHv27BGpVOpC Zr4BwFFEtBDAnfn5+S9VV1cneh/irrTWAQBJx3E+MXat9V3M3BmPx2/yOw4/aK3fBKAnT56cX1VV 5fV3PEIIIQavXl9DX7hw4TYADwF4aObMmRMty/oigP9ta2sr1Fo/DOB/HMdZDJ8encrMU4moeh+r qaysbGfVuOd5eQA6/ei3j9QDmLN69eopAN7r72CEEEIMXr4WxdXV1X0A4CcAfqq1ngngqwAWaa23 A7gTwKOO42zoafuzZ8/OTSaTT1iWdcG+tjHGZLdvANzR0/4OggYAMMaUQhK6EEKIXuiT56EDMI7j xAFcM23atG+FQqFTiOi3AH6BHp7mnz17dm5XV9crAK5ctGjRqn1tx8zfy/r2nJ70dRBlV7o/1c+x CCGEGMT6KqED3fO6HwvgciL6Orrndr+rJw3NmTOnoKur6yWl1Fdisdiyj9mU4/H4LzLfaK3HMvty pr9PpG/tA6QwTgghRC/5ntDD4fCRSqlL0T0r3FhmfhbA5wsKCt6orq52D7S9adOmBROJxN9t2z63 pqZmrd/x9qe6urpmrfUaSEIXQgjRS74k9PLy8hLXdb+A7vvMJwN4l4huYOZn4vF4S2/azsnJmQtg puu6K7XWO5c7jpOD7mvkg10DgLNKS0vz6uvrO/o7GCGEEINTrxO61rrGdd1ZANqI6G6l1P993DXu A+U4zv8B+D+/2huA6gGcHQqFjgdQ29/BCCGEGJz8GKG/w8zfisfjizA0RswHW6YwrhSS0IUQQvRQ rxO64zhf8SOQgYhjXwvg+fEezZvXZwcqU0+8rNUO5WLUkTN/cOb1RxXbxA/Mu3hMe1/1J4QQYmjq 9UxxA1lPZ4rb+JcvlCsV+g2swEjDbMhz3yVOfWnMOVUb/Yzvx/ObrgpY9NOSokBJ0AZ2JNlrak6t gavOmnfZqHf97EsIIcTQ1pe3rQ1KGxZcUgaV+1xgxDGjSQUAAOx2HJ7ctuwfm585b8bo859t86Of Gx/ferht8U8mlwRKMkdVQZusYaHQxFUbu6rAXAqigXvPnRBCiAHF7+ehD3oWrAdCI47emcwBgOw8 BIomHsGhvJ/41pFtvjCmwBq3+ymSoAXkhtSoGx/bcIRvfQkhhBjyJKFn4XnzFMgeTSq4xzoKFltg +rRffVmGJ9vW3tcFLISMUmP96ksIIcTQJwk9283zmGH28dQzg6THSb+68lj9ra2L97jvnAFs3dZc +MZvrpyCIV7jIIQQwj+S0LMQgcHeEk6273Htun3bOmPB+HY//Htq5PPb270VnV1mZ18MYHNLMrWm 8VXubN30qNb61XA4PMOvPoUQQgxdktB3k+pMXJlqWbbCS2xNwXhgk4LXvraVurZUjz3nyV+nN1Na 65vC4fD4nvZTdTF5qc6u0z7Y6r38/sbUujVbU5tWrE+u395Ov1i+6OmjADwOoEIpFY9EIr8Oh8Oj ffmAQgghhqQhfUq3p7etrZlfmRsoCPyQSH0GbDqI+A+jz3j8f4m6n+mutT4HwPPoftb6f9m2fXtN TU1rT+P8z/lrcvNMcPwyNeaDqotp5yn/aDQ6h5nvBaABtBDRLZ2dnfc3Njb6dupfCCHE0CAJvWdU JBKpJKLbAIxKJpOTGxoatvvcR3ZfXyaiOwCUAFhGRP8Zi8UW9FF/QgghBiE55d4zJh6PPwngeCI6 NTuZRyKRM7TWgY/Ztyd9/c627aMB3AlgEjO/oLX+SzQaPcbHfoQQQgxi+7hxamgYP378GQDcDRs2 vNoX7W/YsMGsX79+5+xx4XA4qpT6O4C548aNa9qwYcNSdNe69dq6deu6NmzY8Mq4ceOeIKIjAZwL 4Opx48YNLykpqdm4cWPCj36EEEIMTjJC95Hruu+jexR9GBE9FolEJvvdRzweX+E4zgVKqc8gffrd sqzlkUjka5WVlUP6AE0IIcS+SUL3UUNDw3bHcb7vuu5UIvrXeDy+IrOuNxXxe1NbW/tKQUHBTGb+ BgCLiB5YuXKlE41GK/zsRwghxOAgRXEHQTgcHq+UWgHgRWa+MR6PL/Wz/VmzZo10XXceEV2D7sso T3med31dXd0HfvYjhBBi4JKEfhBEIpGpRHQ/gM8CMEQ0IxaLvc3zK62mfOuHIPsKKJUD4zaDk9eX nP3UX3vST1lZ2TRjzD0APgOgi5l/2dXV9bPGxsZ2APju7zeOCQaVZpdbE8Fk/J6LD+/071MKIYTo T5LQD6JIJHIqEV3gOM63APDGBXOfsfLHnR7IHT8MBIA9pJpXbHO72r877pzHf9fDbigajZ7LzHcD mAJgvSH6/nnXvxCxbbq0MNcq9AySrTu8Ntfg2tsuHf28bx9QCCFEv5GE3k82vXDxHBUa+VygeMrw 7OXMjNTmunWjR+dNouhvUj1tf+rUqaHCwsJvEtGPJpV9oeDEM6/0xo3KtTL/4IaBlZtSG5Oud9Jt l5a836sPI4QQot9JUVw/YbI+Zw0bNXz35UQEK6c49Ns/f3B+NBo9KxKJHKe1Hnag7a9YsaIrHo// Qil19FEnVrZlJ3MAUARMGGGPtZW6uVcfRAghxIBg93cAhyoy3AXe+y3qxrD553s7zmLmK4kIADYC GJdZH4lErgBQREQfAHjXcZx9jrBPvOWx7XmdxR0EFOy+LidASOxoPkVrfazjOMvg0z3zQgghDj5J 6P3FdP3J7dh0bTBUvOtDV4wHk2zpXLne/Q2AeiKaaIzZZe52IvoGgPL0t/MBXJJZp7X+LYBmAKuV Uq/ed/ZRjXc+taqQMWKP6ytdLoNalh4GYKnWehMRVTNzNYBqSfBCCDG4SELvJyXn/mlJ04LLq1It qy4LFB5RDLLAXgKp7cubgNS/v/bmP2sA1OxtX2PMlZZlTWXmicy8KrO8oqIip62t7arM957nfYMZ 7zz1TJ27uf0kFOcHd7bBAJpb2nH6mLeW/xV4HUAFM1+C9MGB1nojM1crpaoBVMdisfcgCV4IIQYs Sej9aMxZj3594/MXveElm68jpuGAWWU49e1xZ1e983H7LV68+B0Ae2xTXV2dmDNnTmFXV9eRxpiJ tm03rlhwVvDTuc+3v5Q6vLBp+ziEQsPA7KFzxw5Eixfj2NDaVgCvATiRiF5kZo+INjHzp4noUma+ FPgowQN4zbbt6kWLFi3HXhI8M+iVZ39961r36Gt3oDh3BG3YNF4tvvzkC276hx8/MyGEEHsnVe6H gI0LLl+aM7r02M3JUVjTORY5qgtHDNuAXG+9cVtW3XvOj95bxszzAIwFsN1xnBEAUFZWdrjneQ8r pSLGmBAR5WU1uwFANTNXG2Neq6urWwGAn/zzM4vXITyjuKiAApbCjqRBy/atpjT48tVnnn/Ngwf/ 0wshxKFBqtwPAYTUdcnt720dHdiCSPFSHF+4EsNoO9yWD9YEEztujcViDziOMy4nJ6eQiGZn9qut rV1DRCvSo/Y8AC8x8xeZ+WF0Pwt+LhE9YFnWe1rrLd/8+pVvrOWZM0pGFVFOQMFSQEGOQsmYUeqd 5Mn3z58/3/e55nnePNX0TOXU9c/NHeV320IIMZjICP0QsfmFi881FLyH7NAwsGfYS60x6Jg77qw/ f7A/+2uti1zXzV+yZMm69CIViURqABxLRPkAtl7y5X8fWXxcJfJz9zxO3LSl2UxNvnLyj+/472VK qcOVUusnTpy4uaqqyuvxZ1ow99+Z1E0UyA+w5xr2Ojd7nnfp+M896evUukIIMRhIQj/ErHmxcoQb ytsx6ZT/9e1xq9OnTx8eDAbN177/yxprZPiYYcE9f622bG3B+6/f9eCbr7/5LoC70os9z/NG1dXV NQNAJBI5l4jCANYrpT6ora19ZV99blow9woVKr4vUDS5OPNrzF4Xktve+TDh8swjP/fY9n3t21Pb Xq4sSiTMuHH5W1fQKdWu3+0LIURvSFHcIebwM6u2+d1mQ0PDdgAIIfGH9s7ErcOCubtkdAbQmUxi 4Zv//Gp6URO6r8G319XVtWa2I6LzAPwbABhjGgGckFkXiUQeBzCFiNYDeBGsrrcLJxVnH5OSFYJd OPHwnJb3fwjger8+35bnKid4duBJDzmTAsNC9uZkrrv5hbm/HbXomFto3jzjVz9CCNEbktCFbz5o PPP2whOWfrc9VFKUn9P9q8UMbGnu4CLvg6eM8Z4DcB6AMwHMAACt9YcAniOiZz3Pu8227d8x8zhm 3uVUvFIqj5mnAigrzLW2wA7kEu15at8KFlIK6iRg51PufglgCzNvNcb8X+YJdOXl5YWu6xanUqmt 9fX1O7CPW/Ia51cGPSvwanDEsUeTnZmwj+G2r/1O06xlACAz7QkhBgRJ6MI38+aRued3iyem6MM3 1jUXHmtZilzX9Yarpvu+eslp1+PSGAN4JD3P/CnpEfl5AK5m5quVUu2e572klHoWwAvZbcdisfMA YPbs2bnDYOUwm8/uLQb2klBMawHAsqzDmHku0D2lrlLqJQAfAIDneecD+H0gEIDWugtAieM4LQAQ jUYvZeaTmXlr/L22w845efrEj5I5ABDs/MPyvM6tX+XY127rzZz7QgjhF0nowlf/+ZVwM4Dp8+ax wpHNhfO+Mrx5921WrFjRBeDF9OvrWuswgPMBnEdEX2DmLwAw0Wj0TWZ+1vO8Z+vq6pYDwMKFCzsB dJI5vMZNtk5YnpipPuicgFyVwHGF72NE5z+3eJ53PwDEYrHY9OnTR1iWNUopNbKrq+vtTAxE9L4x 5gEiGglgpOM4bZl1zHwygKuJCPm5wRYKFHw0I89OhC4eVrSxaftRSM8JEA6HZ9u2vckYs8ZxnB4l +Y3PVk5SweCvGDSVmbsI/NSYnPW3yTV7IcQnkaI4MaBorY9g5nOJ6HwAFQAC6VVLATyrlHp24sSJ NZdf/vnxK93SZaG80Tm5OQHyDNDW1mZG8oraL1946om9jGGY53ljlFIj/+dbR1571NHTrlTB4j22 276uoUOp1OHpAjyltd4BIATAALjOcZz70u0VEdEXjDEfWJb1QV5e3ofV1Xsm6E0L5paC7JcCI44Z q6wcAAx3R1On174+NubMR08mkpn6hBD7JiN0MaA4jvMhgPsB3K+1LmLmM9Kn5s8BcIMx5oaVK1du fnXl+I4TSsfl5Od89BC5vFCRWrN1xpSbHt9ccdvc0dW9iGEHuk/NfzCpeModbvvas4PDi8dmH/4a txPDAqmGkrO6q+mnTZtmE9GPmXkSEU0EsCKzLTMfB+AhIoIxBh0dHXMA/AMAtNblAM4hotWdXfyD 4vHHjYWVOSFAsIeV5MK4Mze/OPdLwOP/19PPtDfMoHULPj9BMY31OlTj4RdXdfrZvhDi4JKELgas 9DXt+QDma60DAE7qTu50/rCi0ZPyc/acp2ZMkTVq+/btN5aWlr5TX1+/Bd2j5R4bc37Vig0vXPHT RRtG/nSZe2KhiyDyqZk/Zc9fXex2XJzZrrGxMQng53trIz05zyVKqYnMPNF13eVZ605m5h+FAoSE a/FHyfwjVu6ogg8/XPMdADsT+pw5cwreeuutdvRwfv3Nf7nk6KYX7fmhYF4J2cGAsVuSmxbM/cOY NvcHdHHP5wYQQvSfQZHQy8rKDmfmPzBzKYD/dhznZvTyD7UYXNLXpF8D8Nr3Hnr3x3mFxe8DGL37 dgFF2NG84fRAILBJa50CsIGI1hlj1qdveVtHROs9z1uvlFpn2/b6mpqa1t3byfar9rtOGZlnWaNH BUAEJN2R9PTW7w7rTGAq8Mya/Yh9C7oPTPbguu5vbNuuzs9Vx+Tm2PcBKHLZwtZkMXJVAgWBDgCE 5g5vfPZ+iUTin1rrqeh+tO6vHce5I72KIpHIl9Ofe30ikVjV2NjYnr3vxpe+mGeMeTE44vhJZIe6 FxYwUu3rvt7ETQkAP/6kz3QgmEFNL1Sezso+ldj9MAXvucPOfnqtn30IIQZHQlfGmGoAFwB4F8Av I5HIl+Px+O/6NyzRX35+1bFtN1c1tRnwaLVbGciOLsPJjuZaInqPmccDGM/MJ2RPacvMUKr7ljfX daG1bgewPv1aR0Tr0wcA66ad8c2x+UF12piiwM557IM2YdLo4JjlG7t+C+apIOrxte30pDqLACwK fveo7y3cdkJRY9txyAkF4Hke2OvCGQXzE6Ggume3Xf8OYBOAccg6uJ0+fXoxEe38v5Gbm/slAI8A QDgcPl4pddvzb20ec8FnZhy5M5kDAAiB/AnDkonNV/H8ylv8GqVvfeHywqYF+KuVN+I4FSouZC/F 6Fj/o40vXH7z2LMf7ZO5/dc/d+4wYwVGTDjr6XVSdyAOJQM+oc+aNWuq53nLHcdpAIBwOHybUurv ACShH8JMSt28fov33xNG2kWUzulJD1i33V1TPPFfzozFYrvMFDdnzpyCVCo1zvO8Ccw8Xik1ISvh TyCi8QA+BSDIzKB0o2Q8jCoIYHdKATZ3jqs4+5LftUYia4moGUBz+msLETWnUqlmImpOJpMt6VPy H+vpzm+/5Jmx08aPzqPMcUrKYzy7+RJl5fzrA8Afd27rOM41e2sjGAx2pZ+QN04pNR7A4o9iVpMA XDiyKAgrVLBzH0amOpbQnAiN/9pDKzcAGJNZH41G/52ZNTNvB/Bu9sG01vpYZnaJqLmgoKB592I/ F+bhwPApZSpYnJk0gKzckeOSW9/5yfqX5r4x/ozH3/2kn8v+2vJc5QRj249DhaaQZavNL12e2vSi d/uYM554QBK7OBQM+ITued5EAG9lvl+8ePFWrfWx6H6wzO6n3UlrXZj5hplD6H6IiBhifnLZqD/8 uGpz3vINyZtyQyrgGjZdSW5SHl36s8uL95j29a233moD0AbgvY9plrTWIzOJXik1oWD0xKtBiO5t Y+Mmc91E+5czyR/oHv1nvlpW9zX+nJwcaK07AexM+saYnYk/s3xjYtRXji3J2+WUQ8AiFBePCKzd 5n0HwA8+6eeSLuh7ch/r/qK1zjt6QuielOt97fVts7G2czwMFAKUxMkjFyGPl3RtbXeX7LbrZwF8 nojAzK9j14PpPxLR8QDQ2tr6AICr08vpxPLoq60JdeLoYLFqSeZjY9dIDLMSGJe7BXbBESUrlzbe GY1Gfx4KherT/z5A97HFASffNfMrc00g8Fpg+LFH7TIBUMuqn215cS4Djz9woG0KMdgM+IRORIXM nH0vswEArbXlOM7erqPvvu0de9lGDAG3Vo5+YN48frDtqM1TOsndftdl47f0sklOX+/eAqAeAE6/ btqa7R3mydygtct9a4YB1ypYsyOx/VQwFwEoAlCslCpm5mIAxZllzJy9vIiZxxNRUXZ7gZwCwEuA sMtiAMCwAFHL+nf+U2t9BoAmItrMzE2Z98aYJiLabFlWUyKRaKqvr+/Y1wd0HGfH8Lzp9zy5/ryv BIsOD5SM7j774Bngla0nI4zty95465HPZO+TTCa/FAqFrvM8b7hlWbufin8YwJFENBzAwszCadOm 5RUNU7Nd5Ib+svFkbHbHIhDKBRsXXVs6cdrIv6O5Y8l5zHxeV1dXObovOyASiXyZiB5A98FXK4AT 0gcp0FpfBuBUImpj5jWO49yd6e/D1tQdx4ybPGlD6kg0bDsaHe4wHJa7EZFiu8hscX7IjN/4OUrf +NKFY5TJu51hygi0FZz81Zizq57yq30hemLAJ3RjTBuAo7MWEQA4jrOva3w7p+Ikos9mRkxiaJo3 jwyA5Z+4YQ/97IqSv/64avPCYBufPCrfHgYCXI+xektyC1nq3+MLF6745Fb2VFlZaS1fvrwgndiL GTyC7LwqACN33zblAYnWLTsATAAwg5l3znmbfXnA8zykZ77rBNDEzE1EtDn7PRE1/cg55/jS6Hgu yP3oUoKlgJKRBfj7hsoR4K9Tdl1A+gChA8AeBYCO49y1+zIAaGxsbH/7beTOf+aHra32pPwxRZm+ AjAmF69s+TSO5L9XA2v+ZlnW6sx+6XjfZOYCIipwHCf7IUInAbgq/X96KYCdCb3LpSv+0fEZe2XX cSgsyIM9DHi/6zC8veYonIYPx/3bZ0/8u9apD5n58Xg8/jwAaK0DRHSC53mblFKb93cyoA0vzp2m jPWSXTxlggrmg40L07525qYFl51TctZjX9mfNg4Uv1Zhb3dH5434TFVLX7QvhoYBn9CJaAWAndcL tdYj0f0HfG+jc3Yc59asbfcc7ghxgJbyqHOPa9v6/S1tycstIIeBppSib/y0cnSsp22mHxubOd2+ GgDO/GbotfaEuTA/R+28H48BbGxxm0Yc+y9nOz92nMrKSmvlypXDjTFjbNsebYwZw8xjlFKjmXmX 90Q0GUAZgJ1Jv/sAACjMC+0eEhQBlGofd9JpV67q7J4kJ8nMSSJKAugioqQxJvN9EkAya1nXbt8n Z82yU+d/d4Y9adSuNQhKAQWFxYiFvrrZmGtedF13zKxZs4qSyWQSQDwYDFZ2dHR0jRgxogu7nn7/ rjHmNsuyCowxu0zk3zFs+sr3u44dWTIyf+eyomE2QoHheGPLXHtL6xuz0X3bYxzA80D31MCe58Uz BZLRaPScWCz2AgBEIpFSIrqKmTcppTYlk8knMmc+lKHHAqOOm0BW98+QVABW4aThzN65G16Ye/K4 sx9/fT9/DT7RpmfOK0Eo/5HNSfs4UrZqWnBFJ5vkDSXnzP/jJ+8tDjUDPqE7jrNKax3VWh/rOM57 RPQ9Y8wv+jsuceioupg8AD9Nv/oMpeiqtdvciSOGWcfm51K+Z4DNre4mz7Pu+tnFIxxg54FA5rLA J6qoqLA7OjpGGWNGG2PGWJY1elhRyX8Yxqf2tr3HzF6y0wWQC6CIiIIAggBCzByk7IIB7HqGYPfv g3nFSKXcvU5HmRMktLW0ViqlKoHuswuZmoNkMolAIIC2tjZorRlAV+allOpKH2R0pefg7yKi5N83 hycee1j+nv0EFLap0a5dfNhJpnnD9q6urs1ZsXYCuIOZS4ioBMCHmXVKqRnM/M103QDy8vL+BKBj 9fOXDe/0gpMSZgSqN5dje7IIAZXCCfnLcUJex8jVq5t+rLV+Ft21EitisdjO+p/S0tK8j3sQ0O5W vfavOdTV9YZdfMxRbBcixTZyqBOp5hUPNi24RI0568mq/WlHHDoGfEIHYJRSn2bmP2itSwH8Kh6P P9TfQQnht3lXjGydN4/LNx+95ZztHXymp7AWSTx12+UjenxJIV11vjH9AgCc9b3jNmxt9Z4+bJQ9 InvblMdQweJlC9989YTd20mjiooKq62tLeh5XtAYE8zNzQ26rhti5iAzB23bDmbedyXac9jKewR7 uYyQTALM3lsAXmXmEBGF0H2HQeZ95gAiBCBERKF0kWsQ3dPr5qfbDTJzqD0VzLX3fPgeAKCj0w14 iR01ruvCsqxOrfU6Zl5njFlHROsALEnPVZBfXl5+WG5u7sa2trY/EtEiz/NKlFIlCxcu3A4AeZwa tpqOVq9tOAcjigswukiBmfF2WzFWd5ZgTMfiEwCcCgDM/AyyCnoDgcB7WuuxAFoA3Ok4zp1A91TD zHxfVoFkleM47w5LdP1H57DjJ768+Xy0ekVQRPCMiznDneGTU3/+GQBfEzrPm6c2RhvPUlagwnPd 9wMB95nRZz69wc8+RN8aDAkdtbW1K4G9jyiEGErSNQHPpV994icXj3795iebnt+wnc4bU2QVKwUk ugzWbnPXecZc/jG7cvoAwQWwY3/6Ous/g8807/C+WDzM2nnenZmxodndUDip/LL0VL+9dtb1Zd9q S/DPR+TTLlPtMQNJBLd37dj+EIAJRDQhfZviieg+aNgZExHBdV20tbUZAJuMMWuVUuuIaJ3WeioR rT3r1hXrL/3evNCYMYWw07MOExGGF+Zi87bxQN5nXmB+6AkAxUTUtFuYLwMYi+6Cya2ZhUqpkcaY KzPfE1E9gHdTnHvmH7fODRQXj8LYYHdfhhn/2D4HXWrTiMvPX3nhu2uTJwHYAGC94ziPo4czB65/ bu6oJuu9l+1h46dawaJ8m5PGa1//o41/ufT6sec88VhP2hQH36BI6EIIf91yyZgv3/jYxrmtndbV AI1g8GK3Czfc/sUSX0dk7dT5jY3NOePaOr2ywlx7ZMo1iW0dZquB9407Lx7rSzIHgJbCll+r1qJr c4PBo3ODmXoBYN02t0UF8r/r1NY+vNsuNGvWrBGu605QSh1mjJmQnpvgsKykPwVAWXbSt0NF2JEK 7kzm2fIL8vGPxiNPB1BARF3pywL/v717D6+quvMG/v2tvc8l5AaEcJNUDcEqQeCcdQITaadYOzre +vqqwYq1jvTytPYynbavU7St6KC1vh0da31rx2u1Khpr27FVx3pJbZkYknVCqdG2YBCtQLhDQnIu e6/f+0dOaAgJYDz74AO/z/PkCdmcrO/ZSc5vnb332mstApBm5jSAt4hobe7fRfF4/HO5x2WttZ9W SoXRf8bBi8Viid/2nHlcUflYRMN/y1JEmDRuDFq7zix5c+sDCQBfy/3XTgD7Ol6t9T0APsrMm4jo ZWPMvlsec6sC9qXT6Y0D0yM7ITzil50695Xu07Bx90SUhHrV7NLXp07ufe77G3994cqp5z65b+Di e8UvLXS3pKd8m1ldRIQwsf2L53lXTT2/MW9/D8cq6dCFOEbduHjyowAeDTLjtkVVfQDOueaRrtk9 vd5plvFOKO3+7oYrKw9YVve9uOOcGelrHun6+7e2ZR9xFD7oOlAZDxkP6vrll1QMNwkVr1q1ajv6 j5TXjNRu7nT4VMdxjvN9f1q0fOLJrKL/AqB46GMVAD/TN42IpgF/m5MA2H9Q4tBtvu/vm7lwX1tK 4Y9d/OHa9AAAFolJREFUlThl8oElmojA5DjWGTuPaNcTuTcIvYlE4mJrbZfrul2+72cB+EQ0h5m3 DWl7hbX2A6FQCPF4/Lb/vm7addtwwpynuy5FaUk5SscreD6jaedkHO9OmFKPB67UWt8CYILrurta Wlp6MMqpt3nZMvV274bf/d7/VF2Xf4LDUIiqvTM+7PzUbHq64SNTzml8bTTtjuR7v/xTaXGm50ZP FZ2uOL0eaX/5Vy6rW5XPjPcT6dCFEIG7afGkNThIx5mnjC4AZyx7nMM7ervGfv9Tk4ee8n7XcvfA r8O+1fOSWPhPd15qLaYP6YOxq9fvrqw57XMA/iuTyUSi0WjE87xIKBSK+L4fsdZGHMeJWGsjSqlo 7nOEmSODxw4MjBfYm3Uv8n2eGVIHng3Y1ePBS/d8bPAbBGb+LBHB9/fd0ZtG//TAUxOJxH8xcxcz dwFoYebVRBQF8NaajfaUVydeNr5iwjiEc/dXhF1C5fgSrN8+C9OcWacp9cZp1trf5KZKtkQ0s62t 7c8AoLW+AMAV6L/+v8MY8/WBJxCLxeY4jjOOiHYppba9U9d57pOppfOKyyepSbnFlTy/HM/u+MKE 0517nwQaT34vv6/B7lvxQnxbxvkfp+zESEnEQdbnWXt27znnrp81//jzF9V/MV857yfSoQshjirL FlEGwHvuzEfikbpq/bbMw8dXhCa4Tv9sNbt6/dTOHn/NTYunPobLDOMwxxgczNnfmPni1j3+E1UV ar9BhakMwyka31Q8JnpOd3d2olJq0sDgPQCTmXkSgEkDo/eJaDozJ4C/nRUY9PnM61b04sJ/LtrX mQ9WUlKM59eeMtPan38SQDsRhQCErLUXaa13MHOamf+RiC7IfUtPPB7/hVIqba1NEdFyZj6PmcHM ba3ps8ojxZWqeNBKia5DmFRRit9vaahe+3RLZMY5z6QTicS11tq9Sqk9AFYOvHmora0Nl5SUTASw 51BnCnY5U16aWFkZCbu5uy5cwpiJY52NXfbz9zz+wk8+s+iMvB6pb3n2Ex8GqyssoQLWPj2paPP9 dPr+UyEHTTp0IYR4F5Y3VDx37ePbzu3s8n5IhInMnLaMpzbvqlz6XhbqOSDn0sqm7zy2ZcXb27Of qCxzKlxF6Mlwtmunt8FL47KmpqYU+m+1O+S154GOMJvNTiKiyUQ0aaDjd8dUTvdZnYP+qwb7cQhY v8U7Dv1H4PsuGRDRjbnPQ7+lhIheHno7Y+57E+t7P4AJFQd2O64ieBQNXXlz9xvxeDzLzCcM3DII 4K9a661E5DNz2PO82QCgtQYztyqltjOzT0TjrLU1RJQdX1HJFBpTOtCZDyAAZeVjFe2k6wGcfaif 2+Hqeuayu+CWXuyWTKkg5cBP7TxrS4/68o7fNHy4kJMBSYcuhBDv0o2LJqwCMC/onBsumfilax7e +rO9qcynFanJPuj5HqRuv+3yqne1RkVucaC/5j72s2xZm9prt21gxrSh/XN3n5+Oln1gqbX2vwcu FziOE/F9Pzr4coFSKmKtjQ69bEBE0cGXFPamcX4FqGzocwAAy8zplLebiFTueboAXCIKMfNUZnZy /84QkcPMRERxZnaA/edAmFg59oBxCQNcRcj4PLuhocFpbGz0tdaPAUgA2MnMzyaTyW8NPDa3MJFP RDs9z1uzevXqgVtIB35SvPVXnziXwmUN7tjp+24DdYunFKnQmNrs7nX3Arj4EL+evJEOXQgh3sdu uqzyJQAvBdX+smVkv/PY5hve2eHdctx4Z+xAp9iTsv6OHvv6xql/94P29va8LKd7fnHNp/Z0991X MbZovxP8mSwjY6Ovtq56ZfYom1ZaayccDruZTKZ4XAQnpNNeC/dPgLifVDqDrj81Te3s7NwQj8cf ZmaXiDz0r0kwbfBjmfkWAGW5xZa+DWA5AOTmE3gLwK7km31F8+adeuAgyXC5YnLrcu8zCjIH+QhT MQghhDhW3HDJ5Lu7e+0X127KvPHGluzGtZuyb72z0/sZZZ2P5GZKzItll0x+aHsvmrbvyWQsA2Cg N22xYWtqc082dMEhGxiZNcZkm5ub+4wx235434q2451XX9uxu2+/O/P70oz03i1e88sv3oX+o/+r iehC9I95+K5S6ptD2r2AiC4G8Fki+vXARs/zFPrfZG0oG+O6pA5cYhkAFDnum03/dOA8ywEZblbG o4bW+t+ZuW/wKRQhhBAjW/bUxjHLzpvSl8/xAPu1v4yVf8rWLzlEnwTRGMuczML7+ncXTdl66O8+ fH/65dWlHTxv1Rte/KRISCnPZ1uCrtTs8Ev/q/68pc8vXLjQ7enp+QdmvhzABeif7tgC+A0zP+R5 3i8OtnLhgK5nFt8aKj/xqyoybsigAYv01tV/mXT2Ix/M534djHToQgghjlpvP7V4xkacfMY4teG1 7N49r9QuaswMfcz8+fPLstnshUR0OYDT0d839gB40lr7YE1NTVNuHYUDbPjV4nFRV60Ojz/5A+RE AQAMRnbn2p3ct2vJpPMf/0WAu7cf6dCFEEKInLq6uipr7WIAlwOozW1+h5kfVko91NbW9urQ79ny 1OIZHMKjpCJToEKKsnvTvp/+5uTznlhRyOcug+KEEEKInNbW1rcBfA/ALYlEYi6ATzHzpUR0NTNf rbVeDeAhAI8aYzYBwP/bdudWO8Z/01FcqcAhj7E9DVoLPFHQ5y5H6EIIIcRBHOx6eyhSuuLMf35s aVVFpKY4SgoAspbx1pbs1pSl83K3OBaEHKELIYQQB5FbZfAZAM8Mud5+5omJj581sYxQHP3b8XFI EY6fGKpctylzD4DR3or3rslta0IIIcRhamlp2ZNMJh8wxpyhlDp+2qlnbRhbfOCdaa4ihFwav+xx Dg/TTCCkQxdCCCFGobW19e3i8onr/BHmjWEmi9dQsPncpUMXQgghRskj9fDObrtn6PZUxsL6vG7Z MhrVUrOjIR26EEIIMUrLLx7/wI69XsuW3V63bwFmoDtl7YZt/pvZ/uvsBSOD4oQQQojRIuIbmM/6 VuOWz+/cy58EbIll/N7pDV1745XjdhXyqUiHLoQQQrwXRLwc+BH6P44YOeUuhBBCHAWkQxdCCCGO AtKhCyGEEEcB6dCFEEKIo8BRPSiOiIiZtdb6C0f6uQghhBCHkkql7u3o6DhgidfDcVR36OFw+OZ0 On0XEX1klE38AzNvJ6JkXp/YgU5g5lkAXiKivUEGMfNZALqIaHWQOQCqmXkmEb0AoC/IIGY+G8Bf ieiPAefUADgZwHNENKoX3LvIOhfAm0TUEXDOSQBOYuZnlVKBzWjFzATgXABvENHrQeXksk4BMB3A 00SBTurhMPPZRLQWwJ8DzAEz1wI4kYh+FWQOgBAzn0VEfwawNsggZj4VQBURPR1wThTAx5j5daXU G0FmAZjDzFOI6NnRNhCNRn8CIND6ckzSWm/SWj9SgJyrtNastZ5egKwdWuv7C5DzNa01z58/f1oB svbG4/G7CpCzVGvNsVissgBZntb69qBzEonEMq01L1iwoDTInIULF7paa04kErcEmQMAWuvvaq25 trY20Dm0Z8+eXZx73f5bkDkAEI/Hb9VaDz+/aB7V19ePz/2erg06S2t9p9Y6VYCcKbnf0zeCzorH 4/dqrXcHnTMSuYYuhBBCHAWkQxdCCCGOAtKhH4S1VjuO8+Wgc1Kp1IOu61aVlpZuCDrL87xTw+Hw 14POiUajd7uuW1VUVLQ56CzP807KZrNLg85xXfdO13WrampqdhQg6wTf968LOsdxnFtd161auXJl oGM3mpqafNd1qzzPuynInJybXdet6ujoyAYZsmbNmj7XdasAfD/IHACw1t6QywpUc3PzLtd1qxzH uSPorEwm8y3XdWuCzqmurt7ium5VNBr9cdBZkUjk/3ieNzPoHCGEEEIIIYQQQgghhBBCCCGEEEII IYQQ4qhHR/oJvJ/F4/FPEtFOY8yvg8rQWjcA+BaAEwE8lkql/qWjo6Mn3zmJRGIhM/8AwBQA3zfG 3AIg0Ikq5syZc5zruv9jjDk+iPbj8fhniejOQZt+ZYy5MIisuXPnjnUc524AZxPRi0qpK1etWrU9 nxmxWOwMpdQzQ7eXlpaWNTU15X0CjlgsdrxS6n4AMQB3VFdXX9/Y2OjnOyeRSMwC8J/MPAPAv+f+ 9vI6g9twr9W6uroqZv4pM88G8ENjzHX5yB2pLuS7XgzXXlD1YrisIGrGwX5G+a4Xw2UFUTOGyylE vRiO3LY2gng8voiIHspNWRmIurq6amb+aiqVWmCMGcvMq6LR6H35ztFaT2DmH7qu+yEAUwHMTCQS H893zhDkuu7PAAQ5W9ffKaVONsaEcx+BdOYAyHGcl6y1txpjynzfv91a+9N8h7S3t78waF/CAL7B zNcG0ZkDIKXUb4no66WlpZVEVLp+/for8h0ye/bsYmZe6fv+Z0pLS6cws9Jafy2fGSO8VpW1tomZ vwRgIoCyeDz+nvdvpLqQ73oxXHtB1YvhsoKoGYf4GeW1XhwkK681Y4ScgtSL4RzVc7mPltZ6Kfrf lS4PMqe1tbUTwIKBr4noAQD/me8cY8w2ALMGvo7H4/cQ0fkAfpnvrAGJRGIJMz8BILB73oloQW9v 71+Dan+A1roaQFt7e3sz0N/xAngh4MwpAL4wffr0Wclk/pcSWLBgQUkqlYq0tbW15/J+DODfAOT1 DWUkEqm31t7T3t7+GgAsXLjw1u7u7k3I073bI71W582bV+P7/lpjzB8BIBaLLVdKvQxg1NMej5SV 73oxUntB1IuRsvJdMw71M8pnvThYVj5rxkH+HgpeLwbIEfowwuHwfxhjvsLMgU+KMlhu8Y+mIDNq amoiRPQV3/cDW+Rh9uzZE5n5f6dSqcDmV29oaHAAHF9UVHSH1npPPB5/cP78+WVBZOUW++jMzT29 Ox6PP1hbW1sSRNYgtzPz54I4BQ4AK1eu7AHQG4vFZqL/0ttlzPybfOcwcwjAvrmtt27dagGMramp ieSj/ZFeq77vnwBg5cDX7e3t29G/sM6oa95IWfmuF4fbXj7qxeFk5aNmHCwn3/VipKx814yRco5Q vQAgHfqwmpubA10dbDj19fVFRLTCcZwlQWXE4/HZ5eXl6wDMCofDQa22RqFQ6CHHca4oKysLpDMC gM7OzokAtjPzsurq6nEAXvJ9/6kgsoioAsB3iOhHxphxSqnfBnFpZEBu8ZfTksnk74PKQP+10MVK qQ6ttQXQkE6nH8h3iOd5zQC+mDvjQNFo9DMAUF5e7uSj/ZFeq0RUBmDXoE0WALTWo84dKSvf9eJw 2stXvThUVr5qxkFy8l4vRsrKd804yN9eQevFYNKhvw/U19cXpdPp55l5yapVq9YHlZNMJtcYY6qs tUs8z1sVREYikbiEmR8MegCIMWaTMWaaMWZTY2Ojn0wmH2BmHcQ7YSJKA1jR1tb2KgDb1tZ2P4AL tNahfGcBgFKqgZm/iwAHLcZisakAfprNZicZYxxmXhqJRPI++HP16tW7mPliACu11puJ6B0Am6ur q9P5zhrMWtvNzINXkCMAMMYE9iazUApVL4Dga0ah6gVQuJpR6HoxmHToR9iCBQtKs9nsC0qpJclk 0hQis729/RUAH8zXac/BmPlLRPQTrXUmk8l0A5istc4EvZQl+gs2pdPpvM/fTUR/AjBm6Pbq6uqg 1tpeYq0N7M4KAHAcpx7APWvWrNkCwCaTyZ8T0WkLFy6M5jsrmUz+zhhTbYyZFAqFngPQHdSlhAFE tI6I5g18rbWuQP/63kGujx64I1EvgOBqxhGsF0BANeMI1It9pEM/gmpra8OpVOplx3EWtbW1/Tmo nEQiMUtr/WJ9fX0RANJaXwrguXXr1uX9KMkY8yFjjGuMCWez2XIAW4wx4Y6Ojkw+c3L79LLWegwA FY/HPwPgl0HsU3Fx8asAPhqLxeag/+d3ORE9FkSnlLvOp2fMmPF2vtsejJlbAXy6vr5+PACqq6v7 GIA38j2ift68eRVa67aamppIQ0ODk81mryeiwBedMcasB5DQWp8MQBHR1cz8f4PODVKh6gVQuJpR qHoBFK5mFLJeDCUd+hEUjUYvBTDX87xOrXVm4AN5/r20tbW9SkT3ZzKZP2ituwEsSKVSF+UzYzjF xcUWAR0R5fbpbgCrtdZ7iCi2e/fuK4PIampq8pRScaXUbVrrFBF9LBQKfS6IrA0bNowFsCHoF78x 5i1m/nImk3lBa91rrV0C4KP5zsmdSv1eeXn5Xzo7Ozcy8+a2trYV+c4ZhlVK/T0R3ae13gMAyWTy 3gLkBqZQ9QI4MjUjyHoBFK5mFLJeCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII IYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEMYGO9BMQQgQrkUjcwsxfHen/jTFR5GmVq7lz545V Sp2eTCZ/no/2hBCHzz3ST0AIESxmdgCsNMacHnSW4zjfBjAGgHToQhSYrIcuxLGBj/QTEEIES47Q hRADKB6PX0ZEXwVQC+BtAHcYY+7EoFPyiUTi4wC+ycxziOgPzHybMaZRa30ngKsAQGv96XA4XN7c 3JxKJBIXMvO1AD4IoIWZr0kmk68MtKe17iKipcx8FYDp1tqF7e3tfyjgfgtxVJAjdCEEACAejy8l oiUAzjDGjFFKnQHgX7XWnxj0mM8y8x2e511hjCkhogsB3JhIJD5ujPkiEf0HgLuNMeHm5uY+rfU3 mflmpdTFxphSpdS/EtHz8Xj8rEHRIWb+XjgcPtP3/ROVUq8VeNeFOCrIEboQAg0NDU5nZ+d1Sqn5 ra2tuwGgtbX1ba31Q8z8jwAe0VqHAPzIWvvR1atXr809ZjOAkwbaYWYLwAeA2traEgA3WWvnGmM6 c49vTSQSXwDwKIAJyB35M/Ntzc3NOwq3x0IcfaRDF+LYcLrWOjPM9qnGmG2NjY0+gIjWulxr/SEA JxPRR5j5YqXU0wCglKqy1jrhcHj14QRGIpFZAFBeXt4xeHs2m33Rdd1xsVhscnt7+8bc5tdHv2tC CEA6dCGOFU2HGuWutf4KgNsBPA3gWSK6GcAmANMBwPO88UopeJ7XdziBRFQBAE1NTd7g7SUlJXtS qRRCoVDJoM2H1aYQYmTSoQtxbDjoKPc5c+YcB+B2Iprf1ta2amB7IpEIMTMBQCgU2uP7PlzXLQKQ PVSgtXaHUgpa65AxZt/je3t7S5VSIKLdo98dIcRQMihOCAHXdU8EgJKSkjWDtzPzmbn72LF37943 AdhsNjvnIE0xESkACIfDHQBARLMGP4CIPgRgb0tLy9b87YEQQjp0IQRc110DAD09PYsAUE1NTSQe j18DYCYRlQFAR0dHBsDXiOjuWCw2FQAWLFhQmkgkntFafwMAmLmLmU9oaGhwWlpaeojoemZ+pK6u rgoAYrHYHCK6m5kvR55mpxNC9JMOXQiBlpaWPdba05j5Kq11qry8PAlgGxE1AKhraGhwAMAYczuA byulntNaZ1Kp1G+ttU8aY24FgFAo9CCA4zo7O/tisdjktra264noemvtM1rrjOM4PwBwgUwNK4QQ QgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII IYQQQgghhBBCCCGEEEIIIYQQQhTO/wf6RoNmX7Mu2QAAAABJRU5ErkJggk== ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image008.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image009.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAdgAAABwCAYAAAC94WGuAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AAF32SURBVHhe7b0HeBRXmi48u3f+2d07e/ffG2Y2 zNgoIoloMLZnx2HsuZODSQJENNgYkNRRwmQQQeQkBMqxW6mVIzmIjEAgkUwQYGwcsDFjbJyGsa3v fu+pKqklVatbOdX7PO/TrepTJ3xV+t76Tp3wvZ4C68HLFHXgOu04WEOx/Kkwjv/uvbxO8QevUcyh Gooqv0XR/Jm8/zyVnLxQLZtFFTUPamckHb4UuePANWaNOg/diow8cDNy696ayPyqD8hW8Y7rPH2H suyYXfkupZ14i+L3v0nxB66ptMM1xu+7RJnHrtPWorOR1sM3I/de+SzyyoPvIuVmadCgQYOG9kZh 5Z2Pnp6zhYYEJ9EAg4UGGDP7CDNokDGNfM2Z5B2SS76mLBoeFEUZJ2+QbBpV5FbeuvtSyA4aYrDS ED5f4VBTeh2HGJny52BDWlNyepfJ6QdxWQN1FhrIn+ptcc7BugwapkunJ/VWeobzecGcRr9+I53G rCig2ZH7yBy/e2/p1c/2XnpYu0RuqgYNGjRoaAtmbd9JA/UW8jLYyNuUQ159hN7GbPLBd3MOeYTk ky8L7q/mJdLpj76JkE2jite2FdHA4ETqb8hl5tXRx5hfT7ZlPbOaoX06if1BY1Y9Wfjr/85WbYsr dDPlUz9zAbmZc8nDlE39zVnkzULrzdfelx+s/IKTaVBwHL00L4Vmbi+h+PKrb1d+WDtYbrYGDRo0 aGgJjr71+dEhwTHkYc4nr5Ai6q/PZGdrz6xGf2c4oH2axlRLD6qlVaiWHlRLq1AtPaiWNpPFjAXO xKJmtpEfR5oj9LG0IvNo89Hr2fdXPW1IYNHLYSFkgbajrzGnnsJuHUX19qi3XWEmi6qNHg/JJrcQ G7mzuPbj6NjdnM4PGGnkacqkfnoWYG4HhHeAMZWGG+PpyVlb6JXNJZRR8S7lXL78g/Jy+r5sCg0a NGjQ0ByWpe6hIaY06hdSQh4chXmzI/Y05dXRy+57b6RHSKF4uPBlgXnGnEgH3vt2j2waVayyHOQo L5keMxaxOOU0oEcIR4YKTQXkYeS8BfHdEZU09XQ3gQUOmK/aDlfoLSLtHH4YkOhryuVoGw8KTH02 eehz6TFdFke6HPHOzafHg9B9nk1DOLofxhHui3OTaG3+WTp269N1sjk0aNCgQYMaDr3zVfwLoQk0 UG8lLyNEgR08O3AvdroKvfm4/d+9id74NNjILTiD/Azp9GpECd36onaRbJ4mOHDri23Pv8GiY2B7 BVs4j+a6a9luHcVG7XCV6P5Hmx0SvzdoQ/0xvMP101lpiM5Cz5qTaW1BNe26et9fNo0GDRo0aLDH mqLTNFSfzNFMpnCwXkaIK0c6do61N1OICLfbhyPOgUGxZKl4723ZNKrYvvc6R68pbC8WZGM62yxb Nd/eSLz7lYQ4lwYYsuhJfRK9vDiBSi7e+Ztsni7H6dOnF2/dum1xWloGJcSnUGJiskPu2bPnY/m0 TofNZgtNSuL6JaQyU+jkycqn5Z96DbKysiguNoni45IpPT19unxYg4a+gWO3P/v97xYmUn99Gket iIqyyceIATZ9RzQQDfYzFpC3Lo1+PT+Rrn9ZO1o2TxMcv/nliJeXWGmQKUs6l0XG29SHbMX3B7qZ 3U1F5GYoJG99Ng3SJdOTuh0UFFXylzO3PgmSTdXpqKystK5cuZKmTp1K/v7jady4CTR27DiaMH6y Q4aHh9+VT+90WK3WBwEBk2ic/0TyHzuBjhw5ZpJ/6jV4/fXXRfvApKTUU/JhDRr6BqyHr74zwhhP niH55GYuFA4Ug2F8jBzNqjjY3kghsKYCGma20o49F5sd3LTn8n16KjiOvHSZ9JjORp4GacR1XyFG MnvyA4V4jWAu5c8S6qfHg0YGDTNZaMLKDMo+++Hrsrk6DdXV1ScgrBMnsjNnYQUVkVUcvMLx4ybV cdGiZTVyFp2OtLS0BxMnThb1GDtmPB07drLXCeysWXNo0sSpFDBhiiawGvoWKj+q/c2siCLy06UI gelnLmKxwUjYviaw0ucLIXF0tObhj2TzNMH5u7U/fH1rKQ0OTiFPI6I4DBpqml9vpq/RyvdGmujh 8DJw+zny9+R7xwNRLbrZjVn0p7As2nv5oy9ls3UKpk59hcaPDxCiOmHCRBG5vvba67Rx42ZaHb6+ Ades3lDH3Nzcm3IWnY7ExMQH9Q8AAb1SYGfPDhTtQ29BaqpFE1gNfQe7bnxCw4NiyFufQe7mfKmL 2JxNnqCKc+2t7G+00SBdIi1Ma35qzrn7j+hnBsx7tbGtZHv1oe5hsL8pne3FD2B4/4wpSUxMTcI7 WYyYfsxYTH78cPabhRY6/NZnzdqzvbBq5VryH8viypw0cZoQ1zVr1n12+/btn8lJmsWJEyd+HB0d /WOr1SqYn5//Y/mnBsBvSjp85uTk/DNHof+C79HR0rkKlXR79+5VzQtoicCeP39e5IU8UT/UWf5J FUij1AXnEdHf43tYWNiPN2/e/E9Ic/bs2f9j3260wZ75+Xt/XF5e/a8iQydAfZR8FF6+fNkye3aQ uC7OBJbT/uDE3vo88F3+SRX25SnXKzs7+0cbN24UtheJNGjoKty+Tf84K/qQWBmovxg5CqHIZMHI 4kg2j9xYcNUcbG8k5sH+lzEWgnBWNo8qFqQepuEhWSJ6RcQmRb59S2DdMBWJP8W7ehZWRWRxD3lC ZGEb/uwfbKGfGePp0FsPO1RkDx8+7Ddl8nQa+bI/TZ40ncaMHk9LlixrUZlHjx69hK7lgIAAmjJl CkfAE6ikpOS/5J8FysrKjk2ePFl0QU+bNk1w797960wmc9KkSVP4OH6r56RJ4CTxPjg0NJSKiopu X7p0yU/OTsAVgT127NjSpKQk0uv1om5KHV977TVau3YtscBvq65uKIJXr159yWAwiLoibUREBEVF RYk6jxkzhlhgtyAdt+kO6ojjSDd50isNOHXKDJozWycGYXE5/yEyb4TS0tLnN23aRK/OmEUTA6Su YBDf8bCD69FcBHvhwoXni4t20vx5i+mVaa+JMnE98X1u6HzKy8unnTt39peT1wE2gS1Qf6PRSHwN afbs2fxwNZbmzp3bKQ92GjQ4xNEbny4aYUglH30WeTD7s+PE+zUIrDtHZhAQNQfbU4mIXETlYhSs NK3G01zAn3ksEOmk21FCFR89Giqbpwmq/lI78amg7dRvdjp5GQpEFOvNka8HR/v201h6O/HghTm4 iN4xmlhZXEMaWSwNkPMKsZGbyUZ+oXn0bEgqHXv7szuyGdsdGRkZZ6UBS1No1MhxwqlHR8cKAWkJ Vq5ceWrcuPHsoP3J338cGQzGOifNYvvUa6/NZIeOruexQrgsFstt/BYTE8ei5S+iZnRNo5ta6qoe x5/orp7Av4/lv/1p+fLlVF5ePkJkyhAC6y8J7PhxE/m3I3UCyxHn32VlZrOAQPADCHVDXsgTHDdu nCB+W7hwEZ0+fXq+fOr33nrrrfFz5gSKOuD36dOn0+jRo/m7dJ7JZApGutLSsjtoE/KdGCC9C7an 0iOA+i1btpw4UmwgsgcPHkycNWsW1weDtMYz0RapJ0F6aJDedzsS2OjohJmzZgXS2DEThCgjDb4j Pf7Gd9h05sxZlJOTkyefJpCQkMDlwh4B9Mor08W1wd+4NhBcOZkGDV2DJWnHaIAhk4WVow2Zag61 t1BZZEEIAosAoi3P0BLxOUifSvF7z1pl06hic9m5hwN1VnI3lPBDST4N1KdxvpliucG+JLDNkkUW 3e2eZiv1C8mkx/hBxE+fSwFrc2nf9Y4Z+LR9+3YWknqHDie9bduOyq1bt27cvBncvHHr1kiHTE9P F8J0/PjxEYsXLxVCCcFEPuvWbngPvy1fvko48tGjx4qoacWKFR/hOBAXB0cPAZwgxHDDhk20ZUsE rVu3HkLGv40XES2EAtwWEVXn/DkKqxPYceMC6MiReoFF1Dh6FIuo+I3TMM3mUFq8eLGIiBFNS4IP IQ8gs6k+apMENkicC7HD+2lEwPPmvSHOtdlsBUi3b9+BO4GBwWTQh1BwkJF0waYGRBSL84XYcTmY ciMKYOzcuW+EXm8UdhLl+I9noZvBYr+YVoevI3TbL1oYxgIL4ZZGbNsLLD+05EO8ld+Qx8zX5tCy pSsFp019VZSN38DJk6dSWdlOUW8gLi6Oj0u/w3YhIXPpjTfmcxvnESJqOZkGDZ2PK59/V/RCSDz5 Yk3bPiawmMcpoiz8bcilgRyx/zbMRmff+3y8bJ4muPbld+G/nR/HwppBboYy8hbCgfmvHO1rAltP zJ1G97CJo3xTBrkb88k7OI+G6eIpOKaEbj6kWbJJ2w2YlqNETErkBTGCmEEopShPEjcQYmRPRJVy Vt/Lzc0dAmHCeUpX58IFS9mJo/t4khDQmTNn0qVLl16UT2kgsBAy+bDArVu3ntq1a9f7EAfkiXTo /izKL52G3+0FVhpFLE3T2b//cDzEFeUrAhkTE7PpypWaP+H3mpqaf+C6LkKUinIhfgET+MEiIupr /A6BhXAiX3DNmnXNCk5Nzf1/qXmzZlhNzdt/sqclOe1VCB3qgroHBQXV5YM5xChbiVCXLl1K+/fv Hyn/LFB19kIsuu3H+U8SQqgILNtvqtFoFscgsLDBtojtdOLEadE+YO/eg7/ZsH6TyBtlwP7BwXo6 d+7cf+L32NhYPi6Vr9MZ6eLFiw269DVo6DJs3V1VO0CXLK2j20cEFiIISgsl4L0pi60+i4brE2hD 6aVmHVDMoSsHhwbHkJsukzzMO1mYCwlrAYsuYjlftTL7GvFu2lNscID1kNPJQ5fN91ixsPNQfRJF Fld8Ipu03QCBRbdknbiyQ1ZGEkMAEHHiUyGEwl5wIQxyVgL5+QWVEFIleoLAIEKCiE2bNp1KS0u9 5aQC9gI7Zco01fuouLhUlIU8kGdWVp6Ye6sILOrtz5/KPNiFC5Y8EoO10EXK6TMy6iNHe6SmpoZB vBEhQ2DxHlT+6XtBQbo6e6xbt6HZ+7s5IBKF0CN6RzReWVn5H2fPvv/fkT/aDDtNnjyNDh069Ef5 lDqcr7oUK3UxNxTYlJSUNeIa8TG0EZH5uXNXhXDa4+TJk/9r9qxgUQZsjLauWbNGvI/lBw62p7/4 LTjYQFeu3NAEVkP3wP+dm0juegxoUneUvZ1YDhKffkHJ9MeFyXTo7b8tk02jignhWTTAzILB57mz YGBqihQJQ6hB9XL6GkUvAQusr8FGA/n+woMM1k12MxWRlyGfXjTuoOi9F8T7v/YCO1whIngHKxwx i0po6Buiy3D+/IW0cOFCmjdvQQPiuMLk5ORaOas6bNq05R4G6SjvAyeMnyQi0J07dzdJC4FVhBsC LB9ugLCwsL+HCEKAISrR0XEiHQQW56HOY8eOrxPY2bODRToIGwT+zJmzq3BcDRA6CDciYOQjHxbz TxWBXb9+o0OBffPNq7RyxRoym9hm5nniE13G+D7vjUUi4kZd0Ea8qz1y5Mh/YPQ02gKRhM3Dlq1Q zf/SpTdjp0x+heshdfMq82AxQAnnS/WbRCkpFodzkbESF8rAAwrK27Vrj2I7/psja85DE1gN3QaW 4+/VDHw9niOxPta1qQgiRrtikA4LwHB9Ii1M3O3Q+QBFle9G/VdoKvmwkGLkrLdZ2vhAsZ0kso3K 6qPEAhQYSOarzxaEvfCOGpsWYPOCAfpUmrqpkC7e/+ZXsnnbjLi4uIcQEcWJQxhzcvJaPMipMfD+ EQIriUCAiLKuXn3LR/65Dq4ILKbIICpGGohFA4Hl6FgRcWWQ06szpNWP0B5EpTU1NxwKLN47onyM 1kV95cPfQ1e3M4E9ePDgHUSmqBPSgcgH5yEvEHUQv8sCu3v3biGwoi0seEi7YcNm1fyFwAohbSiw O3bsELbAMZzPeToU2JzsApFGlMXnlJSUibIwyEkTWA3dCje/rB3xyoZiGmrANBOMGO5D4iAEFiN/ MUI6n3zY8f/MmEClFz/OlM2jigUp5SwMaUJQsfiGL97fcl6I1sT6xZrA1tHThHfb2P4vh7AvLqbz YEs83GvYMxc7NQ0Kjifr0euqDrk1KCsry4WjhjjA2YIQPfnnVqGgoOhTRVxFJMvRJd4BsgA2ydfV CBYRGNJBrFJSrCKdIrA4hi7eugh2ljRACREspq1UVZ13KLAYaISykR7vSuXDDbqIHQnsjBmviW7X USOlQV0Qcwx2CpyjF58YdITykUdDgS0XEawiknPnzueHj6v/Q862DnUCy2nsBTY9PV0IpsiXabPZ HApscpJVEnrZfkePHhdtQRcxRlZrAquh2yDvwlv5P9PFkedMrNKUwWyDOIhpGcr3hvlAjBySz1E9 3p6Uy/DEQhCintliWo0Y3CQLrJ8hiwLWF6k6HgV7L941vBSSIEbGIj+8V+yvt4r8lHmw4p0ufzqi Uqf677lSveRjXcK6a4e6Y5qRNNXIvq6tIaZ4eZnShMB6GQrFnFm3ENxnaeSnz6Qfm3ezvbJo9OJ4 Siu/8FPZzG3GrNelaE0RFAwKKi4uy5V/bhHOnDlzVESbcn4QPwgsxASjZM+fvzRXTirgisCmp2cK QUFXLvJctCisySAnvOdVBjmFLZMGboFIn5OTvx/HG2PfvoOBaKsof9xEmv7KTFG+MopYsYeawF65 cnU/xBXChXQYuSv/1AAb1m8ReUgR5HghsFgUAl3waDMeAvDwER0dPUg+pQ71Eaz0DlYR2NjY2DU4 V4mW+QHE4f8h5seiDNgOdVDewXJ5ssBOFIOfNIHV0OUwRJeRb2AyOzzsltN6cYVoYdUe7LgjNhtn pwnCWWN+pDTnVJpLK/ZDFSzkY8qyeh3F+j1S3UzF9Li5VHRPYpNxMa0Gc37NRdQvOJNG8INGypFr ze6as9B69OQgfhDxgGCg7bBZC+2mLKcIIYZNlHqhvhA5e2HrLGIUtCAiTnMmeZq5jeJ6FZOHsaRJ G1ynJNjie13bZJsx3fl+cddn0xBDKq3OO+PQqbYUCfEpF0e+PFY4a+GMOeLBQgVRO2JLjx4+kXDu THUDVp+7WMeqqovhcjbfq6iomob3jxAUCALyQzSHv5V3sqEh8xvUOzx89TGIBURu+vRXm7SpsKDk U5yLekEwERVWVp6XBDbRyhGsJIL4LC+XBDYnu+gWyldGEhsNoVjS8Rn8puDChas+GzdsFfVEvviM 3BYtdjSqG0XMdYIoqQ1yqqg4u1+x18SAabRurXo37+ZN2+rqN47FbPfuI2IubEnxrrqHALQvxPwG 7dlzMFGcJOP48dOxYpCYfH5qUroQ2MrK6jV4GMAxnIsBXsXFu5r8L9oycq2oH9oG22PRi/PnzwuB xe5D4oGFRR+jm69cuaIJrIauw56LH6z+hSlGjH6Fc/cMRmTR2EG6xsYCi+k+isBCROBMfTiaUYRX kMtF2fhscLydCTFFGSLqRD2MmTRIb6EBwRbyNWOVoXz+LZN+GZpA1Q/oCdk8TXDizpdPjVxqIT8W IQi2mh1cIcoaYLDSYH0Kf1rYXqgbVkDK4HqlCdt1Nr3FwhBoEzYqQHQOSqsxSat6dQxxPfD+GtOd XjDG0Pl73+6Tzd1mYF1hdHXCmcPp4xPEKFb71YlADNxRGL6qfgrL0iUr7yrOHFyxfDXt31/+XFCg QfyN/PAZE51Ut87y1q0RdyFkiphh+gmIeamIrBUBxHkQi62bI+vmW0NglXraCywAIUZdX/7zGHE+ um83b9halZ2dfzQ2JvEopg8hPyF8fD4eKC5duvpz+XTRRazUy1EXMcQPeYwZjQh4shDyxYvCaNHC ZYL4rgihUg4GOeHc8vLjI5Ae7UMkijrCnhj1i+5liKHycAIiXWqqJLAAt6HJuUsWr3g3Iz37KMgP D4/QfpyLNEi7b++hunZg8JOIYDWB1dAdsMxSTk+aLOTG0RiWs4Ojdda96ZAiOsmXnbT0HlLKS+pq xNQVDHgRUXJjCufeOUS9ILA+8qpL4oGAHwAGBifS6vxKVaejIPvUOw9+ZogjbEeH6SdNbOAiRVcy l+1rwAbtaeI7uqlRJ1+M5ObvnU5xnWAjPAxhWo20AIevMYOZrtqONhPXgm2J6VG4LwYGxdH6wrNN RuW2FjU1NT+KjY0XUQ26PdFtKXVrStGlI65atVrcB8nJqQ9xrjQdJYDwfrKwsFAsQbhz5+5I5IeR wDgH6dLTM1Lxm9EYkqGMcMVvSIfzpehKGggE4u/t26MQgf0Q5wFJSaliFLFSF/uVnLBqEjYrGDly tDQvV84XdUBe6HrF8T/96WV69dWZFBubPFw+lSPYd15WBBbnYPEL+acGiItNeA8CDhHDA4BSV7Rn 1CgWdv5uXz9QEVhg1669QSgbdUT97O2gtF2xA363X2iioqLiX8LD19T9jk+kwbnIRykPbcRnZqaN 0DUtny5W0MIgJ8xzDgwM1ARWQ9dh/40vpv12MTt3duhu5hIx3aR/MNYgZier5gxdIURHUDkmCSoE BAKL5RaFsLCQSyInCZ0idu1O8Y4VU0P4O0dkPiwUfhw54piYKmIsZFHBJuHp9Jw5ni5/+p1YpUcN x97/6vFp6/M46k3k/HJZYFs/R/inbO/HRbQv1VNaq1fqopc2DUDXbOfSy8Qiasa7UtShiLz1RfyJ 68X24+Nq7Wgzub24F9yC+R7E6wKOYp8PiaNLf/n2nGz2dsHJkyd/FRm54xO8g0SXLYSoMfHeUiGW AMzKypoAocA7VLx/RZpz56puyVkK5OUVPILjxzlIBwHjsv7JYDAl2YsQ3msiDyV/pF2wYBFWITop Z1UHqzX9AdKDKNNeYIHDh0/5RUXFfA6xR9nIVxEipZ47dkR/WVlZ/ZJ8Sh2wXCDWQcaKT5s3q3f/ AiXFuz9BhI5IH/VFnsgb9cbfykAo5Td7gQXOnDm7iB9SPlHSweZKetRTaRv+tljqI1gFO3fuvM82 FOlgR3zCjmgvvs+dO++bI0eORcrJ62CxpMk2mEJms5muXbv2lPyTBg2di4SDV2mILomFJl9ybuxk sedr2wQW0Q+IiIRFCJEpi6wnRykDA6NoVswBmms5Sguth2lp+mFakn6UFqcfY56gxRn82e7k/NPK aQGXMz/9uPgebjtGy3IraeSmfdKiGtxeLHgwJ6Kw2ei14u5XNCw4Tgigt97WYjvZL9rhx0L/Ulgu TdpcRgHr82n8hiJmCX8voCnrczuNk9fnCI5flUG/W2ahp/khY1BgAvkFcWQdzPU0F1A/PUfrIa1/ mGiWssDigQzzYt24vP5zEmhd0Zmrstl7JIKDg5OUSA+CcOPGrVj5p3bFtWs1YSdOVFTs3Lmr4vjx ExXXr9fskH/qFbh58+1nz5ypqti3b3/FgQPlFRcvXqmQf9Kgofvi5J0vn/ZfgeklWNavSIgrBKNN 4spU5pSi21UMKtJL4op3ry/Pj6Lo/Oa3m+pMLM06QQP5AaN/cBo9rYui4uq7zY4wnZd6hLyDrORh lgZISV2b6nZwxueCNlL5zQfdyllc+bR26fF731kWWI5kj+V740ldHPnpreLBwN3Q+u5wZxT3HBPd 5m58L2JE8Z+XWpp92OnuQLe0ffQqH9agQUNfQOnFD2k4R5TeLKxYYAFODWIrRpO2gdiiTBFYrDnr FcJ5m3PIM9hK0QcudxtHU3G/9qczIopokDFNDHTyD8+h8ne/dDhF5M27Xy9/KSROdOU+ZiyiAfp0 GmBs3YAwCNaMtdKcx+6Kq19+F7+u9ByNMMSSj46jWVOhalvag+jpwIMZusfFjjz8+YwpjjKO38iQ q9PjEB6+9iwiWHSHYhqPfFiDBg29Hbvu1/7LxA1FNDgoifzY2XtwdCINdMEgF3Un6ApxLgb+SJFw Fgs3BvOw8+Qo8TdL0qm45ou6Rbu7GhXv3v/pn1ZmCMEcpk+j+P1XmnWCm3Ze/HagLpUFoEiKYHXY XLyZCFY8ZODBRYrQMMLa02AjP1MmDTFZ6NiN+w/krLstKh7Uukfsrip5JjiGfIO4DSGYQsTXVp/J 9410vXHf1L9vbx0xMA42wmhvce+wnYYExZA5vvnVtLoztm/fwdEruognsMA2XOxfgwYNvRin3v/6 8qCgOI7cUqm/Du+/8sU6umIVIowiVXGCrhAOFwOHINTS1m8QXBsN08VSfHnzAtbZyK+o+ekv5iVy mwvphdA0yqu63+wyfSOCd3DkiVWIioVwIlIX+502skEdhcBiFC4EFg8amIuby+JqpRffSOoxDvf2 F/TvEbsv0/DgNHI3S3Nkle5xsTSkXRtV7eCEQqRlgZUGvtnIPdBKQ41W+uXcJDr+QW2z60F3V2ze vDlpxYoVtGzZMtqwofWL6mvQoKGHwbQjnwab0slXbyWvYIywleauwtlhc/W6RQFaSllUxCf/je6+ AeYsenm5lU5/+G2oXHy3wLb8ip8+o08gX27voqyThI2s5Z+awHqkpvopY4JYWAILVGAAl9g/tjmB ZRsiile6Pftx5OttYIGdtZ1Sj7/boxxueTl9f2bkXnJH1I7IVW6XuNaYytNKcVUIoVYEFhGy+FuX RiMMiRSWVdEjBVaDBg19EKfe/9vd5wzbWBwyRFecWDJQj/mXEAxMY8kQTk7NETqnJDqY9oJIFtNy hrKT3Lar6qFcfLdB5Qdf0bDARHrKlERJxy473Mml6mHtj2ZuyqFhJgv5hGJxeszzVQZzObaTJBhW 8uQHjMfNRfRYSAn112fQHxYkUsKBi/8mZ99jcPzuN4effCOTBoZmsw34QUN+rYDIte0CK72DRRcx 8nQ3F7KYZ5GfzkoLkg9o0Z8GDRp6BtYUVtEIU6qIMCGuWHwdXXyKg2urwPbX20Sk139uMWEBhT8u TqHqB7UN5vF1BxRcuEdPzokXU1XkQ6rIqf7w8M/10eSjt5CbDisbcTthH2c2EvaUBPaxEBaMkCLC O9xllvpVZ3oaFuWcoyGGZElgOXoVy2HigaqN72ElgUXXMwQ2R4wklnoKbDQyLJ2q737lcNN7DRo0 aOgWOHe/dszzocnkxZGqsiG4EoFAYBF1tV5cJXpx5IEFGNCVOEIfT1tLK9+Xi+9WiD1UQ/8VuIPi 9l0+Lx9ShTn1FA0KxGCwfBbLQhYAtpNYvB6RuroNJMKOWM8XS1CyAJltNFwfS7vevJcnZ93jcPre d9ufNcaSFx6iMIBL7vXAKHQhsqp2cE4ILJawxLtdiCrmZEsCm0NP6+Oo7M2Pk+UqaNCgQUP3RPy+ y+8NCk6hfhwhCIGFsHK06SsiWElwpRV91B2hK/SEQLMY+eqsNGqphao//OtoufhuhcVpR2nUojg6 e6/2eflQExy8+mD5s3MzaADaFlpC/fSI1GyywMrRrAPW2xIPLpyHPpmmbi2liw9rfyFn3+OA99RT 1mXz/ZJO/UMKRMSJTdTdjUXcztYJLOwkvYO1kZ8hje/DTLYbBpOhKz6bBusSKeHEba2bWIMGDd0b 01ck04CgVOpnLGSHVr8IvrTYvrQyERwenJ3UXdwyIs/+LDwewek0OCiOEo/e6rZTUaaustCWklPN Ou7IwpO3hhjQZZ5HPw3ihweTNIq2P0emzgVW2lAcDzG+BisN00VT2rmeNbhJDTlV79NAfQp5YPN0 tg2WunSXl5tUs4Mz2gsshBv3o7LrEo4N4LJC0o7RO1+Th1wFl3H48OH4w4eP7G/Iww7YOJ091dKD ammP7D9y5Mj+ioqK/Vev1qhuJ9dZUOp54MDBRnVs2I6DBw/ur6ys7NK6diVu3br1+KlTp8R1Axva SmG9raqrq3fJp7oMnKfkr1aGcvzAgQN831zts9eiOdy+fXuOmu0kNrynwU69p/MOno2dsTSGxq/M opdX5NColTaZ2c1QSdOY9mmQl/R9JH//c3gujV2ZSYaIbDr3ce1/ysV3O0xdGknnP/jS4QU4euer gJFLUoSA1AsBRAFdvy52o4cWkztH89gtZyRHyxc//nqWnH2PRfTeM4N+boxmISwUvSCeZmxUgGiz 9V3EdUTvB2j3NwR39JoCOvZu7VC5Ci4DO9dgVxhQ2RoOG5irU0qnTrX0oFpaaRs1fCo79iAtjpmM cz+Pjo67c+LEiTtyFTsMNTU1YWITAn9py7qGdbRvAziJdDpDn+0liImJGTBp0lQVO9lTshVs+vrr s1tkq/z8/LcnTsQWgPY2V88fay3bbDlaj40KLBbLFqwz3dR2oL1tmQGTaPbsQM2OXYGbn353b/72 9O/kP1WRU3mHRuhiRRTVQARcJCI6N0Me9dPbaEhwAm0uqRZ7cvZ0XP5r7YAJa3PJLxgbBLDAhkBg MTWrHQRWhf11mfS0Loasx95tscAajaF126nBeSrbq3UGle3YGhObtCu73mC7uKNHj13B5gByldsN 16/fiICTUbbTU6ujPbE5uXxqnwMENiBA2j5QzTYNOD6AsJuRfKpLgMAGBDi/BrhHsbRmVla2Jgwq SExM3DKBHwbVbNeQbGu+TrNmzdHs2FU4VH3NYRRx5t6jYVM3FpAfR56tHfQFgX3ckCvmAb84N5F2 X3+4Rc6+x2Pjrss0MAibseeQe0iGNMCpgwQWA6qGB8dT2skbLR5JbDRIm6S7IjDtSThqUClX2fMV nyNHjhFOFOKHaAXLKcJhZ2fnUllZ2f+Uq95mXLt2IwL5Y89UlNu4jvbEhunYiF0+tc9h27aYAXDc rtwnyvWST3UJEFjsT6vciwob5CvfL5rAOkZycvIWRKf2dlOnJrDdGomHa+YP18eRp1lafEPN8Tsj BBaDnIboEmlu0r5edaF3XvmYhgVZxbtSIbD8INFRAusdkk+Dg5Oo7OLdFtuwqwTWnii7YWQEUcUm ADjGHC/9jc9ZswIpLS1j0dmzZ/8/uQmtxo0bt+oiWOeR2cQ+HcFCYGF/Zw8igq2MYCdMcB4di14W zh8PW/KpGuwAgZ0wXt12DdmJApt1vMZzU85xCrNV0NLsM/x5kpbbjtPK7FPtwlV231cwl+aeFVyW c5b/rqSVttOc5iT/jjL5M6dCndkVIt0K/lzOxJZyW2376NS1d38vN6VTUE70/bkpR2igwUpuWPZR zem7QJznoUunZ40xVHTunZ1y9r0CiYdujX3OnE5e2GUnJIv6Y96zUd0ObaW7IZ8G6lNpx86zrRJY /MNB5Dq7i7i1RNQZF5fQZscAgUVemsA6h+gidjGChePGHsHyqS5BE9j2QbcU2OSDb9JTQduFk/Iz pIvPQboUMXikY2gR0y2ksqw0mMsaok9kxtEALhsLWahT3nydP3316TSMI7/XNhdR1b2/dqrAXnjw t6zn5yaxaGAjAEko1Ry/K/QJTqWAld1715zW4My734z9/cJsFtgc6hcqLTbRUQLrZihkO6aRYVte i+3YEwVWRJ1jx1FY2PKv5Ga0CprAug5NYHsGup3A7r12133cCgsN0FnE6jhu5lLClBOxpZyKM2s7 2dmaWCTl9Yy9EAFyuZ4hBcw8/s7lslN2SMx9NHH9jDYaYUggW+X7nX6jbSipoqFYrSg4XbRBvZ0u 0JhNA4OTKHLPpVty1r0Gt4n+ddLass4RWHMxefO1mLA0ls4StajrtKdGsCDexYWGhj68devWQrk5 LYImsK5DE9iegW4nsMUXP/kcu+Z4GGzs8LGYRJZ4X+ZhxHxOdYfWNkKQMOoWzCbsztOQ/DtG5aoQ c3A9ZnN0Pb+YHXYa/XGphSrvfWuWm9Jp+HnwNo60LWLBDKc7C8kDoESUy99FBK6zko9ZWlv3mTlb aO/d2h/KWfcqhCQeZhtlkachXWyo35alEpulOV9sjffbRRbaVVP7D3LxLqElAgshwrQafLZVjBVH jalBjX9zhcr5EMiVK8Mfyc1pEa5du8YCi3e940REjDzt2bDMiRQUFNRnnfq2bdsG+Pv7C6eMaU2N bWVPCOXMmZrAdgW6ncBOXp1FQ+dmixWI4PwHsnBhqT837Oyi5sy6mFjs4vGgNBpkSKXwospOv8ly z959b0RwDNdDWnTeWQSrLC2JhRKEwGKfVGMmeXM7fPTptHV399qirz2xLOsUtzNTbGDgAXuZOmiQ E9vSj/P+uTmFtu2q6TCBRZQHQhTBxo61pbQvTzmmfFeOOyPSjh41jnKyC1p8H125ciUCI1dHjRpF EydKA63siQeJOrIAGwx9ex4sHkSkkb4N7dSQ44UtZ8xo2Qb6msC2D7qVwJ648+Wjn+miyVufJdZ2 RYThJ1YlwvZpHRXBtp5w0J5mFn59Gj1jiKJ9tz6LlZvSKbj+Re1Q/+XpNIijV4yIRVTqbA5sncAa MdoYI2n5ONsbojPMmErn7n9XLmff67Ch5AKLXwY/jGSQO7e54wQ2m3w576cMCR0qsCCcKD4VR9da iq5ZFi1M6cDf6O5VjosRw43KdUTUG9N7IPiF+aXz5Wa5BI5gg0ePHs31GCuiWNTBEVG34OC+PE1n 24ApU9jOLJ7YJF/NRgrRK6BFsF2DbiWwwVE7qf/r0ez8sskjpJiw9By6iCEIWOtV1Zl1IbFgvOfc nWKj7ZCEXZ1+g9lO39n3tDFZRK6eWPpP7lJXq6s97aNYDxZaj+AM8g1MollxR1r8zrAnIWr/dWlQ mxECi2UjO0pgmXwPQ2D1u3Z1mMAiDYh5o0ZDKIWHr2k1V61aLbh0aRg741mE1WcgttK7VeeOVqFS J/CNuQupqKjof8hNc4rq6urxq1evLgsJCYmNi4v7JiQkNNYRTaaQ2PDw8E59oO1OSEtL+4+oqKi3 YCs1+9iT8VlmZua38qkuQRPY9kG3EdgjN76Yi1WI0NWJd5+IWKW1XbPFu0FVR9bFRP3cDPn0X8Y4 2n35w8NyUzoNIUkHaGhoDtuqiAUWg61gJ+e2kmyKCC5H9BT48DlPGxNpd81nvfqfJO3k2zTQmE4+ emzJJ0fwjWzTLoTAGvLoiaB4uvKXbyLk4l1CawY5Ie2pk+37emLXrr3mpKQUmjZtOkeU40VUinKU iLk5Kt2TOKeoqERzvD0QmsC2D7qNwG4qvUQD9GmiyxKOX2K9ExRRl+LAuglFHQMtNHZZaqffXAff erD9udBEejzYJhboR9cwbORsZyH0BCAdFr1Hun4szL66NJq4OpNO3Hk0SM6+V8J2hgXWYOWHuDTZ Th0jsF4QWCMLbHA8Xf/02xbdG91FYBXs2bMnYv68hSJKhmi6Uie8I0UXMdJra6v2TGgC2z7oFgJb de+7yN8uypKe/OXoSkRYQjDyhRB0R4FFnZ40pFBc+bUP5aZ0GjYUV9AQc6oY/IXodQC2Y2ORdTM3 v9AE7Il6Y96vEGQWAswxTjp0tdf/g8yzHF+MXXX8OIp1M3SkwHLevURgAYul4H/Pn7dYDF5ytU5K FIsuZpvN1ivWtO5L0AS2fdAtBDb79DvkFxgvvUM0ZAnnj23AvGWRxZQYLOZQPz3GMZU0jWmfxqfR 32rpQfEbO8v++jyul3Sel0z8hoj71/MSO/3Gqrj7bfDI5WwjFsbHOIJFXWEzbEenbDen5vgF0R6x OIa84L0+l16Yl0I7r94fK2ffa7Eg45QQWHQTd6zA4p7NFQJ77UHPF1gFQYH6uvKwFrDyvXFdFKL+ GDg1deormvPtYcjJyXl7vEvCwNd8XIC2m44DdLnAVn1Q+6Pxq/G+1cqRWCYLl7xHa2OKDcMlejdD JU1j2qdBXvZ/q6UHxW/6YhbYEhZTCGwa1zOTRSybj2exA02miJyjnX5j5Z57j4YGJZIf01uXSl5m 1Bdd1ph60/xgMD8duoet1C8ki9yMu2nQHAuFZ+7pE/8cc1OOssBaONrPFIuJdNw7WDz0ZPM1iqNr n/Qegd29e/cuaVQqBHaCKFetPvZUptWUlu6+KGfjELdu3fq3iIhI2rwpgrmNNmzYyNxQx02bNtlx M8XHd8zD7fXr1z0sFovf6dNnqLi4mBITk2j79u2i3PXr6+vTnly/fpNo88YNW/jvTZSRkdHsJgq7 dh0YsHVrJG1Yv4XWrWtop4bcSOvWbqKYmLgmc5Ojo+Jo/brNIg+FWzZHch22EnosnM2JxnVFLwXu gxDzPNq0MaKO9nkqRFngpo1b6dixiw7bt2/fvtytW7eyTdbTxo3Nta1lxLXbuHETRUVFUXJyClmt ViooKKTy8sO0cuU6v4SEBL8TJ078WK5Gu6DLBTbj4Ds5zwYmipWa3E355G4udEgMyGkPIspTO67G x1GuGBCD+uXxsRLyDNnNIl1MT+osVPX+V6VyUzoFR2s++NHUdVk0mKMwjIbtF5wiHgYkgWXBcCKw Pnp0bWdwm7LJ01BIz5nTKO30jcVy9r0aGSdviwU5ILA+IR0rsP35cxgLrH5bx40iVthZAgusXr1W jC5WBBYOVq1OCuGk4YjnzVvgtH43b94cPHr0WHEe8lammSiEsCuEM2rPlZxu3LjxGDvcUdHR0WQw mMTyj9hHte5hgoky7evTnsRUKFxv/7FSOxcsWNCswCrb1Um2Us9TIQabqS32/+qMWZKd7Yi0yvt2 ++uoRuX+RFpcY/vfGuerEL9NnDiFKivPzZGr0QQWS3ou7jHYv+5eayciPyVPXE8Qf8Pm06e/Koh7 PCoqdv61a9dGyVVqNbpUYKvu1w4IjizhJ/0E8jHj/SBEAtNHmhIRAeYXtgf7qxxzRA8TFoi3CFES 3avGUvIzFtKQwGSaHbmHym/TP8rN6RRknayJf1q3QzhwD32mWHsYO8RIAsvO3dkOMdwGpPdgmw7Q pdOcHfs7xTF3ByQeruE2p5GfPoN8QovZXh0osHxdhgezwHbwPFgQaTtLYC9evLy+zmHZOU1HhOOF w54x4zU6fvz4SDkbVVy7dl3spjNqpL90vuwA1Yjy9Xpju7S5tHTnvPDw1Zwn5gA3dMKKwKrVoX0p 2VHsHcp/uyKwE7CrEYQQ5zbJr564RpMnT21iq5mvzW5y/eyF1RWRBZFOuRfs2TidcgwbxZ87d96h wKanZ+TC5mPG+IsHHbU2tZbivpUpVguTry3KwbUG8ZCH4xigV1pa9rlcrVahSwW27Nrdw0+H7CD3 kDR6bB5Hr8Ysdk52NNa/D8U7UN8uoDeElUVWrF2rL2BxLiK/wFT6uX4b7b31caeK07F36H+GJu2j J4wpHNGzvTAPlz8xXUgRWCGyzdCLo3FviAtHcU/qYii/+oMbcva9HhE7L4lNGXz5waK/GDzXUQIr LTTxpD621wkssHDhYuGAXHHAivOF89iyZVuOnIUqsBYx0kGUMaBKOB2HDKCgIF2b25yQkCQ2koez RdmSsKJdUjlYJUnte8eQryWXDds6E1ixXR3SCtFqnrgGiMzkU+swY/pM/r3h9VJEsPF3R3RVhJGX knbSRAis4wg2OTmFI1g8wHWgvVn0IHygcr3tr7u/XdlLloThVcErcvVahC4V2LX556g/R6/9zAXk MXcn9dPnk5sBu5FIbLwusDRtB4RzdET7dPa0T4ORtvZ/q6UHIV6FzGKOFEtY0LiOxiIWXiuNXpdJ h+5/+YzclE7B2Y++PvNzUwJ5skC4s1Biyo1kl3pxdSaw7ma2rTGPhpht5L/Sgp1/vOXsez1WZp8m H45ehcCiK91ZtN9K+nC+/XXZ9GxIxy6VqBBpO1NgDx06LEQADtOZg1XagchgzZp1zdaxMxf7v3at ZptOZ3ikCGsDqpbXSZSjUZe6iF1d7J+pttj/jOmvq6btCKKeyr3gTGBTktNzlXa52r6OIHpe8IoD PSqIZm02W4BcRZfRZQJbduzmk2M4en3GnEzD9Kn0rM5Cw4Piaag+oY7DTcldzic5WnzKkMqfqTTU bKWB+iSO/CIp5fjNTnNoCjYXV9GgoDSx8QG6eNF1jqk2yq4wEFd0/zZ2+PZ0D8kmd0MeDdVZKXJX 5znl7gBz/H7qr8f2hDby4YenjhJY7DXra8ilFxekdehi/wqRtjMFNiurwA8LUAjhdFJHZYEKpctN zkIVnSWwlZXnNrwy7TWaPOkVdp545wsnbk+18jqJmsB2G4FFXZU6o7t6+vTplJ+f/2u5mi6hywT2 +rufDD168979vR/89f6h97+8X/XW/ftnmCffelDHU28/rOc7D++fbCeeeudz1eNqPPP2J/fP3f7L /ZN3/nL/6PsP7x+89cn9E1xvuRmdij/Pjydfjr7dxRZ+0lxhIRbovmahhcB6cITaIIoV05zq+biR BVpnoxfm5lLFvUf75ax7PS5fph9MX4+lN9kmwdieEBGsnZ3akf31LLD6bPr9ihyqqe19AguEha0Q QuiKAxSOigUW77n27Nm3Ss6iCZoKLNrviK0T2GPHji2YMztI1And0FMmT+e8GtdZrbyOplx2qwRW LT+FUr49T2BxHgRO+uwK+o/FMqS4x/GgyMfGjyez2YyxBJ5yVZ2iS7uINbgOa9VfvvILSmIhtZFv KEYKs2CKCJadup1QSN3E0khiLDGpLNohaMhiAc6mAfoUMsfsbNHapD0dp97969g/LLGId/mexjwW QEz/gg3rbddexCh1X46U52ztnA3XkbazBTYrK1uIJgRRrU5NyM4D3LIlogUCq5JPHVsusDlxOf+/ yThXJa/GbOho7Yl6KddGrY6KkCjEMXQ1Nk7nkB0RwXJ+agKLd8+NI3a0STwQ2dXfESE8Y8dIrwmU tOLVgRgk1nBUsUKkdTbIyWrJyMU9oJyj1KU9iGth/7ej69iYUvoAMbJ506YtLt93msD2EGBvUW+s 1sQCiYUi1Bx7UypdyPX0NGTQkOAdVPHhVw/lrPsEMk69O/b5kHgxgtzTVCAeNjpKYN0MBTTImEER JWda/M/SUwR2167dByGGcKZqdWpCWWBTUiwO69mRAnv+/Pkf7tgRI6JWdFur5+mcSt1cuT74HWW5 6sQFO1FgX3llRpPz8Tfq6proILKTtkkU6eVrLCgGDDVOL6WDwJ4+Xel4kFOiJRc2U4jz2osoX7ke II4pZTSurz1F+/Cd24aNMCorq1wa9NQlAnui5oM15977bM2pO5+vqfzgkeC595j4/OAbB3y0plr5 /cPvBHFe9Ydfr6nmvOSseyV2Xvrw3LDAHdQvKENMy8EUHTXHrlBsjsDpRDRrxLJ9MjmyHWhIoXFr sjrVGXcH7Lz8ET0ZHMt2yeUIs0AS1w7qIsZylIP0yVRy4W6L7dxTBDYzM3s0xLClEezatesd1rMj BTYzMytKGiXq+shXNYrIjNuhTPFoTKWdoPIAgk/xm0p+TdiJAotrsWjRElq8eGkTwrbY5EE1P5mK AIJBgQaR16JFi5mLOA/1fJcsWUbLli0nfuAZJlejCSwWay7si2gRU2aU+6ythB2k6Fq6JvhscO1U 2qgQdgbFfGU+l233nVzdZtHpArtlf81XvwyNphffSKQXF1jphflp9MK8dPrFPP7O/MV8x3xR5vPz M+i5hTb6+fx0emleEvkv6/zlCjsT+h3FNISF0Tu0gLyYns1GXtkiOsP7VoiqB4uJQow4HqGPpoLz LXf8PR2bSs/TUBY9dA9j9yGxTKSq/dpOsciELo5O3Gn57kQ9RWBPnjw9um56i0qdmpCdB/jGG/Md 1rMjBRYLLcBh49y2CCyEClv6bd68lSIjd1BUVEwD7tgR3YDR0bE0d+48MUhGLb8m7ESBbQ42W/bb zuqs3KO4Xunpme12/+3Zc+DpiIjtozds2MzcIH+2Dzdvjhhts9m25+cXigUlcA8rQqvWxsbEQwfu UbV5xWrodIH9xfJC8jNYaECoJBJYbN5TjrA8hCA4Yr5IC+HAZz9zCXmGsvCY0mjWjt3tdnG7G3a9 eT/jeXMM+RrSWBggDtKc18ZOvZ5YClERWEzlKSB3Yz65iaUebfTyoiSqvPv1i3L2fQIn7tYO8g/P EQtrSFO++EGlIwVWn0HPGKIp6dhbQ+UquIyeIrA3b94cjX1jXY/MJIHV6QwO69lRApuQkPQ18sUi Dq4IkhLh4OEB3zE4C1FXaenOaUT03+RsXUZMTNw91+3UPQSWBehtseiFWn52hJ2Qf09d7D8hwepl MoVIPRJsS/tXAGrtFV3f3F7cE+Xl5ZflbByiUwU25ej1g37BceRntJKvKZOf9LHptfRuUBmIoyzA LxF/S5QEA+KBOYyZ5MZi7BOSQ0/rttPBax/XyEX0OqzKP0tDOXrFBgPSzkJ4MGk+grUXWIirp4Ft hekpQckUvedij/xHaAtW558fNCw4lvobsFEDtutDN7qa7dqHfqZ0+uNSCx1791GvFVgAAtdSgUUk efny5clyFg3QUQILcYEDhVOErRw7T4kiKue6KtENCyvrKv2dnF2LER8ffy8gwFl7ZHYbgXVhNx3O t15gs3usX8nJyflvOp1OtEkRV9yDTdorKN3H4LZt27qPwJ59n/7PrM2Z5GOwkheLJMTSS0wpkQVW DDqB6PKnCj05nSKw2MvUnR2Ze5CFAlal99gL6wyVH/516W8WprJYZomVmxC5YlchsbOQnUNvSDuB 5WgNPQM+hkwaEJxEz76RTtsO3H5Jzr7PYAc/VAxl0cPDBuwB+/iJ+03Nfm2nry6ZdIkH6DaRr1wF l9GTBNZoNLdYYLGzzsmTJztNYNPT08+jjoIORrY2IdcTYoz3fxkZmYlyVq1GbGwsR7CudqX3RIEd 36MFFqiurn5HWYcZbXP8vyfdx2j3qlWrnLa50wS2sOr90ueNO6h/KEdUIQX0mD6HPEKKWCilJf+w bJ3UFSytUCSxvosYC+8/Zi7hzwKJoSU0ONRGWVUf9ugL2xzCbcetwzl69TTivWuBENr+HPlLO/2o O3dQGsAj7eiChxJ0DT+hS6JZUfvo2qPaIXL2fQLl5fT9Py9NFQPE+pmKxTKG2DsXDx1qtnOZGEQG ir/R/Q7B5gjZkCOmQW3bf71V92VPEtiFCxaLd1JqdWpCdh4gosIjR450msDq9QZJBNgximUI2VbN ixIGMGEt2nHEkecXcjZtQlxc3D2IkHp5jdiTBJZthfWQsX5zTxdYIHzVujqBdXz/4bh0L+t0zu+/ ThNYc8J+8g1KEk5f1WE5oeTMsFC9tDygrzGdfvlGAt364rutchG9ClX3ar0nr+OIVWcjd0OJWLgA +896mhHNNr8CEeykdLnj/TZs/rQ+lrIr7xyQs+8zyK96l4bo4ulxfjjrZy4TPSXK3rnNv8tunj4G 9A7ki4U9+psyOCq28rF0tnc+PWlOp4JLH5bJVWgRepLALlm83DUHD7LzADtTYA8fPvwHDEZBNKqe hxoRvQbQjBkz2s2ecXEJLLDO2iOzRwmsHOlx/r1hw/VcW0ExlkaETZ3df+gRwWpm8qkO0SkCW3b+ rv7nxmjyYafW/PtDx0S36CBDMg00pPJnKj2pi6X1xed6/EV1hOwzd/b+zIBpJdnsxAs5OsKqTRns wKWBS2o2Uii900b0miO6RX1ZACaszqbqu7UD5ez7DCZtyKOBRis9bigkD0MBiyuWSswgN35Ia8ti /z4cqdZNhcLrC84TYwo8+EHot2F5dPK9R+PlKrQIPUlgly1d2a0FNiJiuw3vUEXZqnmoERGsP5WV lbWbPTWB7RkID187EvedKzbtVgK7ueAUDdEn0+OmwlZHDejqxPQUT3ZqeA/7jDGOdt98MF0uotch MHIvPWGwcLSeS/1EtJXGTj2D7YApN4WqNgIhrr4sxhBmzPfEwCi/OQmUfvKtHv8P0FIkH3jzq8F6 9JpggFiBWMJwoB52tHFEWyRePajZ0CUasXWhdF/innYz8IMjdirSZ1Go5USrbd2TBHbxorBuLbBb tkRI716Z6nmoEQsJTKKwsLDvy9m0GZrA9gxs2bJtpGJPZ3bFPYUtGOVTHaLDBXZX9Tu/+cOCBNFd +Z9GbHKt4qxcIN7J/ruxhP5DXyii2eDEcrr8sHaAXEyvwobiU0Oe1qXwg4SNPM25YoF+L3O6sKE3 R2IQWTUbgdKAsUxxHt5bI5L9RWgiXXn4XYScfZ9A8qnblmf5IQzRpTINzEdv4wg2Qzx8YCP9tgis NBoZtsaewXn0b7M5Mg4toGEcLa/Mq94oV6PF6EkCi2UHXXLwIASGiaf+s2fPdorAYpN3ZaqNeh5q DKCVK50PXmkJNIFtf/C98l5Nze1h/NlurwhLinfexztYZYMKtfbWkdvsylzYDhVYDG1PPnyNBgfF sMPPI/fQ0jZEsByFiFHGNhqmiyVz/K7RcjG9DuuLqmiAGOXKEZGZ2y+PtkaXr9j0Hd2TKjYSZKeP 6SgexnyxLd0T+hRak1PxjZx1r0c50ff3vv2JWMTEW5cmxA92gxD6MrFUIrqGMae41fciE9sFotse Xc54F+s9dxd5BlrpFyEJdOouLZCr02L0JIENnKNXrY8q2XkoDuTq1asdLrCXL1/+wZw5QSLSENNu VPOQ2NCZBqB7+Es5m3aBJrBtg9Vq/WFRUQkZDCbpYYnLw2fdtYVt24Ev/3mMsCdE1un/HqfvcoE9 duurx0etzKRBHIHB0YlutEbOylWKqSYYSKKz0Kj1ZXTsw7+Fnrzy/vAjzN1vPxp+4MYD5r1uxZIb XwzfzUTdUM+Tl+/8L9k0DnH2fu3PfrUkk0XVJtYd9mXB9BVdkViQAwtt8HEno4jxMOLOaRG9PmuI pmM3P9sjZ99rceFe7fCdl/4yc13JOXpufjyLayp5haLHBLsNSbsOeYs9hrHHL8S19eMBRJewGcst ZtJAQ7p46PlpUB4NNWWQKW5nmxxNTxHYK1euj571OguYKw4elJ1Yc5ukt6fAvvnmm8ux1i7KdEVg lXZgVGxYWNggOZt2gSawrcPt2+8Ny8rMFdsKYg1pfOLeUMoFXb7/XKDy/hURrFKOQ3Kbu1xgd775 MT0RHEvu7Nzc0Z0Gp8afak7LGdEd56nLoH4sHEPm5dPvl2XR2IWx9LsFifRCWAn9dmku/WFpdtdy iY1+v7iev1uKz3R6eVECBSyIoL1nr5+QTeMQ2ZXvkZ8uhTxDILA28uN2+2HEKgbpsDh4sxPHqFU1 GynEe+r+IYXkNSeZZm0tdHrB9lz+oMAYU0JBMXtpVuz+Bpwde0CVjdPZUy09qJYWnBOznwL505h0 mOZnnKbF2efseJaWZlfSUpsd8bfMJelHmcdp2vpiemluMg0JiiYfLIkYwlGqGV3kGOGbIURWWiax mAUWg+bSxD2lZj9nlAQWESw/9OnTOSrO5byL6ElDMllPvZ0hm7VV6CkCe+DA4dFweGr1USU7D3D+ /IUO69meAltZWbkcSyPWRTiqeUhUHCu+Y/Uim82mCWwXC+zNm7f/sGrl2jqhwyeoCKt9HWCD9qCS r1NxBbnNXS6wAesLaLA+hR0RVtDBUod4f6jutFwhHJtELE6BaSiZ4hO/+QhCxLuODVehYurS+bhN RDl/XppGZz54NEU2jUOMWcERF8SR2yMiLIgAbKYQxwQlmzSl9Pt/6nJpuCmJ9la//bactUMssByj wbpkFgp0S3dH4jo3pTQVKZMjfGnxDaQV83+5/cq9ItlPYf091NoHPUE+F8LtbcoS73ERzfrorTRh lbXNTqanCGxqatpo1A9lq9XJnqItLJxgc1t9tafAHjt2bDkGVEFgnU3TUdqAMqdMnoYl8DSB7UKB ffPNG+PDlq0SbVPmpTYk/i86go3LaYbc5i4V2OPvf/n1cI5e/fSIHvD+EANN0MWp4rDagf3NuV3O pvXKJb+52FklldYWnXdquKM3/nJ7RFAMR/zSwhtN83ONj+swyCmffjkvyWmZuy5+OPkXxigahAcC 0aWqnqdGOwqBxUMj9n7lB0c+NiwkmbaUnXtLNmur0VMENi8v/6grAqu0QxnNu27dxgI5iyZoT4E9 derUcjhAOC1B1TwkKm1QBPbMmTOawHahwC5fvuod3AOYk+pSNNkV5DZ3qcC+sjH7u6FmTCuRR3Cy yGJ6RF8S2J9yFNlvTjo9F5JExVc+c7jRtIJZG23kNyeexbG41QKL8zBv1kefTqmn3nN6sSKKKugp fZzU/a53tpGARoXSfQ1xxdzaNPr1ghTac+1hi5dGbIyeIrDbt0eJcp3traq0A+IKB5KQkNQpG65X V1cvx4hllCnKVs1DoiJSmsDWo6sENiXFsgqC1G2FVSG3ucsE9uon3518aW48eQRhQn+RGFSCLjxl ioSaw2or1QSvs9m4Th4hxTTQnEWB251PWj/+9reFzxpi2EZZ5BVS0iaB7ceO/2lDPJW982mz/6TH 3/lyxMglyeQbmEhu+mxNYFtALwyWMhaJB8Zhunja2k6LnvQEgb169aoPdsVBua44QrQDoz7hkCoq znSKwF6/fn3566/PFuKKPNXzkNhYYLUu4q4TWLM5lPOT7xm+Hi61ryvIbe4ygV2fW0FDg+LJZ24R uZkhsPLSfVj/tYMEtjvSXWejJ/XxVFD9Ya5sGodYkV1BPnOSyC04m3w5AlXLz1V6BafRqpyTdJno B3L2qsir+oDrF8ORGN4lYgBVx23h1tvYn+3lZcinQfzg+CtTdLs4F6AnCGxubu6LGEDkqvMT6dh5 NDeCGGhPgQUwrQPlOotgGzKANm7c2K4Cy1FZD9yurvMFNj4+US9Nv2m+TXivjvsE9yDSY1MG1AHH YGd74nhzxDkKlWk6CtXKriOf2yUCW/XJd1m/mm+hgYY08gktFoNAIKpiwr88+ETNYfVGDjGmk/8K 5xsRV3/8KOI3C63kbc7nKDKPo1hphyG1PJ0Rg6tGhKTSStvBZrdKK7/80T+/urWYBhjTxCAdsb4z Bkj1oQegVpNthNcdmELlM3MHbd95oc3ORUFPEFh2hMIZuOSImGK0MadfuXLNh3IWqmhvgV20aEmd 81TPQ40BtG/fvna1pcWSpgmsC9iwYZMkik4EdtKkKUJkIa4QWXDVqtWUlJR6oKio1GWWlpYdKCvb XcftEVHnYU+XImduc5cI7IaC85XDMAVCl0lugdLqQ+gehtD2Y0fepwQ2MIYidl2+KJvGIbYXnj74 hC6RfmLE7kIsejqrWCxCLU9nxHSUV3fspev3a38iZ6+Ko7c+paeCIsU5YvN6vj5+fJ00gXWBbCNf vZXtlUYj15ZQ/oX7P5XN2mZ0d4ENCwv7e4zOhTNQnJFanRRCLMV7WuGE83LkbFTR3gK7efOWGjhh lK2ehxoxlWh+m/Z/bYz09ExNYJ2gqqrqR8oG/uP8my938uQpNGrUGBbYcWQ0migtLe03cjZtwoa1 W0Zi1DJs6tSu3OYuEdhx4QVCXLEtmJg6g9GpTMw9lDYMV3FYPZjiXSlEiemF1ao4EoRYYcWpP86N oYsf16quWqPgzEe1P5+8Pk90nz9mwrvXIvIN5geUZhblQP6wJ6al4OHFm8UY6zSjDoNN6VR43vkW fiEpB2mQ0UIYCQuiPLE/KvJpVF6fJNtB9CIIe/B3cy556LP4+ki9Mf31ufSMKYWKLn7UJsfSGN1d YEtKdgoHiG3qXKkfnMvEgClio/Vr127+Xs5GFe0tsDZbrljsX4isah7qRJfjhQuXIuVs2oySkrIe KbDYhk41P5koW3l4stly2nT/ZWZmjkA+zqJXEMIPTps2jfi8X8tZtBkQWNzTzu89Jte10wXWVnGr Zrje0tRZ9VLiYQErVCnO2M2YS24hheSGlYP0KRRVcNrpEoVLM4/PGWZMFrveuLO4YhF5saRfM6Ot MS0ExFxMaT4m/80iO8CUSb9caqOzd79qdieXyw++sz5lihcLgGDeqLQ/Klbb0qbp1JGvJ2yC6wqb uOv5M0RaXtGTbears5E5/jCdfu+z/y2btV3QnQX2+tW3EtTnJTqm8r5swYIlTqcwtbfAXr/+1lA4 QZfFTSbsvjp8fbvZc+/e/b16kBMeYLKy2rYf7Pr1W0Yo+/WqlWNPEeUyV69efUU+vV0AgUX+Lv3f dbbA1nxR+6cZm/JokD5d3WH1UnqxwErvSyWB9QjJp4EhWfSEPpZqPvnmb7J5HEIfmU8+YmoO3oMW sFN3LrDYwUVEr2KhgxxyE1G0jYbqEmjDrstOL3p45pFvBukS6XEuB9GYWOmI88SUE01gZQqBxSIX 0jKf7mbs/cqfHMViqco/LsuifTVfLZNN2m7ozgIbGjL/b67WSaEyEKW09MBP5Gwcor0FFli8eKlw XOp5qBNRGZbmKygoOCRn0yb0RIEtLCx0KYLFJ67v6tVr23T/HT9e8R66512NHseM8Uf0eko+vV3Q rQV2y66Lk58yJYuuYVWH1YsJJyy6wNkBexkyaaghgWa6MDUnbvfFX71k3EGDTOkcwWK5PRZbOHam WjkKpbV104U49jMX0mPmYuqvs9Kv34ijQ7e+WCxnr4o3P/vu4P+dl0R+EGeOtutHeKM7tHVTg3oj xbxttouIXk2FLLD8ACSOpdFT89Jp+66q7bJJ2xXdUWDx3nXtmo1iVR1n814bE92tISFza+WsmkVH COyBAwcqxShT1TzUCXGF7ae/MpMOHjy0S86q1RACq1KOKruJwO7bt+9tf39/9fzsiOuEa4Z1n8vL y1s9FuHkyQrRdtjdWZtQJiLYhISkviGw5bfpH+dbjpKfMV0IjZrD6q2EGCoCi/evPmyDZ1k0S6/e vy6bRxXl5fT9FbaT9ETgDhY77PeK7kcpL7Vy7CkNHEvnyCqXHmdxdWORfcJkpbC0g04veFj2uYoB c+LIR8915vNQrojWRLl97+HIEcU7aX5YwrttJbL3M1joaVM8hZe9+blsznZHSwQWjgbEijcnT5xp kQN1BWfPnv3vxcXFS3XBxrq6OBM+e+cIoYTTOH/+QrWcZbPoCIEFMB920sRpom5jx7jSDYm2Su2d OmUGWVMyUo8dO9as4DWHfXsP3nNepsxuIrCVlZUuCawg5w+2pZs4PDx8BNaBFuLppE24P3A/mk1z qbq6+idyFm0GNlxHvq7UAe3tNIE9cOvz0OdDrUIgPPqSkxbCJG1urnQj+uqSKGBlCp24W/tj2Tyq qHz/0Wu/nGelIYY0jnoxaIkFVhY5Z9200ibfKBPbrrHzN9poRPAOKqn+IFPOXhXVHz16wn8NR7tB LM7BmeSDQWdG6b0iynUWOfcpwhawM7qGObL30afRsMBIeiNpb7tuZdYYLRVYIWL8PSe7gFauXD3G Va5bt3FMVFTUmISE5DHJyRZmsvgeG5swZvXqdWNycvII3avSWr719XDmeJTfUTfUf+nS5S473Y4S 2D179mcqUSmE06nztBNYpEXUzjahvLyCJbt27foHOVuXsX/foXvKdXLKbiKw165dixk/zsX37Zy/ IjgHDx78Ws6iRYiNjR1hf5+5QvSorFq19tD581f6y9m0CeHhG0Yq18lpT43cXvlUh2izwGL/zS27 ztPgOVbyNNjY6bdueklPJKJNX45yIHbYHxQiO9SYTBmnbjo1fN6J2zRgThJ5cyTpHVpCHtjnlYXS y5TltBdAWWAeZaJsX10yTVid5bTMzKr3Tw03471iAfno5C3chFgjXwhs37l2rhAjxPHgg+9D9Ek0 O7KAbj6snSebs0PQ0i5iOBnliRvp7dk4rf1vOAeRLxwJ/lY+EenBySgih2P24uDMoSuChO/Iv6Ki MkpumlN0lMACb8xdKPJV2q+ep0L8Xk/UBc4f3ZKIhteuXU/Tp7+2cMmSZQuXLVvukMuXhwtGbI2S 81IrqxG7icACAQHOroFMzl8hzomIiKC9e/cuvHnz5rNyVk5x4MCBn8yYPtOF6477eAqnk7uT+T4I C1tBVmv6wqqq8wuvX7/eamak2azK/5HTenBbO0Vgs0/e+acXzZE0IJgddAjeI2Y2cVS9lRBYLP+I dWnRTetlzqUX5lmo5M0vmp2OAExemkT9gzOEsOIdH7ZSw+AZ1wQ2n/qZsUpWPtchi0YYEyhq//Xb ctaqeOdr+pU+sZx89fwQpMulgVx3n2BstcYCK6JYdE/3PoGFSEpU/10hBpVJ3fNSFC+6/NkuHmyf weZMmh51gI5++O3rsjk7DC0VWDgCrEBjL4IKkYc97X9T0ivH8SkclpxWcTBq+TqjMtI4JTmtRU69 IwU2L684dOoUaT/RxrZoSnuBlY6Jc9gBQmTFtB/5u0P6S3ZDOyYGTKPJk6bX5dUsu5HAzpo1Sz2/ xuT86+0xThBzVUND59KmTZsoKiqaoqNjKTJyO8XGxlFBQfGbchENsGLFKs7PhTmofF3G+dvfw9J7 4OnTX+V2vtaAr73miDPt0uH7TJo29VWRnyv/d2hvpwis7cw79IQhkQWCHb+IhvpONyO6hwcEpZJb SCn9hDlQn0Abssvp9gP6V9k8qth95dPPhgXFcPQIAain5Nyd2w/vBj0MOfRTUyl56bPoz29E0dUP Hw2Ws1dFyqm3DcNDk1ic0aXN+UBMhKA0zb+3EMLqYcJqYtJgLtyb0oMEP1zwg414740HG7YHRm4j oscm994h0n6vnqEFNFgXRwtTD9KZ974YJpuyQ9GaQU5dTUQTihhBUAImoGs4jAoLy5v9P2iMjhRY IvpBRkYmjRkzRsyhROQD+0oPA4qYKlQrr5PYjQQW4ohz0SOBcqSynNkJaRxREsNt26JU65KQkLB8 /Pjx4rUE1iPGPSD9DzSmWrn2VCu7Oarl4YSdJbC/n7uDBugsHL1J8z/7m9WdXW8kor+BHPX1Mxaz yBbRf4UmUvbZ24tk0zjE9I35tUMMbZgvzHZG16WHuYR8WODDM486fS+4KusI+WIjd7X8eisRlYqu dxZVfrAAMbVJjNRWjos0LLSGAk5fIB5cPPgBxs9opSd122lj6QW6+Ck16+zaEz1RYOH0EFEozh6R REXFGZPcJJfRkQILlJeXf3/ZsmUsrtLiE2PHKKOiW+rAO5DdSGBzcnL+HediUREpWmy7nVBfRwLL 5f0gJCRERKMoFw9BTUW9deW2O7l+HS6wuZXvvfukLkosWPA4OymsXoQpJKrOrjeSnbNfSD4/WHC0 E2yhObF7nRq84u43Z4YH7hCrXKnm6RI5MmMhgFA8yZHw1YffNbup+sFr98b97o1Y8tajl4GFRDXP 3kcIKN6R+8oLckhd8BjxjXermHOMKB42KWKWkJe+kAbwvTwgMI5+uzCRyi6+c082YaehJwqs4uQR DU6dOoOOHj2+UW5Oi9DRAgtcu3Zt5ty5b9DIkaOFfRvauBs48G4ksAC6bf1Fd7d0XerzbZ2dmhNY oLCwcNXEiXwvjfEX16Zh+7rB9VHYGQI7dUMuYS9Mj5ASMZrVW89OTN933sHi3asnC5Yff38iKJpS T9Z8IJvGIRZby2mA3kJuptbvmANxhcgiCn51c5HTixx/4LzY1cfDUMxC0radenocMZCLieUgIay4 T93R28KiinnHXuKzmMW2gAYHWeklcxIttJR/d+7j71Jk83UqeoLA2js9fMcIXbEc4quzyWbLb/X8 4M4QWGD//kMh2GlHOPEJsLEUKSEKVy+rE9nNBDY1NdVzzpwgzgfl1L8flV4LqJTlhDi/OYEFtm7d 9nFAAN//uBfGSuIunS/1lDTOs0vY0QK76/K9fcOCo8UCCY+bOQIw4V1WJrPvRLDiHR8LFoRuzNJE uvRZ7VRhHAeouv8366/mp9DjgVZ6TI/t4dTzdUa8O/RlOz8dvIMO3XjQ7EUuufzJ4yOXW2iQIZ2F BIv69x2BxXttD0yzYVF1M+AT72ILyJOPufO18zHnkE9wBg0MstBTQfFkjNlPZRc+ssmm6xJ0V4FV ogmFEEAIIY77sxNcsGAR3bz51ma5Ga1CZwkscPHixdDFi5eIrmIILbojMepZGaDVZexmAguUlx89 iG5/MbiL7YTro4wUbylRX2cCC7Aw/UVZZhP1r+8uVs+309nRAjs/5YB49+qO0axiPiUGzChUd3i9 jdLo1CJ6xpBAkUWnbgnDNIOoA9foCUOKWBFImf7RGiIaG6C30qTwdCr/6KN/lrNXRfHlTzh6TSKs 0uTFDwOIutXy7I2EwLqxnTFC2xvvXHXZ/KCRRYONFhqsi+frFk1/WpJKy9KPUenFj4quPiA32Wxd hu4osIpjU+qDT6W7cOZrcwhzZi9fvtzs3sOuoDMFVkFiYpLY/kw48e7gwLuhwALl5eV7AwODhchC XJ1fH3Wivq4ILJCfn//ttGmviDKlkdnOd2/qNHakwB64+VnkSyGx5BvCQhFazGKBOZTKTiPqzq43 EgLraSigF0Pj6ez7f3tOtqkqLjyo9R+zioXRlEW+oRy9igcS9XydEasLDQxKJMvx204vsC5iN6fN pH66PBGxYVEKtTx7K73QRaxL5weSNBqmT6VnWFj/tDSNFmVVUPH59/+y/8YnI2VTdQt01whWcW6o E76/PjOQsjJz6fjxinazX1cILFBYWBy6bNlymjxpatfbvJsKLFBYWPjk5s1badq0GXUPWC0l6uuq wAJlZWWzcW2wpvXo0f59Q2DXFJ6j53SRNMKcTAODE2kwR0hD9Yk0BNSlMC29lkP19RyuS6KnZqyl tRmHnBp65+krH/1mTjj9LGgrjQiOYmcfQ0M48nVMtqUhuSHZzrD1U4HbaMLCSCqreudXcvaqOH/r bvWvX19OPw+KoKeDY+ip4Ggaro/lvNTK62QaVY61goON8TTIGEeDDXFsnzh6iu/JF+al0y8X2mj0 ygKaszGd1tmOUP6Z21R24f3oyD3XfMtvk+/tv5KvbKZuBZ1OJz2tY2cRrKTD/3Ri0XVV4jdHVEsP 2qeR/qlBlKXMYQSxig/228RviCIC5wTTkiVhVFa2G3MbfU+ebL8l6hRcvHjr31D26NGj6eU/j6qr m8TG7RhPOl37CCxQU1PzL5GRcb5Wq5WFWyem8sAGY8ZgHWN0jXKZ4rrATvast5liN4mo80TR/Ywp J2LTeVXHWk/pwQJ5osvducCiPFFPu+uoZrOxY8fS9OnT281WkZGRvomJiTRnTqAoR6qD/bVRWF+X UaPG1kWimBMrZ+USzp8//0OUmZaWRoGBgWzLyWI/WLRLKrs5qtULtE/T2H4q6XE9BfEdx7DZ+0S6 cePGNrmaqhACOwHp7fNXqOSN/3OJM2fyg1BFzYeRZ9/+lKO2R3Tmg2/o9PsK/8b8kk5/8LkKHzqg WlqFaulBtbQK1dKD9mm+aPS3WnrQPo3EivcfyvyMycfefujy5sxIp5D/aDXr8nAC+/LqzunlbNLe HgbUmf9psQvT3928efMPTOoM3rp1qwHtbQhKtetwoJy/u3bt2u3y8vJ/VKunPdnxdsiGC0qbWXTp 6NGjtH//fpe5b9++Ou7di78PiK3vnEVeSiSKKTFwvmvXrm1WYAG2E12/fn0R1zNVzT4KOQ1dvHjx kXxau8Hu3vg7lKFWtkJcT76vb3Odf9eW+0kpE+R2/wzXSK28jqD9/we3hWB/uVrNwalt7PPF3/J5 GjRo0KDBGeJik++NGtn8wvmKwKI7EYN7oqOjnQqsBg0aNGjQ0KexceOWe65GsFhiEd2oZWVlmsBq 0KBBgwYNzWH2rKA6AXVE/C6lCaApU6ZRW7bH06BBgwYNGno9YmPj72JurbP5tYrAYnBbSMjcdpn2 pEGDBg0aNPRKJCYmf4BpR2NGj3NpYQYILKaiREXFaANdNGjQoEGDhsbYvXv/rwwG02cBAZPESkQQ 15EvY7qPurAqVLZdO3z4qCawGjRo0KCh5yDNmiGEDIvXS3ONW0EWwbruXCbyg4CK6HPUuAaLcbRo UQQxL3I8zZkzh06cOPGUXGUNGjRo0KCh+yMlxSqLovSus1VsJLD2Kz/hu7KMoPJ7AxFthmIFq7Fj KSkp6S25uho0aNCgQUPPQGpqWp34qYlce1CJXltaBlY5MhgMdPz48efl6mrQoEGDBg09AykpFlVx awshpBDtxsLtishiacRJE6eJdK+8MoOKiorWyVXVoEGDBg0aeg5SU62qQtdVhLhi+g7EOSMj84xc TQ0aNGjQoKFnoaHA4t1pa9hQJNtCCCu6lDMybNp7Vw0aNGjQ0HPR3QR2yuTpVFy0U5uSo0GDBg0a ejYsFou0BR/23lQRvPag/btXZVSx8je2t8N0nICAibRw4SI6cuSIu1w1DRo0aNCgoeciKSmJRQ5z VcfXCWF7UxFZRWCVUcUTA6bQa6/NpLCwsPcOHjy4T66SBg0aNGjQ0PNRWFhYFBERQZGR22n79qgO JZY7DA9ffXDx4uXbLZa07VVVHbN3rYbehu997/8B+G3NVO40NwwAAAAASUVORK5CYIJ= ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image010.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAlQAAABxCAIAAACcBKrSAACAAElEQVR4XuydB0AUR//3fZLn+SdP itFYMfbYS6ICV2h2xYYI3HHHHR27sUVjp/duib2LHbGAvTdEaQqhK9J771x95zdztxwIxprkfdyv 67E3OzM7M7c7n/1N23ZyWrRo0aJF6xNTu5YOtGjRokWL1v+6aPjRokWLFq1PTjT8aNGiRYvWJyca frRo0aJF65MTDT9atGjRovXJiYYfLVq0aNH65ETDjxYtWrRofXKi4UcLJJPJWjrRokWL1v+uaPjR AtHwo0WL1iclGn60QDT8aNGi9UmJhh8tEA0/WrRofVKi4UcLRMOPFi1an5Ro+NEC0fCjRYvWJyUa frRANPxo0aL1Sen/C/hJUeXc0o3WBxUNP1q0aH1S+v8CfrQ+umj40aJF65MSDT9aIBp+tGjR+qRE w69JnzIAPuW806JF6xNUm/CTKaXqIpVK/7JaUnki9IlO+nHPS3LaInd/ZWb/dn06OaVFixYteVvw +/urQmUClACU/V1jXv7+ovhL9IlkkxYtWrSIWocf0osXL27fvn3//v0HDx5EREREKlVWVvYXVJRK 1snkkmq5pEouFxPLEwy0ln4/gIqKiq5du3br1i2U0ygslNNHjx5lZGS8n/2HQrYM3Pxr09G/De9Y 75FHWrRo0fr/T23Cz8XFpWvXrn2wvv7663ZKhYaGtvT6vmoChFQul8ikErlMCl/Ka2LPZx5dk3pw Se6N38VladASiY5iMxCTAny9p0il/+zZMxsbGy0trX/9619UTpEWLlzYMsCfCyIEkuGWVIkcsoOd 4KtULhOTc8IH+gobYjr++Dv587eenBYtWrT+arUCP1xry4qLi5Hxl5mZmZ2dPX/+fIoHYWFhLQO8 v5QVL/BBJpHIwOArufN7zFrmPbs+t627RywbEbl7dUFGMvIjkZJ6+lWb6l1EMkv2Gxoa9u3b98UX X1CZXbBgQXPvbyZgGyIzQjhQDcAG3ZYIgihnEkxE9IEgKAaQwyaSyhvBwweg+TuKhh8tWrQ+KbUC v1fl6Oj4ceGnlAx4IUE74rynCR4zn8ztEz23T/yivkm/DLi5ZuZya15ERDjlF7yrhH03kUpfFYHG xsZUZhctWtTM95uJpAzHqIiTxI8dYMP2HwKfSAaGLlCReJO+f37eVTT8aNGi9UnpjeC3ceNGigcX L15sefhd1YSEJidkIYnR34qnoeHLRz6e2zPzt6GF64cm/Tr4rpspb/pYM76p0v+Hgd+r8vHxeU/4 STHGIGMSSU12jqy6So47LRtlpOtSMZAUGnhlYpKFhqLC+pKyv8/wo+FHixatT0t/G/yo2hb68ZS1 PkYhWH41iTfCV4x5ZNsjafWItNVDYlYNv+lta2E0fcjggSUlJcTvR4LfkSNH3gd+OEkyoDj62yi6 umpTiMAu/8Y9eV2dHCMQ51cqpqzC2vqM02eO6c+I27GnKZa/XDT8aNGi9Unpb4MfUm1t7YsXL1SH U5JGQfiozkz73TrWTu3J3N4P7QZEbBh33muZ+tBBw4cPq6gEQ+rjwe/06dPvBz+w7BR/SkrDZvIO dOx9YvDoewuXFoWHEzgqmzcl+XfvXrf65Vi/nw536H6FbyOva2wW118oGn60aNH6pPQ3wI9q6gwJ CTEwMJAq7T4CDTyhHejQkBGeuoX3cOnIe6v0QuyFJpP00NnXrllDRfPB4UdS9Z7wI2NQyaCc0j+S T6jrhfYaENp74PHu/Y8O1byzemNZQgI6VPv85cO1G4KGq5/sNiisz7BzvYccHalVHhsnx7mC/kAy XqZpaCuJG4+g+Qii4UeLFq1PSn8D/CjxeDwGg9HCEU/mk0iwgSSpzry3y2HR5J9+6tv566/a8/nm pbjN86PW1O8DPwAy/IPhnehrVtiNY/1HXuk5+HLfkRf7jrikNvhYt35HtXQifllxfqz+0S79z/Ye cqnfsMt9h4X2++lI14FxAdvlBHBSBD+JVCZGhYGnRpAJEXioqOLJ4QPro0RKixYtWv9U/Q3wI/Vs ZmZm+/btJ0yY0PIwHJdIpSKxrBEBpLGx4eHDh0HHgu7cvt3YCK2CH7uafh/4yTH8yIb2n27ddqzX j1d7D7vQb1hI78HB3fuf7tLvSOc+uzv2ONip9wkEwh79zvQadKnP8Ct9R57uPvC8sZmsthJzn8QD kyRIdgGreJgobiP+8CXwsUuVFi1atP5R+qvhR1WyTk5OKLZp06Y1Py4n8JPJxBI54p+kxQBIiQx6 CJu7fWC9J/yasiiW3Fu29Fj3Xme6Djr8w8BTTL3LfKt7a+yjfbfG79gf47/t/kana5YLQrSnHes1 4kyX/ud/6B809OecsFBZY32LGPGsf4lcIlGMIv0ILZ80/GjRovVJ6ePCT7VKheY6WOMEcJaYmNi9 e3cU2/Tp05t8K7yR5j1FC59EYfTgQ/jvm1fSb16hk7SR/feBnyJ5OCZpScXZiTP39+h/ydg6ee/x 6tQX8oaGFv7ljaL6rOzUM2dv2iw8PGz04e59z45iXjYW3F+x/snmnS9CL5XHxDTkZMprq+SSBolE jPP/MQy/tygrWrRo0fof0IeBnyo82nKnRnWWlpZOmDCBxNbC8sPeAX7K4ZJ45IdcZUWwD6FWU0u5 nDp1isqsjY1Nc1+gV1f7bBahTA5zNeTyvNj4o3yb50ePSqsrsTN+Ib0UZjuI8cgeEZh0Sokac27e u8q3PqzW/3jnvse79T+qNuBI3+GnRjAv6E07b2R+b9sOqahehoN8DPq9WiC0aNGi9T+s94IfqfRV 602xWFxRUVFeXk7651S9kf2kpKTJkydTsRkYGFDe3k2vr7VVj76aWpTOgoKCsrIyykXe3PITCoWq h2RKy7VVtYhfXFYuKiRTElsKd921Fk+jKGXbzqAhY87/MOhS32FhfYaF9hx+Xm3gvu96XlmxBq8S ign6EZZBUy0WWrRo0fqf1/vCj4LB9evXLSwsmEymrq7u+PHjtbW1jY2N9+7dm5eXRzxkZ2fb29t3 7NiRxEOWkGaxWHfu3Lmtolugm/fv3cqIfZD15Mbzx1dSIy6/jLyZFh8ZFxeXkJiYkpKCdmJiYhIT E0UiEYkcOW7ZssXW1pbH4wkEAkdHR+SBSiSp2SmLDaXEy8sLMbhv377fffedmpra9OnTDx48KJGA JaZq+anCj8ID4mVQUNCSJUsQuZHlamlpefjwYYqgEpksJTn54f27Tx49evr0WWzs02dYUZFR4Y8e PQx/WFJUTOIrKyt98OB+ePjD2NiY2KcxEY/Cwx9HJD59lrzv+JGhmhd6DLrYd0Rov59C+w492mfI 86PHcBrwJIpWwfl+ouFHixatT0rvBT9CvsrKysWLF6NDw4YNCwwMfPToUXR09NGjR0eNGoUce/fu vWcPrF2ybNmyb7/9tnv37sjl//7v/wj8/vvf//6A1aVLF8QhhEY1tR7d1Xp88+92yycMPCL46aDJ wL2cAfutNfljfx4xYkS/gQO+69jhiy+++Oyzz3788cfa2lpkva1cufLLL7+kUkj09ddfr1mzpg6v q6Jqk4WEhCDmET/ovBMmTGCz2SQxCGYoLyiDVCQtLD9k1yLE9uzZEx1CGUGgRQicMmXK559/3qdP H5JNpF9//XXgoEFDhw796quv/vOf//wfFkotKpCRI0feuHGDeAsPD9fQ0ERnR7lGCRgyZOjQIYNm zzFsqKp+fijocL8RF3qNuITg12vocXV2aXSkHE8fhJEvdLMnLVq0aL2f3gt+SDU1NWQlaCMjI8Qh 1UPIGNLS0iKhvL29S0pKXr58mZubi8wghArijthDXhyRlpaWkJCQlJSE/GRmZl2/ELLdUusMt9dZ bt+Txl1vrtDMeXIxIyMj7OJFinP9+vW7d++enh5Mfu/Wrdu8efOcnZ3t7Ox69OhBPCChr6oTJJDF RoIjXLm6uhYWFsoxwhGtkdXYDg/A2bVr17///W8SXBV+KKfItCXuyIQtKiqiDiGMDR8+vB1+C0Qd FrIOUU4XLVqkSEe7dhwOBxUICtXQ0EAeGlDC0P6VK1cQ+dB5Ue6KCwpLSopFcqlcKn60welIj0FX eg8/o9b//GyOpAQsSxgHpNJR+AFFw48WLVqflN4XfgEBAcT92rVr6CtpOZQrK1NqnUyEHMQ8cqii oqJ///7EfebMmcqYWkh0zdn0qJHacbOBJ3hqUQ668pKncgzUXr16kbDIUiQQNTc3R8ikQiKCjhs3 jvhBOnnyJHG/c+cOCkIckbFI+adEsokMO2SoEW8oZnIIZQeBjThu2rSpeTjQixcvBgwYQIJQhYC4 jsxcEgpZvVFRUcSdMkPR4wKiJqJ4Tk4OFZUE460xO/eMvsHpHj8e69E3fPUmmO4Ah8Qk5AcnFQ0/ WrRofVJ6L/hVVlaSGh9JQ0MD2S7UIVKZPnny5D//+Q/xQDED2VtUw+Or8/xIHVyen35wwYTjnD4n +P1CBWrJ7pPEeUCO4uKSvv36tVN2GSItX76cnIsiClJ8fPz3339PPBgaGiKXqqoqJpNJXDp16pSY mEiCKE6Kd5Appqurqxo5ZflRo2DU1NSQndoiLNmnXgexYcMGcgjJ39+fOCJNnTpVAi8rVPhH+yYm Jp999lk4rPkJ8cAx5CxT0DP1wKEjvQYf6zXw5clgOXmZvXLV0A8uKju0aNGi9SnoveCHbCzKHQlZ gdQhUpkia++bb74hRwUCATmE4NcPA6zdK/CT4YkOaOfh1fPO0wYF84ee5Pa9Y9Un01NflAOdXkWF xRQ4kYyNjRvw5DnSkEhxBX0lzaFIyMpEVDt37hwVatSoUS1aaElY9BkWFqb6MncCP3QKBoNBXCZM mEB8qtKC7EdHR//3v/9th7sbqeE2tbW1VEqQdu3aJVem1tPTE7mQnkKScrx0mVQsF5M3/Imzc8+N n3FUbVD63r1yPNUd+8DjdpRSJuF99QGjokWLEp7Yo+ymlsF1JkcXuBTebiJTHlUe+ogb+QujpMXo 8VKKN+VRSIkYrx+h9K4IIpHJG+DNm+CHHJJCFMrx1njUmSKKf4AUCYe/Ejw6QF4nk9fj1Mqk8ka0 kTLHyX8rQSDVfOIzSWENRtwLA1UHLuHWByOQkK9urz2oPP5h1Fbl9l7wKykpIXPVic6cOaMSCBQX F0fBb9asWcTxNZYfVaH7Oa1dqd0l2HxoMKd39KKB2T6TGnMeI/fiwqJ+yrAoZhQ/CaUaCREy+Ii3 jh075ufnr1q1inxF+vnnn1tMb5ArI0FQpGzZdspmz6tXr1Iu1tbWLQJSQkj78ccfibf58+fLlXE+ fvy4ffv2xL13796ZmZnI8f79++irhYUFCUuhDLAnEaFbjgxjfbzR+UjXAcd/YqUfPw2nQD4ljXDl UUEU4d5XbxWJyfLN2gJnLYErW+DJFnhpCby0zbx0+V46fG9tvq+Wmb+WGfr0aWtjC3xYQm+W0FVL 4K3FD2ALvJlCL6aZP1PgzxZ6aPO9dfieumZuunxPFK0W3vCJ4FxsgS/bzF+b70MOYRfFhr6CO2x+ WvxAFDM6l7aZt9LRG0fljw5p8/11zDy1BO5soTtT6MEUeoJPvi+O1ltL4ImO6kJe/LTMUFR+Onwf 9FWPTxxR1nzZQjc2Co5Thf17jOW7j+N56vG8dXkoeejUfmyyCVB+IU7YzLxYAj+m2WaGMIAp9CFh cTI8WKgEBD5MIRQF5EvozjJ3Ypq7MIS+yIUldMPBUWwoBh+mAAqNjUrSLIBtFqg8C5QSU+CL4meZ BZBy00LZaSp5XALKlLzDZrxs59uuryQhVTH5ArWaDM/YASDK/kL4kTPAf6iupfBJIACuLeFH/uAl 5MlcXMpNyb1/OPww8OSIfAjeeF8G7xJVwO/tkwsxqgbEO/it47AGCV6AkczKbgqiIhLy1e21B5XH P4zaqtzeC35Iu3fvVlNT+/7775csWVJf33JdLmQAUeNTqMVcXg8/OawLJjWZPmW5dpfTVkNC+L3S Vg3J8R5bn/UQHSoqKqDCdunShXSVtZo36oXsCH7Pnz9XfT/74MGDyVCXVqU6DZHACWWNcuHxeMic RfmKbi7kEhUVNWjQIOINQU6Vr+vWraNiWLlyJbF9kUgyqPTjSQz49YZSMQx7kcszzoUe/fGn8z0G Hhs8JvVQkFzBP7jgKJHlP1spgrdRq2XYlkyWb0VVtpaCRlClIhTp8OET17AEM6/boO5GFTryyffH 1bEHGxEFfRW6apt5IPjpwKcXoIgEUXDCE0fuh0GFIOQN8ajCD2/gR0DqesBnc/gpYKAN8PNkAfk8 WBCWgh+cC6UBbUr/3pjHXjhVXpjrvsqTQgIQwrUBlh6I1jjNhDTUuSCdOrBBYpB/xD+84RTivOOU eCkwiU5HciFwYwncWWb+LIRJIZQ2xEYeAnCckH0oNF98LoAoCgIewJ0koCm/fxf8mlVn5D9eoRbX p1KCxreL8Z0kIydSTU0z+EkJ/F4R8UFs1xaww1X+P0iQMlLAykTi5UFINsHgha9kkax3UFO+FTsy bBM3g9+7xfwXqK3K7a3hFxYWRhyh2sXNd0VFRbm5uc0CKPXgwQOqFZEa2/Kn8HuZmTW4d881Y38I thh80aJP3saROe7aNc/voENFxU1hO3XqRKyoVvNmZGREeUtMTNTX1ydf270WfihHEydOpHxaWVkh Rzab3Q53BKq2iL6qzz//nNr/+uuv09LS5Mq0FRcXjxgxghxCDwrq6upffPEFmfOgmngZftMtxplY gl/qWxGfGDSaHdp7yPkfBh38cUTi7r3ogiOtGiSgAoDvfeW1WoZtyXjZbgAAbH6kcteGmt0D1+Ng TuGd12xQ+WqbuSOLSofnpwOkccMxuCODUgd9muGKHmL2I0BC5EDuhIgoFBhksBE7UkE+ZbUOn2ww K13IuRTGn8KDGzqELC0tbDUim48lxMYrwE8BSKCL0B1sO6HCtlOaaDhysLcgYWRTtbpUMOahLXCF 7GD06vB8dfm+ejwvbMt6YEShM2LW8gF1GC0KRCEXZF/q8sDcRB7AhEUnglx4gmeBm7bABbMWlYkC 9tqKwnHRNXNB59WCjcCSxEzxT+VJ4hWwvcn2DvBrJnKZqlys73/dvqGkqgZoc2ELDzbquyJNipTJ MPwwSJqOEse/BtxvKEiZImkK4RQqEizBWRDhnL6LlKWitHgVJQBDEPC+wtj8Z6qtyu2t4UdZfgR+ VLxo/9GjR4GBgchO4nK5M2bMMDQ01NHRoQK+OfzOXwj98rN/bZzUO1jY/87c/iWOo7IBfrflQJGi V+HXqlThl5ycjOxO8hVpyJAhqhMVVCUSibS1tSmfNjY2FRUV1IjNdnjGgp+fn4eHB/rcodT27dv3 7NkTFBR0AuvYsWMhISEooFyl3IODgz/77DMqHtIuquoB9gFq0JQOTTPYuT4///T4KSE/DLzYb/i5 noMP9huRsGWnvKEBVj5V6fvDYd9LbV0frcpo2V7Spqc0wgB+GA8eGBu45n3tBrxBhIC63g9jT1kd o1ob7DlflpkfMnrY0HyHLRuo/d2xQQY4wcxrXqE3bcic8mILXfCmAK0ycjgpwA9RCs7ixYIWxRZW IzHpAIp4Aw/Q8KjSvortM0wmTEF4CICGXPDDAqCiIJ4YP+4YcjiPfF8dPhh/5PkA85g8NyjyosgO xiGCH3omIJYogh/mqyJr+PkAYRVxlCSAQqaPDg6oQKnCeMWGryL7iuJqelZ4++1d4CdT2VQcWvvS 5PARNmhTIe10hIKvesB/ld+pv/BfirEhVnzFJiRuSBTBnYo9/+1qSq0iPYRSBE6QYNzgK25i/Bur KUrYeR38lL7+cWqrcns7+KHq+84dsMCIqEhPnz49efJkyjBq3749AsaYMWMGDhz4VpYf0Zq10Ei4 aUqfEEGfmKWDKl1+znTTaRV+quNLW6iF5Td16lTytd1r4ScWi1XhN3fuXMTXLl26UC6Iai3DtC1C JmoRHGRHUvGMHDny1TZbGNACvnFvMnYXlZWe058R0mPAxT4jw/qPuNBr6P7eIx75bpZL4H0XFPza +nXfXG8Vw5zlu1i4vRH39nnjxknSCoebAaGiJFhqfcMmF/S0saADLwBzVGFHIuYxzQKZggDou0II hOZBX8wnbIFBEB/sCMaZwogkeENGG6ACuui0qBZRUt0rwOylOKpoMwQXQjI2tFs2hx8kCXHXH4MH pcoXn9cbI5Cc0R3DGEcL5/KBdMIG3uAryRGOHDd14k1hNTYVDhyC7k9vnEdSegSH3jjLHngHQxpn nBQvJBVMWDeGuYemOeAWu0NTMCYi6bbEhjJ+sMD5UmCSRPgq2N5keyf44ctZBRISpdGkPAodf8Qi ecuo30rohI3otmpUMdlkeIfaV9Tgyupd8VdxDDoJ4a9MYeRI5SK8TO8/EX74Qwk/xWHI6weDHzjJ Pjn4ff755/fv31c9hEyl1atXk6MIeJs3b46JiUHVenl5OTql6lJhbwg/iUSig4dH2k/uc8Giz4s1 w6tdfsp01yPwK3p7+HXu3PnZs2dkDgMRgl9bzZ7o7C3gh06BYqBcjh8/3jIMVgsCqVAJRPh39+5d Egl5IBAIBCRIU0AMP/wCI/I2e7motOSM/uyQ7kOu9h6JjL/zPQbv+3FUzJ4DeK02chGCqPO+s94q ktnLt7GAPQoAYPiB1aLF82Fz3bW4bkyuJ8PU69WNSTaeB8scV9xCH4YgACw8REG+N4vnyTT11jT1 ZXDRjhvePBim7gyeOwPt8z0YZl5MgT+iIzKttM3d2NB+qGxEBdPHR9vUU4vrzua4a3E8tE398MAT X2z/uWsLvbV4/jqmgdpcXy2Oq5apgxbPGdugPsBI3GGpg8DAR1j1BnxyvNkmntocTy1TiByM0aah K+5a0KzqCo2QZqSBEcDGMvVicd20OC5sExeUBU2uhybPhcF3QWXFMPfUBIsQZ83Eg8VxZXKQH1eG qaumYnPW5DqjLKPEsFAehT7QH2nmoslxYPKc0CFNVA6oVLmeLI4nm4NKxp4pcNI0d9ew8NI092bw PVlcd5aJO9vElcl1YXKd2FxnHb4bblIm8KOwCo20r4LtTbZ3gR8Z2wmDIyCgBMZgyGvlMPoC16Tw TSavk8gbJTAQBdehcFl/2E0G1JOhE8FyiCrwa9bpiNOjagFCMIIQmQomiQcS/J/T+KlMNbXfAn5y fIfj1t23/AWbx9wEP0X3oeIY/ka8No+eclPd/tyHiqdWgryl2qrc3hF+JLr6+npUg5NDenp66enp LQIiO4kcbffG8EtLS/vm22//D8FvSp+rtv2KHEbVOo3IdB9bk3ZbDv2Lzfr83gR+yG6LiopCZij5 2u618EMsp1alQbK1tS0rKyPrmRG1BT8iBeuUSJNh7BHy1dTUTJgw4csvv6RGfiIEHjhwoEV4PMJM hl/nC5HU5uWe1tE/22NIWL/hp3sMODqCmX4Uhn3CfAdFy2ibP+1b6a0imb18J27Zg1EhYP0gcgh8 tXgeuny3qRYeM6zcptl6T7X1abFNsfHWt/Odaus7wdKdZWoPTYuIeUJ/VCPr8Nx1efb61q4zbD2m 23rOsPOYaeM2y9pjlrXXTGvvGbY++jbeE8w92KauDI4bm+eD7TYPNt9DR4ioCdzSE3jp8JzH851m oIC27tOsPHQ5Ljo8MLMAfububDMvXTN/bWP3aZbeM23QiZwnWbgg/ukIfLQRb3jILvTUwSYmCxlM po4zrFwNbNwNrD0m8p10eC46pJdOgICKTufBgmEypAHTDR9CYX0MFu/gLNluMs+HO993zoLAWfP8 DBcH6s/z0Ra6EEtXx8LbYNFWo4WBJvP9jOf7Gi7wN1joP3uh3+wFvnMWoi1g9sJt44R+LD4Ykcim 1J/rb7jQz3CBL2wL/Q0XBBrO32I0b7Px/ECjhdvGW0J3I8MMTOQptlvnzN9mNC/AeD6ObcmWOUt3 TLEN0OK762C7FkEdAIZMTDNPsHQVBvrbbR8EfnWYeHihIkSiarm8VC4vl8srMRPrlJ8fdquHT1mV XFpHWj5JJmBOLWWDwlfyPElVt1LMaMUrZZTwwwWgqOdlyr7AtyyTjyBFkpX7UjIUpRn84A9+R9xb 0JqEUwaggAoEpc6ovCKIid8ybuKAHyuatlZ8vLo1P/4+aqtyey/4OTs7E/eOHTtS08aJSMAzZ84Q D+3eGH5BQUHI/et/tds0qdeDRYMrXEbXOg3N9BhbnXpLDqvDlFNLo70h/Lp27RoZGfnzzz+Tr0hD hw5tq9mzrq6OLElKZGVlhWxBVZejR4+2DKMiQjtqn3wlpbF06dJ2eDYIMo6p2Lp3795iur0U7icZ GHYYbeXxf5wYybjYa+BJtX5H1XWzwq6CZzlMsCFjPlXDvo/eKpLZy/Yj6wS3s8FISLB7kFnGtXfY cTk2vTAxsyDxZaHqloS2DMVnSmbho/js+RsPaHPcdCEGLyCfyTqvPef/yMj/I7MAtgwUQ1MkCRmF z14WRr/ID7oUyf/Fcyz3Nx2eK5vnqw0tk7jVFJlrXAejJb4XI5PjswvisoueZRU6bb+gbeKEwKxl 4c2A0aRebCPnVV5nIlML/sguTMguvBufx1+1SxP5IV1uAi8WD0jGMnVx3R0a9zL/j4yihKyCmzEv Ob/4a3EdYWKGgEx78GWa+bMQCM18dGGYK8K/hxbfbYnHmXtJhakFFSk5ZUk5pSl5JfHZZSvdj2sZ 2yP8sPjuk608z95PeVFQlpZTmpZTkpxbmphbmpRbkoK2nBLkfvlJ6ux5HkzuBsRLNnfjLy4HE3LL UnKKkYfk3JKkvJJkCFianld67XGW8YJtLCNnHUR3jtNChwNxmaVpuaWp6Ly5JX8UVe27lq4/dwu2 /IDrsAHAwLTFTbXYXH5LBL4L/BR1F6n94L8IPsXyxqrSlMiSqEsVT8+XxYWUxZ0vj71Y/uxS2bPQ srgPu10oe3ax6NnV2vwEBD+4G2EwtRw/P4pkKovEKwwjuBfwBDapWCarl8lgzpFM8ZY1GI8mEuMW WvwfHVW+cvRvlgLnIEiPFM+kpG5rUhfJgPYiqbThzZdIJD+eBJ7JCfNws5RMLJVKIDYp2oNyhA3e NornRDYvDPjt4ZkeEiLGHpGj6mAR+EGgq0fhVbGjEskrUb61qHO10DvCDykvL49aRXPKlCnEUTVL 8uZvSGgVfq++zNbG2qYdhp/DpB+SVg+tcfu5ynFoppuuJPdxRUXlsaBjgwcqphO8IfyQt4SEBOoN gkgDBgzIz89v4Z9AC9myqpgk8/zMzMzaKdsqd+7c2SKgqkiuUcnY2dnFx8dTLoTobm5ucjxlHhUX dYrJkyeTKSL4ssUdfvjXJpdB9pmzJ/uOONmt7ymdyUV3I+RQd6ALR6y8nD6Y3iq2OcsOss02a/P9 yagNtpkPg+c62dbjTgKsffMmOnEpRs/IRYcLozfZJg6cBZ4pOaUtPb0ilMSc4gqXgMNahhtgSIhZ IIsfyOQHaAm9Rhuudt8XhgfkKZSYV21g683mujMFXgyBJ8PUbbLQ41FSs4eegKDbbI4zm++Npw/C cBgm13nGgi2xGU3vokKVn8uOM0yTdbiDEDoUdfl+LDyXTpvno8tD8Mbtinw3bdONv3oF5VQ1vbK4 Wiy3XbmVPcceBWGbuo813XDxnmKRv1Z18V7MeNPV2maOKDbWnE02KzfXKcz7lroenjjBxF6X46GL HgKM7c0Wu1U0UtW4/ElKwezFv7NN3UifH7Ju8SQNMJGxCUgaQhWb9hsbgu8AvyZLoakGQw51suqc axtt71iwo63H3LcY+sh2VIS5eoTlmHCbnx7afcgt3G7kfbtRweaMuLO75LJGxC64wQB+pK8RJ4vc cWAIKsw4GarKcf+gFE+rRXU9AoBYgUDl8FD8BPreNfOHEZQvjBRAMGrArwolU9AVaQPAwLxKtCOR IPjhkeRvLigeiEwE7cQSEUY+ilDeKJHV4yYqMUIqIiHyQIy/FmEVFwCBH7YH8NiGZrBQ+PvnwW/D hg2kpkbwu3fvHnG8cOECVYNTa2DK8ZmI0L6LiwvlZ8aMGcRDQUHTXD3KkQhhYOTIkcj9vwh+U3pl 22tUO/9c6Tw013tCbepdjgl36uQp6qMVDZhvCL8OHTrk5uba29uTr+1wQ+iry5uR/dLSUmr1mXbK fB0+fJhyaXVhzxYKCAj47rvvqOkff/zxx5dffokIKleeEcFYtR/R1dWVHJLg99fL8VUG/mSyiLUb D3X58dw0A/JWB/xQRxrbW/8531ltXR+tymjZXuU4Tx886c2XyXefauMemYrhB4+Wit4U1Q2eDCF7 oOBrMeO4Ttp8d5aZh6axI39ZQHpRlRxyhx4ea1EM4AluBsXzK7qX4ckSp7G0smGx/SGGkRPb1JMt DGQIAphmnmNmrw44ApNwJOgk0joUJqO4hrvAn2nsyhb6sMy9NTnOBna+Sdm1cHvJquUyEYr44LlH bGMHFt+bScaS8N01OQ6mK3c/L6jEN6IY39Byn/0XWJx1bCF4Y4Gx64MHo/po8zx1gXx4vjmyHfku LMOVrttO10FFA/VLUYXYcqkf29gJkZKBMGm67txNWKsBP0HjDJJSl+HlROTy0xef6BhtZJj6sIVb mcaelku3VdTgAiOFACnH+3L5+VtRukbr8YyIrSxjF9MFrvnlilm2VbWNS+13aaJ88dxJkyyb58E0 9WCZuqONWIFsvhf0sPI8FM2hb7a9A/yAMIqhESS/MmhLlFXIylMi15m+sPopy+yHDKuuOdY/5Jr1 yhH0zLJSy7Du/gG3TOtu6TY/3DUflhLyu1xajepp+GUawbAjQ2DwjQYJk8JUdwwzBA5xo1wKEwPw T4MMnUaRTAT9e3jMDLq4YR0KfL/iHP0DhK1V3G3SKJPUETeEJLDO8MUF+ZRgy08Gs92bB36dyF0n FqNoG1CZwKYiFFcDei7Av64UcZHYcCrCFyx5VMf/sO1MHVXc301e/3nwc3R0JNW0Kvz27t1LVd+T Jk1qHgKESDZs2DDKD8U5VcsP2T1UO6Ecv5aPrAjz1b/aec/qXeHCqHUYUe08omTztOUGzC+++HLn 7l0//fQTCfuG8EMcysrKSk5Opla1Rrkgc+woUfC7cuWK6oQEsrxZcXExNduh7ZW4FUKee/bsuXr1 avK1vLwcFcKYMWPIgmrUz7Bnzx7qLF9//TUZQ4vJB5gga1uLMrLOjJ1yQK1f+sEjcvL0BA+cH6WT oa3ro1WhSrCpww/PTEB21fS5XtHJGH6Setxs9DoFXX6kZbqBKXDTMPccbeLKWf57amEtHIBqUoyz 2EIIfY1SKb675PKrkWk6vI1afGemGbLqfNGn+uzVmw9fAo8wXxkwkFNUxbHz0+Z4ILOPKfRC8Jtt 65v0sgrXE5VyGVQQB0Lu6XAdmQh+MC4GMcydyXXkLN+RllsJUeFMoKR477nIMN7AEnoxhL4waJPv psFxYJhsYptsZBlv1DB2gOE8AmSA+mpz7acK1kcmKJ57CqokguX+GiaO6sIAdYEvy3Rj8A28uDk8 BoAVAVUF0LoBmRrI+cTlJywTe+R5tNB/DMdVuHJLeT2+O8AjjLaHmgyX7Lm7UdqmqxGJGfwtDI6b 8SL3vEoF/JJflBhaOrO5LtqK2YEe0B0r8NYTeumYIVvQhcV10jBy0DRxZgMd8fDRj2b5UY8+SvhJ octPViqriI/dYJjM65Fn/l3e3K8zLf9baNmxyKJTgWXHAosPuRVadMiz7Bwh+PH5GX885kWCl5dB KUEMrpOQ3xjqYBX4SRrlolqwkWRwNbbIEZg3uNuyARk7xBL8J0iqaMvET5jVSYlPnyYmN6L6QqLy UnF4fJQol615UxETDTcWI/Khu0aSV5D/4NHjiIeP0l5m1eCmEQwt7OcVUoEDOQg/PkodPG/kZmY/ i4mtrKqSYgNcwT+MRkUMKpG8EuVbq63KrU34qQbw8vIi1fS///1vCn6XL1+mqm9ErKdP4a0Lqlqz Zs23335LcY7CRmVlJTHv2uFlNmtqUAEqWh0Rk8jEiP+2a7eTO7jOa3Sd06BqjzHRqzSnDe56NuRc TW0t9UYICn4EXSTBVLJVLb/U1FTksnLlSuKC5OPjQ7yRgGQlafQ5bdo0yk87lYWt/fz8iAuKDVly 1Imo81IIt7Oz6969O/WWBmTwocIhhqbyMlIE5HK51IkQHZHRCX7g4oWmTbSftOtgUK/Bx9T6R7lA amXYrCE1JjzJtfGLvpveKjbjZTtwpxFMP8BTHXw0uK76dn4xyTjXUmj9QNGVVDa8yK15WdCQUyYq rBIVVYnzq0TF9aLwpHyrDXuZXGcYXWLhM5qD4LfteWE1hMWpQJl/WVDxJKUwIiU3PDX7WQYy9nD9 CZ0KUDKFNXXWa7YyOS5MGBvirSVw15i9etuhy8oYwE9WYZXRPF8WB2aUI+NP09R9hq138kvSuAog QX8OBN/XMrHX4vvqwLJnMCmCwXM1XrEjPR/DD/+k6MS+ey8i85TJh+mJTK6L4Le9hy48Dr4cdSo0 8kRYRGDQlRl2PkyeL9scFYWjnunGQyGwUrkcw0+4crMG15Eh8NPke2mZ2gffjMZHyP1OrHh43CEn O3k1UpPjyACie6tzXXkrNlc0kOuK1G1NvxGy/Njc3xhCT8R+DRM3k4W+hdV4BKVc/jA2e5qlO5sP 689p85wmm7vsPBn+KO7lvegXNx+nXnmYFHI7Lijs8fFLsYFB9yda+7NgWJAvmWoJq9jwycSJluR7 N/i9IileZLJcVpPwxGF2skWPPLsOabb/ejHvi5y5HXIQriw7FVh8yK3Q4vs8y64RZn2fn/FEFqdE 2gg5ANrVIRYqFnZpBj94zpAjKwc/jqD98Ie3d+za6r8l8PDRU0mpionFAFB8z7xncXwYKS4lkhhJ Y32B/frlv6zaWFaD7sTayKiIw6dDM3OhJR9VdSJpA1lA440FpYN3xHJp1bMnd2znL9IeO3G8ri7H zOra41ioifD4A9ymqUgEJZw0XOnhSoscDdq734LHj09MkEE/IZjR5H5QHG5erO9fyG1Vbq3Aj6qg KQUGBpI6GsEvMhLa3+RwFUvJSBDSGaatrf348WPy8jzqVXbBwcHz5s0jYVVtJmQpEkdkjSGbjHKn Bsgg+PnPGVDixSp2UY9d9GMwv1/CNRhpUlZeTtG0c+fOqivLqFqQcpXlzRCunj9/LsevUqJe7IAi iY4m1ZBCKOXLli1rh+2w//znPyRT1NqbIpFo9uzZJCyPx1MNqCqyVvWxY/DWdbnylQ7nzp0jX0nB UsX78uVL1enzS5cupeJBqn/5Inj8jBC1wSHdfrwisJPXQy3YiJ795bjP+UOrreujVYHlp1hazBMW 7uJ7aZq6TbH1j00hyFc8Dp+7Hmlg7Ww4z8dwvo/JAn/jBX5Gi7wMF3tNtvVmct1gagTMEPDU4Lhw lwamF0KzJ3Xx7z52dZLAZaqdyyQ7p/GWjs6Bp+saoDLCdZW8TizZ5H9C09CZbbYZTzd01Zj927ZD YPnJlHdqRlGV4UJvBhemhGsJfMZw3fXneiZnFIMffJMiHQy5r8V1YPF8dM0Q/3xYfM8xHGeTlduf 5zeZ6ei/355QDWNnNiwu48EyclgXcK7pcRr6r+S/+ZzUmOPBMvNiCV00TRzdtl8ipVkEll8gMhMh kTxPbY79KQX8SNQy5X0NdYMc4BfN4Dix+TBKRZ3jylu5tQpbfpiQyodi/P/izacszgZNoRtL4Mkw cTee719YoWjOuhGZMdHCU5OPMu6qbbzeesXW3LKW6w4Sxb0omT7XX5MD8yPJcm66fLR5w6QOmBrx IeBH0qwSCAOmWlad8mSjUZqgd75lx4y5X2XP/y7bolO+eZd8+Oz82q3TW20F5p1yLbo9MeubHuKO LE4EPzyWBeUD/W41eH4FBT+RYrlrKG5U3jV15dl79u5hjZusO1bPeM5MLSbDVGB98uID4Ce0zMMC vC0Nw79L8GQIuYKUVaXPszbhmC8orUVYqfDz9WKMMw1/nIrpI26UisVv8SPKcKOLCBeTrLogZbEV Z9oso/2Hjhw7sn/PocN3/0iG0gDykYeBZr91SymvhG3efhN0dGOeAjhh4Rliirf0rVDzy+dd1Fbl 1ib8iouLkW0XFhZ28+ZNZABRdbSHhweyz4j7gQMHkG1HHfryyy/V1dXHjRtHOrTI+A7qnT4DBgxI SEioqqpChNPU1FR9bVBhYSGy/86fP09NSPjqX+02Tel5227ALWHPe+Zqz9Zp1abckEgleYUF/for +uTQqRFuUYR1dXXkVUENDQ3l5eXIsiwrK6Ne6ffVV189e/YMeUB0jI+PJ2+dbYdfToTSn56enpWV deHCBeJ/8uTJO3bsoF7DhAiKYkPUrK2tzc/Pp5b9XLhwYYshMyhrc+fORYfWr1uPOIos+rNnz7aD NWJsUary8/LIgi/E+EOfKNqC/ILly5eTCIkOHjhQUFRQUVUlbxA9WLkmSK3vpb7Dz/0wJER3St2L dLgMSTX4EdTW9dGq3hB+x8MesQxWsziOmibODCMXtokri2PPRGYQ1wWMDIEfiwe2lIYJgp+iz48E RDkMPBCmMdueaeqsaeo0xnADb5F3TiEACVYnJNbYnjB1A3uYI4+4IvRQN1izlTR7Km+V18JPMY3y wNm7LO4mBp51jr0hEttzl295kU9eHQx+ZBh+miYu2gIfbZ4Hw9h+XeDZOmpML9689t8YY+jOgPl5 3qPmuK10P0mKE8FPuGLzx4FfLIuzXlPozhJ4IfgZLQzA8IND1x4/R/DT4Puw0TbHYe7qXbkVAD8R tJrWk74qcv6olMyptp6aXE9YjxSvR4NXVoN2bDwv8MPBT+Ub7u2sk1WnR2/gPjftWyzokmfTMduy U6HwhyLznvnm3QBaFt8XAAWR6dY536IzAlihRedCAjOLLgiB6BM2c9jyLZSbeZdCc+zebOsElh+/ 14tgF4CfXIwbT2QwklMOlh/cTjJsnkB7AP6mMEPKTu1wHKPBWOe9Kzo6Nisj+faN89Zz52nrWzyI TMGVdtPIJlXhK4NYSy3LCju1dCRqXk6tOShdFc6KVKoegyE56CSN1WmL5nK5VktLEPzkFekvk+48 flZcWY/r9ZYdfqqnUe43RYufCsTQQY4DZT67azCBdeh4MFVdyPBUEtyP2IqUSZS2eEjY7r91yvgp MfHx0NAFD7Qtk4Q/mjkStVIib6C2KrdW4EeEDKNZs2ZNnTp1xowZ6HOyUtOmTUMu+vr6yBFB5erV q8j+a7HoZbdu3bZs2ULiQWhBoci6l127dmUwGEZGRk+fPt20aZPqO9mR4aijo7Nr1y4Oh4NcUHSr x/c9b/Fj+KKhGU4a6Z4T1hvrjB83Vnfc2G/bf/sZFjJD+/fvr6GhoaenR96Uu3fvXmTboXi0tLS6 dOnyX6xvvvlGV1cXpRadYv/+/Xl5eYhS1LsmkAeK34aGhghR4eHhiJdfYvXs2ROFQkQfP348yggi FrIOyZsCUfyofBYvXoxAiOJv3749ygWx+dasWTthwoR+/X/89ptvUdomT5k8Zoy6h4cnFAdUO/BL 7N69e9jwYUOHDUWGKTJ/0cc333zdTa0rg61pa2Z219E7uO+oi31+DOs//ELvEScHqxdevyWHlhZ0 d75y0X8ItXV9tKo/hx/W8cuPWXPWsGFUizfT1IcN4zPdmabwMgc2jMLwYuMWNk2OawvLD92ym4Ou MTkeTJ4PSxjI5HnPtHZJyYKpmY2Kelu++8Rt9Vkb8aIwkIwxBmu3HMbNnsrCeQ38QDiNe0/eGD17 zShjFw1jR00je4ax4+hZvxkv9HqhaCOCqNB//72hGhwnLVic2gv5+S3gbLUYwlN9HFtP3NU0cmYI PJhC91HGjsvcgj42/MIAfsjy88TwczNe6FeghN/9pxlTLTyYXF+W2WYEtql2PqfuxNUQUxcMHDKm Cr5EJb2YNtcNhr3gdbHZHwN+KlJkFf7Xy6qfR24yThX2KTTvnGfZMc+iU5GFWr7FD9mWPfMsOxVb f1Ng8U2RFaJdh0KLjmVWXQrMvitB7ladcs2/L7JSyzfvDptll3zLznlWnXOsYSu07FwMXOyab9Ed fcJm3r0I4dOy0xNBzxchrnJZOQzRVCQH1nrGL+ahClWi2hmWkfDIaobe4mW/5deTEHAoMSFaf+yM 9WvdRMhyFNU+uHv5cfjNgsLsq2Fh+3cdvHwrqkoxUb8eT2GUlueXhJ45v3/v3uv3w8sVQ01kcTEx l4LPlhflRUbeO3Rwz/HTZ14Wl8OPJ4O+cjGMo4QzNlQV3Ao9mhYXnfsyI/jUkQOH9j6MTRIp0iLB Y01EL1PiTp04tmvfgVuPYmsVP42osSpl6SLBHNuVedUiuaQoJS7i8t2Y3HLcYYzuLUnZk3uXDu3d derYmfSMIgSlWrHo9pWrV8JCK6QS0kTQUF529/zFG3fu5jc21pKLU1KX9OTmZqeVk8ayl613DjoX VlBempyedfL8jZyCQvQokBwXG3Y6pLywMDbmyeGDh44fD0kvqCCWMS6NqtKslAsngo/uPZLwNDHQ d+ekKcYR8Sk4SdB/+kds1NEjh46dPPYsJQXfdxJpVcmdy9fu34+MSUg4fOr4o+iYBryslaKPEOcV +1TdlH+aq63KrXX4Id9isbhBKZFIhEf7gpBZQxzr6+tJSyMys65cuRIQELBhwwZ7e/sjR45Q41DI WZFVd/PmzUOHDu3cufPixYukkw/p4cOH27Zt27x58/bt2y9dukQ6vSorKoOOHf/dPyAq9GB5xJG6 qNM1kUcroo6Fh504c/r0mZAQhNsb15HxeePatWvIYkMGFjIlyaT11NRUlBI4duMGYhiyCyMiIh49 enTr1i103pMnT8bGxpJTR0VFOTs7GxgYIBt07NixCIfoKJlyUFJSgoJEYKEUotMFBweHhoZSb2lI Tk5GkLa2tkbM+/nnnxEaTUxMEMyQrSyHopclJSZfOn4i8ua91NTnj2MiHz6OCH8c/iI9HTeKk7e5 yHKzsx8/eRzzNCY+IT4ObfHP4v+Ii09KSHwccWrBL/v6jAjrNSys3/CLfUde7jM8qOeQP7btJmfH fX6tPBO9p9q6PlrVn8MPV7UnLj5gGSxlmaxjmKzX4TppGTuwTdZpcTawTV1gVjjMGfdh8j00jJ25 y1rCz+/gRTbHTRuvLsYw9Zhm4Zz4En5ial36vafvMQw2kPW6WGZeow02bD58BZ9d8WzdBvzwHAYo QqjLrtx/+ovbwSXux1Z4BP3qcWS5++FfnPd5/H6yoLhpXVYZgZ+JI0K1rsCLaeK0JuB8LQySJ5HA b7Hr5B2WkT2T78IWuo02cljueogksqhK+rHgdyuWieCHV31jmLgYL/QtqFTALza1YKaVK5vrzuL7 aFkEMPgeegKX9X7BV+7G55fiUUXKs0YlpU+zc2XyAXtsmIYPb5/QRQ8lrZHvPeFHZRUkrZfVPI9w mJNg+UOuZQeqfy7PSi3Hqme2ZfsCq/8rsPymwAqZfZ2KrL4vEHYoFnYotepYIGyfbdGhwAaxrXuh JfpEBuL3iG2IfNlWnZF1iOCHjb+uCIr5lkBB5Jhn1emx4IfnAL8K1S4DXKCk25WkTUp+TTwkRBp6 7MCEMZoXr9xDd2ujSCSTolqrQVxX5LVokWA274/CyvKGqs2Ovxjqs0wEPFMT3rTxM7XHG6/3+L2o GkaFyOWlEXcvCoyEhtNMeByu7mT9TQHbMsqg9WLv1q2mE/WX2FlzTGYYzZmiocWyWuX0R24ljJQU w8iDRjwEoSI/fq3tDP6saWamFsaGM8aN1x43i7Pt4CmYwIC2hrKw0wcMpk8yMJg1a46Jjr7xr45e 2QWoCpWJqtMWz+MZ2K4uaBDLGzL3+bnoc34Jj89DeczPSvVxWDlzEtuMO2fWxBlGhlZBF2+X1tdv 93DjGM4KT06txmXy9P590wkzt+07VCyR4BFiCLWlQT4bjMeN0VD/eTBr4nSLBVFpSWev3Jox2/bh wwh0pxzZudVovP48K1sO18hgxhQmS89ysePT9BJsEtb/EXlxoXD2VN2JRvqzLU0EUyYY6UwweZTw HOVDVFOw09+ZO2uW4cxZ02dPns4xOXnuCoqwNid13cKlk6Zwp8yZoz6OuWXfvtJakQRXDjBQG24K MlaD/GpNzzCvXqBtVW6tw0/edoAWeo03Rd3RmocW/XOU2nInF+Xr1XbYt9DrI3n9UTn5PbCf/PAn YSs3yLKarbuNp7ngrnLFY/grqquP8wg4MWTMObX+53sNOv3DoHNqA8M6D9z3bZ/zC1bgLgZFrdky 4Hur1Z+pLf05/PAk4dzSqodxL8MTMiKSMx4nZEYlZUUkZTxIyFjpc5rBcWHzcA0r9MZ9fgGq8EMl 6Lf3rPr0lZqz1jCM1o+asZIzzz2rELcbK6/yrYevaxqsZ/M9tWHVEu9RBpveAn5QN8E6hzViSUFd Y2GduLS2EW0ltY3FtY0VdY34R8QdKPhkBH4svJSMurHjWgQ/sB/EeKga+Nly4Apr9gYyqU5zjvNq 96OkOD8e/EJvxTA56xlK+Bkt8M2vUjQ9FVTU26zazDTeCC9F4nugpwc233+0gbOeqavlys27j19N yiohjVBRKdnT7Dw1uW7wACH0ZAih+VeX35J5fx38zBHJOhfYdMy1/ibb8vtMQdcCqx65QnSoW7Fl 12KLDkVWHXJsO2ZZfVtk1b7UqkOxRfti8++LhV2KzLsWWnRDdl6hRdciRETL7/KtvstFZqJlN4TA XKsuEcKez0NcXoEfJIXMAiD7ymQieol2bds+VmtWZDQMVUPP/o0wN0aGGHAxwIk/Vf9GXHp1Q4XP avNRIwZ67Dn0NCEpOTHZfdMabc3RR89cFstkhenRQqMpc3/5LTYhOePly/27d7LYzEPBx9FFtSPA T3fITysWL0fPxKmpTw4d3ztcx9hnT6gMqg94NBZDJS8uehm+xFRHh6l75PTVpKSkZzGPbG2MJk2f fC8qEf0IT2+FTmCNWr52U2JiYmpaWtC+7VPGsgN+31MnkkjqXv5ix51htbqwUSRvSN/hbT92zoIn 8VkINNt/36o5dtq+Y6efP09LfPbk14Xzpxhbxr/MfXz93CRdRuChU7jhtP74gcNM5uywW+EItLWk rUBaU5jx7PaxrQZTx3scPPsw5XlVfe3Js6Hjptnee4DgJz64zZ8xWGPe/NV3HkWkJEeeCz6soW3o tvkkquuK85//ZmcxZ6bhpZsPUpJSYu7esOFbM9nTI2DAi+TssX2GE8cd2X8sNSU1/o+HC1csnmZs k5ycKC5NXmo7t9+w8R6bd0U+jc4pLEQ3XQMeCA6FhEx4PLXjw8MPfgaslgeaq1VvlCNxV/2qKtL7 1aYHaI7Ah2FGJDAD86LJ/6unk2JRX4mIn9zcXGQIEtMNWbHPnj1DRmFcXBxlg5J4Wg3eYofyQwWk guPD+OdAV25+wQHdySeZ41IPHRUXq0zfxr8RrjVlikqaqKoy58LV84aCg90GHe837PQoxjmtiRem GF42EdyxXXxzyZonB4/IGmH6WvNgH0yv5ug1egP4QSd5i1CUbsflsExdWKZQn0Kf3yvNnqiQrt1/ ah9wynHzKcctp+y3nAy+8qQBWnwQVOGxGhHBeds5htFGxaBTM99RBvZN8MM/QRvwUzR7QjHiOcCK m6al4AgpEhn0+V0Ayw+WAPVUN3Jeu+VS03Ujl5dUN/7mcZxh6KQNU/28mHOcXLedI3EWVr5psydZ +eLklWhNjqMWfovvGBMX/q/bKuvAXQrLVTWH381oFncDAwb7eDNMnI0W+uZBs6ccj2WXX3qQPNnc gWG8js1z1RLiJcKF3kwzN6axvY6J42wb/y37b2bmlUemlU+fG8jgwusPVeCHXz3xCvn+AvgVW3xf iucnZFt3yrVRyxZCQ2iuuVqGmVqWuVqxFWLhd9k23+XP61hk9XW+4Isiy+8AfuYIfl0KoduvG7L5 ii2+K7b8Kt/6q1zr73KswAR8S/jJ8RJrDd6e/hMn8J8mPJeT2Wyk20pUfnOnM2eC7rXIJFFjuc+v plwuNyoPX7pyeU12pOVsrblLNxVV1V44uMVggvqVhxFkdEllYc4iS9Nla5aWiOr2bd85naH38H4U vunqM3MTdabZrXTYBV/JYFho3hNV5T5ZbKqzZOXGXEW7qzw+/OTUSWNcfz9UWVsbuHa1qeGsp9kF ivxIC52W8SdOm52YXSCvzVw9jzfbak1urUje+OJ3Pwdtw/mxyVml2fHGHK7dpu1Fiqbf+qTo21yB Xdj12yW5Ty0Fs62XOtVJpLVlacuXrzCa65KWBwOwwcyEFg6UrPqCmEumBpOCbsfWQcolp4JDxk9f eP9RNILfkd8Dp7CnXbkVizNVXVUcP3WKYNUaX1RhRoVfm6AxccvWQ1CPgxq3ewdM0jOISoiukZTY CEznC21rKkkHquz63Zt6EzmnTx6RVf9hZ2VpYrcps1hRvIh8DXhIErBOYfbJPjz8/gEiC+ngixM/ D7WefKVUgUTtk8/y8nJNTU10jZIlzerq6q5evbpq1apu3brdvn2b8vZhBJevom/34YpVhzr0ONRn +HlD7rOtO4qfPJaUFMHkWUroB6yuLvsjIXX/oZsCy2ODhx/r1vf4oDEvdh6oeJZQm/SiMTdfUl4h FymCkMHuMgVeP7DeqhD+HH4w24F0cEDNDWPH8dxg3N8uj0zN1RN64iU6IRJ1E+dXRnvCL96grHQU +Yfco9sHOciKa8QL7A9qGjvoCLyQnaQl8P/ZwD7gCJnqoGgVfg38ZAAbeAIBQ53cLiSF8PCCz4Wf KKki8dsN8GPxfRDeWDw3g8Xb1wWec9pyyjkw2Dng1GKHvRMtfBim/ixzfybPQ5vrcPD8IxKwSAE/ e1g+5rXwI/6J5QerjAq8AX5tW34XbkUzuRsZeNEWlomT0SIfAj9Y8hVXE9cfJ9qtDdQTuow2cmby /Nmmfjr45VMsnq8Gx4s9Z6PFss3+h+5Pn7edyfXXgpW7KfjBmqWvku8vgF+p8PtKQaci824vBZ0z BZ0LLHvkCbrmWfbKXDjqhd2wbMvuOcLv8qw7Fth0zjfvmG/5fa7197lWHXOtOuTatM+x+TYXHbLs UGLxTYnFl0VWX+RZt0fwK7BA8bTV7AlJeQV+MrwWqCTQ22/y+DkxCSmk4icjreTi0gu/25tMHHsv Kq2xrtRruZGFhVVUfg3uKkNPRNlrlptzbNYkZ5b4rl0yW2vQ8l+XrHKwX2tv77hhneGU8TYL7bJr qvZs32egNyMu7jlOSjmCn66+xQbXPfgelMgbRHj9bUl5ZsR8DnuFg/uLWlKjSCrzY7gGY5c5+bzI zp9vaLpu9ZoSVIXA5YESWBZyyFtr4qybMS8ldbnLbYyNrdeWNGD4BbroGS9KyshLCD83afwEv6Br eLaHGBIsrSktKautrZI0pP8e6Dplpm1qanba0xsT9afY7woWkd8aPgHGcml56oNgkxnjDl55UAGO ojNnz06ZueB+eAxK+aFtW6eypj2ISsSRF5cXxRsZmG9a5y6VVgQfO6inyw+7CrAXw4NF1U4fP0O9 mX8kPskoiDOaM3PONM7G39w2bHRcs2n13MW/aGpMPbzTX1wRYWEtsFsTmA/9oYq2GtikMhHucVcm 7H8RfooXcEBuZAret56FZiLDPikhF1dXV2NjY9IpSKxDtHP+/PnPP/8cUVDedtG8m8itIqmpTd68 PajvkNDeg4N/+PHYDwNOjNIMnWF0Z96Sx+vso5zcozY431/0a9gcwUn1ccd6jzjTfeClXoNPqfUO MzOTq9qj5I/ix4X7T5GrD623ivUN4AfLubQIRenykxcsU2cMP7D8WsAPrmhcQ0kU3nEbgAy+Kwwg ZBdGvNDlObL55A1/nmy+z6jZGwODyGjPP4cfLkoJzKhUnKI14XOSmtJ/93kNaI0kryJCuHXXMHJW n72eabhO02CdptFGJt9P0+x3ptCfyXWZJHSITi0gccBUhxWB6iZ/Cj94xEN/zt6JY5u5sXjwFlwE P96KtuF3B1l+9ky8tioTwW+xbx7M84OooDrHewU1ouCbsYsc9k0x92TOctE29tY29YPleISw0KiW 0cbxfEddWKknUAcWeAP4sZXvuH+VfH8B/ErMO5UJu2Va9EmePyJ92ajncwckW/Wv224hvbM919/6 uW3/YpuuuYKvisy/K7XoXmjeNc+qM7RtWn2fY9M+2/arHJuvC6y+KQb4fQPGn+V3uZbd8y26Flh2 eSx4C8sP9/nJT+7bNYWldeNBRCO2piWNcDmIGgq2Oa00nTEzLbO8sbrIc4WJhZVtVC5pca6VS146 rLaZJVgal17ou2rhdPW+RjyjWULz2Twex9iIO2umq6dnQV3t71v3zNQzjIlJwakoy8xLnDTTao39 Nrji0EMYetjFK3OWZ0XO4+qssHd7UQ0whFGc+ZHzhFMX2Hs+TcmdZ2CybvW6fAw/CCUvCz7kozF2 xuUn6dLGolVzuUYWvxbWieWil4F+TtpGC+KfZyaFh0wcqxd47KoEWrBQtuqVFzgk41nU7UnjDU4f On79zP4J06edf/IMmrHgxU24QQtgWZ35JIw3a9LRaw/L4TJoPHM2eNIkq/v3I1HKD27dOl175p3H 8fVwqKwwJ26WPs9hnatUWhZ84pDOBCGBnwTgV7s7INBQWz8x/uGL3OiZM/THa03lG1mb8ixNzEwN TfhcE6trF4+Kq2Ms7KzNfw3ILSWrP8obGiUibEeTmwfbRwo7UOW3U7nMlGqrcvunwo/U8jI8FBnK XlkTkoMqolzQZ1xc3A28dAt16Pnz5z4+PsjaI44U/M6cOfPll19ev369rQhVHV/10OJrUxDF6CZ5 cUxsnO+2s5rjz/ccEtZvRFjf4ed6DTnXbXBwlx/3d+q19/sfDnbueVyt/1m1gaHIQ9/hF/v9dLnX T0G9h784DuNFRdAmBwsBSWE9CTiJ4rwkp63/lO+lFhl5vd4AfpDoZ6nZu45f2XP6+uEL945euB90 4WFQ6P1dp29Yr9vN4roq37qH4OdiqjLgRWGWgZ2IqyY8Kg8dgIXPcOyJL4sEy7YxuC4sQJGHLoyd 8RltsH7zEfKa5T+HHy5PyPL9yCT3nafcd53z3XXeZ+cZr91nXbYH7zxxragCqhTF/SSXB+xRwA9W AeV7asMiLwjbbjpCeAE9YhVDEKjB38ow9WAarA3ce7kRz4qSK+EHlt+fNXsS/xcfJOuYe7JMAX7q HFfuss0lMIwFPLaE3+1oNncTC6bn+zCNHU2W+hXWkXZmuF+kUGWRKOVldY0Pn6V67rw83cpPy8Sd beqiI3RhCjy0hJ5afPQA4a1l6qNnBq+eZ8IaN2AdfoxJ7lRWQW3Ar9CiU455t4T5Pxef3ChLOZW9 e+GjlZNqkkJRQUpjQxMXj87kfVlm822pRfsSPsJk1xLh9yWCriUCtXzLLjnWHfKtvi4C5nVE1l6R +fdF5l3yzHvlWfTItur2SNg77U0tP1LQ8me3zxlrD/fbvLmKZBk+JHlFz815pvNsf6mpl4mrC12W c81t5sUUNWD4Ncqrk1dZ6pvNX5leXLp9wy+W08c+fZlfKJEU19WIxQ2wegUuPj+f36frGcTGpuJU lGXkPNObzNvkgps9ZQ2wvgwejVWeHWtnortho09BLan+ZKWZNwxn/LzKe2t2UfEqc94v8xdmichS Zuh4zTbPVdr6RuEpedLqzN/sjDm2a/NqEEpfbg1wZc1ZGJuakRt/3WDaFKftZzGfkESSxtoXWbmF 5fBKjfKilPXzrVdYmq9dsXTuypUvqsGcpd75JAYe16XeP8OdPjbo8oNKiKEmOOTE1Km2D7Hlt3/L tqnaMx9Ex2M8lRTmpRhMt9q43lsqbbh57azuWP2z56/jmgwahHZv2TZTd1pc3L2SylRjA4ONK+3r a0V19aLa+sYGWHsUVfvFNXlRVnOX8H/dmk1mqapcd7h3CV4VgrlA3aYKXyoelY5tXLT/UPjJcOs3 PPOTr9hFeQjf3E0+m77a29tv3bqVOBIVFBSI8GMT5SLDEYWEhCD4UaRsESFxkTbv3mvhjRxtEYTy nh4W9mDN+tuzzc70GHy194iwfsPO9Rp2utuQ04M1bs/hJfy67rYB93ifYRd6DL7SZ9ilvsPD+o0M VhsQqm8iyS1EEcCjGfwh9yH5dVV+1tZ/yvcSlZc30Z/BTxHVsYvhGrOWa3A2MEwdmSbOOqYe2jwn prEDk+OsjWDAxzOphd7qxi2bPTH8yJ4cP9w1wleZvLCi6tztGMulW7WNHOD9eUJ/ZPmhiluH7zNG FX44KIGfZmvwwwJPe0/d+Gna0pGz1o822KBuuG7M7A0jpq80mOeaRqY6KHMSAH1+TjB4krxW3syL YerL5HpocV20uB7I2htj7DbKyGksf5Pb1jNlit4L0NsOeLkV/XK8tS/T1A2Vj4apm9ES/xyy5Okr 8Dt3M5plshHgJ/BhmjjyVwUWN2D4weMwLA1LilD5ahsowaSs8n1nw2fN9YU3Qwn91M3ctYTOLDMv XYGfHt9VW+CC4YcMQT/0iV/+91fDL8+8Y7pll/iljJK7e9E9lHHe98ayqcU3d8gKY6tv7E1e+FOe eYdCy2+yzdrnCnrl8XsUCTqXC7qXmfUoFHZFzMuzap9p0SFZ2DNB2DfNvEcWTHjoXmTRPceiR4Sg 35vDD/dMSeXVWT6rzKdNGn/+2oPaGhglW16Rv/PALnXmhP1HQtD9IqrK8/7NfMKkKecj4nGpiGOv nZozTt1t687KxsaH54/M0FJ333aoDC9lWS8ShUfEPk0C4G0L3DFDb2aMAn6l6Zkxk/SFG5124nuw US5qkOMgZRmxi7ljzc3s/kiHhgSxuDbksPeEcWOCLt5pkEpO7vSZqKN19MJ1Mv88PSWWz5lltWxD bmWtrCFnuaWBie2qwnqxvCF7m7+7lsni6JQsaVXWumXzZ3OsYxPS0Jmk4oazwae1JpmEXH8Cp5aW XTvgO3bEQA3WuID9hxugLVW5BJ/C+BCnPTrHnzX+2NWHFeBQeeHcqRnT5z54iJs9t++eoj3jXkQ0 7kmvKMxPm65vtX7DZlQrvkyPNZ49efmy5SVlMGatoqzE4beNk3SmPktCnivXLF0wa6J+dEwyqYIy 84tuPI4qKcuozY2ysJpntvr3LGz5UVcPtkMlitdW/I/CTybF432RamtryfJjxJ3kpL6+Pjc3lywo Q1wQybp27bpv3z7ikwqC+EcmmMtViKUKPwppVVVVhJTEkXKX4mkeZL+hoSE9PZ36WlNTQyZIUEHI zRV/8HAYhx+/6NfjPQdd+GHISbXBZ8foPJ67ON3NM+G3Dbct5qfYuyfbO4XpTD3aY+C53oMu9R1x uM+wp5ucCp5Ew4+pWKQWWyh/idq6PlqV0fId+LU4PkzoJcJrgnDc9W39YxTwk5Mq5vjlJwyjNWyh lyYYTH4srg+b5wXUBOyhgKiSRVaUO8PInr804AWBH1ajTHYzPC7xeR7+BhU56SmPepo2w2wdw8BB S+CtIfRmmCP4eY7lu2vzPUYZrvUPIvBTVPfpJRWzF7trmBL4+Y7hekyd55GUBfUIhZEDZ+6xuQ4M WJnaF0aO8Nw1uC7cFb+nFpCRpeAHReezJ0zdBBlG8Ip5lP6xAjd9a8/pVi4zrZwMrJ34v3gtdz2w 5eiNW1GJNU39k3CWvBoJ/9dAda4TU+AFL28yUaztqVipQEpSKsWDt8ElMqVg+kJfdVMnVLDqpu7T 7LyiknEhQHmSblToDUIOQRej1I02Mcz8mEIvBnfjIuddleSahKsHD6jClxGu2UX4cVtxxfodus40 dmLwfVgWvmwzdxb08HlrozJUDHIhgP/w8/ya1Uptwc+yQ7pV57gl6sV39sjluS9DdzxYpJu3aark 0IqU9dNe2PyYLeycJuyQPm9g1i9amfNHZ1j0yuZ3KzTrVowsP6uOqYKO6YtHpm2YnbDJKPk3vaR5 /TKE7UvNOxYI1R7zf3we4vaG8FPu17yIv7vExlKXPX7TunXHgvYvXDJPna21xjGgpA68iCuyAtda /fzTMNPFm/YFnTuyZ7f+hEkcU/P4l1kojrqyHJffVmiPnbrGwS04NHSdkxtr0uytB46iG3uzp//Y UVqPIwkyS1++jGWzZ674zQceeQF+Yhl+QUdlRuxqvh5TY/Site5Bp874+Xrpao37ZemGwjKoo7Jf PPtlgdWUqQa+gZuPBx8zNDPXMzC7GZ2C4hRVpc/jT5/KsytA8Ksv8HVxGD3VPDzuJToUdT+Mo69r ZS44ePjo71sCp02dvmi1a04lNOmi/GY8DTMYz9aaaXEtMgniwYtYk18NX9eS5AfnZozVPHz+Vg0k vfrUiQO6uiZ37wI7dwZsZY3Uu/uQjOKpzM9L1dMxWrbCWwKVZ2lwkC+bOcxq4bLTp845rlo7gTmB xRj3OA6VgCzl6X1L7sxJUw127T96+vhxoc2iSSZzHz9+ICmK5ZuazlnkklmimJ+jvGFe3ZqurGaX GeXYxkX7z4Uf+szMzFy/fr2Li8umTZtCQ0Opo9evX0dG3u7du3/99dfDhw/LMfkYDMa///1vDofj 6upKFiBNS0tD3nbu3Ong4ODm5kbGdr4KP6T4+HjkZ+/evc7Ozrt27RLDAkDgDQVB7iwWi81me3p6 ZmdnGxsbd+rU6eLFi2VlZShhO3bs8Pb2RocUkSvrhhivgONjdFI3uO0fMDpEV//ZbxszfQJjFi6/ pDPpRP+hJ9QGnPxxxF2eZbbvzpglvx3/adSRLj2vTDV65uh8080DRwDdWxJUbeHFaCmR1H4MvVXk cwB+ntp8H3gZAkz99mabuE+38Y0mb3VAwk+KJy490eKsZ+IBKdoCP/zaWJiWwMbvj9WGIfgeOgI3 LSMHs6WbnxdWUxcuutM8d4X86rCvrBqGt0hkDcRdJJLsO3aHzXFhmHkwzH0ZwgBtnvc4vqeumeco g7VNA17wkCMMPzdk+enBsmR+6hzvacjyy4R1eXBs8HEg5D6bu4kJK3v5akMHpAfyz12xPRkvb0bi Afjtvaxp7KphFsAUBDKNXX/1OP1HdtGLvEK8FWUXl5aREQ8K/T/23js+iiPbF9+77929n99dr40J BmwwwWEdMBiEciDnqDQ5KCIyAgHKaTRZM8o555yzEAqAhDLKESWUIxJCedKrqhas1wv7vHfX7+c/ tmhGPd091VXV1fWt7zmnzoETNww5h+ZExLsu+3UdlCl8VQJHQ9s6tQADPzQEY28uvMMypmfq6J/S usrbT3SUh4Ey+AeI9kkP4cpUhNYr0PoHmRGBYjF8M/ZrO2Ix3xV0rRne8QsI3SDwQYkQ8r6MBMAI VlfQBqsckFCkrGMLIyCiwO5/i3B/Z/u1wW9Eb22fwScNN+TGIfj196S5lV07MBd0RVbs8TLwarP+ l81GX/QIdOeyObKyEGmR31is1YDDiVHj7d36m5qvfNnJ01l86CPrKZP1VYoqEybirV5Yqg7obxmm b6kgbP/l4AdnT6CaYhhWd6i3y0PgamygR6eTTK5eDgqPfiWCujJ42UyfwBRPwGlbu4UY37xrQKPd uW/ztK59BWYE5yjzM1MBQUEGhpf09AyMrt4MjUudXAQ9WZqTmsWwcHje3SeCgSOmJ8Z77e35cYm5 SxD8oMoAm8bMA/DTVja9ee0e14NicsXA0IDBcO6BogspKqN4fKhPwOeDotH0aTfuWxdWNiMQk4gW RgK8uFyfgEkAfqLXmcnJFkz3rsEpVLmlqpLsu3dv0QwNjS4ZCVxcR15Ccxr0WF/PDNdcN6ZR73GH 0IJ50BwrmAgK9R7wMdhZw3e0Ka9vn4PjxeuKp0VOjq4tLZ1iibQor9De3Km9sxdZki68nBpiO7mG haci+5fF5bmemCgfmrGxnt4lJ2tmqF84n+vW2TuAHsZiT2utra0d3cCARqeYWdoVVTaD7EUvX/h5 eQqC4sZmocXzmwf0M8x7u62mv/ry9uB7Ou1vEfywso6MjBw6dMjDw+PVq1ft7e2nTp3CWF1NTc03 33zz4MEDGQqrtGbNmry8PHBNSUnJ2rVrAfJ1dnZOTU0BcFJRUXF0dJShpQ47duywsbF5mzkGfpjO r7m5WU5OLjExEfC5wcFBdXV17EpAKwHU/fGPfwxGaePGjZ999hmBQPjDH/5AJBLPnj0LYA/QPnAj HA5HIpEAKYT5w/+SRzfvhm79tosn6OS7dLD4T4yMk/aqxm/+NnUrjMmeu21X1rZv4z7bmbRLqeGW JcDFAhy13Y6VdV4rR89Yhoz6IZBCCgTH3/8H6X39450JMT+uGgI/JRgonK+sC8CP/6yjH51HxZfJ IrMq5S/elcc57tNlyOs4KeIYCroO+3TsFfAMNaITImSA+fGUNJ1I17x6xpCZD+rSoM5uEekqp828 wvOk8EVfgC65EKAurEgcvJOVNM0B7KkQ3dUJbgfxQnU8X+68lUc4WuoAhy74d2D0ldZlvpIO5xCe r0EQyOvwzxgIu3pRPD94ASxkaMpjBH5sxHU4ymQAlo742x5dyL0ZslmFf10CslS0naDYE2xaDnbC 5L99Km/eOumqHh4NYOOvRbTbbkrajtD9N451SNsuuwRGeXxXgmUan1rUv+0KqLAqWaBG4ipfvC8M zvnbABljM8vUOx7KuvbKBL4yQahy0TEwthipSDGd81/G979NfvEPVXSsAdX7W2z7v26/NviN0tf2 6m2ovSo3VgLe9K6+FHbRjeMzD3xkc83TBd611/f1C3Gyl89WplumWrIX+itksklZdfDQ9W8r9Ld3 hF4XTz6DViezQyuDbbLZYZl0ZKnYq9VkV5/+lkrKtl9o7SlFTQiZMnglxAtoKSeczojQKlsZdhYp jGUzvS63dOhUaisKvYGZIMLmB5v4jYIapZX5VUk4DBn4lyVA0iXxa6l0fhVZMGtGpM0SIZnTQnft vQuKDnaOg9DVPRZ+Al0mW4a+YkRQKokOSFaWV/sjqItINI/W42NXSjHfpfAiWAsYqQL7ikaWVWHA mxUIshdtZQScLj8idUEKyobiN8HySNH6ZGwKtSrZEMEZGLQzXc1NtJqVDAkoMDEGlkA2IumCTIzc 1kMRx1/1HxF8WaD2Dn0TL79tNXDvN5VaRibfqNySn2z/QD983+D2WwQ/LAHO9/XXX7+VPUZFRX36 6acAEWNiYn73u9/Fx8fLkEhz06ZNWIy91tZWAIShoaHY9Y2NjeAyExMT7CvATg0NDUDpsK8Y+BUW FoJ9KpW6d+/et5JMHx8fLAoS5pwTUyKC5OXlBb4GBgYCggiy2rp1K7g7dqq4uPi//uu//sJNZ2ez tYnRm78sOq/9WJuc9OW+xE1fpm/9LmfH7qwvfsj44oesnbszdu7J2PldxpavYrZ8ma16ssee+4Il jNj2XcrRM8vDw7DO0AEj7H7vfm7/6vS+/vHOpG3qC0OkYuBHQQaQAPwMec86EPOD4wV8VbNK6rRM HHRvCgmmbjQzd5qZK+2uO+W++8VrAjWCgxrFWR5KL4XyulzcdfduLKoD4ijgSXhEZqtesD9CsEsu qpFgI5F0BUXplA29Wrjl4KeqZQWNNchuygQYU37vBUv3SGTt+WYkezH26uIVwIrYGiS2Kpkrh2Of MnLuxHR+b96d0OQyZRhFAeCoqwpcMA6YnxNhFfxA+y9io6FLULq8FgxppAyu0bGxFsYvIicTkjfy UzSCwjcY+Z+DYyXUVwOUmpVSTb0VtVko3Lyzqi6THVhcWN2XXdaSXlKXVlKbWvwsraShrKkP421g +DNnhypo2kCUJQK8dDijxwxJrWjpfzU4PT80Pd8/9aqmbdTONUmV4AgKrATtUzzULjjkFLe9rfv0 65XckrqknPKMksbCmt6K1pFnz8frO0cbuiafNAxdY0Qq6TqoYOGo3mPV+b7t1wa/CeqaEerHDZf3 jxVHgdnLi3Rh3tXjL4uDZYtdgw/8n5ppSJ94Sxf7OnJCC8zONbGpY6msMS96i/5Xz3nklcEy0N4v G3P6Ay26eUaTMU6y2siXEZdb9T/rpq2von7+C609pagLLkoxNyLQcmhFvApOEJdgvC34lKGCY6aP f1OHSCDVDUFjfLSgB8kKpCjcO1rytIT5CwWZQit0KLUG57CJnEQEeTzCO7jeBt4YQhWcN8FYsQDG e+qun1MwM7fsnYMGNRJ4Kbi1BHpAg+izAuNOgExg0F3pG8PAFZFoQSpekkiWEaQgjQGMBfOmc6JF xtj8EIWuWBZBnZ7o9VjXk4fpFreun9amlHUPA7BZWYFONWCzwLzB5aBGS9CKG0X1Rb19GRJcWCBY MNiuqPNj8I+e9wpcIg/j/UH/nVB1hIzYoDXfqhGbDDpchtUBrQTuCacMS2LUXG8eCbgTuM0ifKPe Hv3J6V+W3je4/UbBD7AuBQWFkydPvj3S3d0NjuTn58/MzADkA3QNwFtaWhpge+bm5uCC+vp6AH4A mbDrFxYWAHqVl5cD1vjs2TN5eXlA6TByJnsDfo8fPwaX7dy589y5c29vBOjg//7f/zsiIuLSpUu/ //3v34Zqamlp+c///E8sNgX4BMD8do388+fPwa3v3LmDfV143pOhfCRl69cJ275J+vTPuZ/vyvt8 T+YOgHY/ZO/clb79m/y9SgV7VdI+/y5n225wPPHz7+O++CH1O7m0rd/GfLdv/PEjmAvsT9gj/3+R 3tc/3pm0Tb3VoJkJDO6q+Bfw49Z1IuYHX0swh5POzolGp5dGZsQTs6JXC+Lp1+KX8+KZFXH78Ovr TtHyOo6KNNd9ZOE+HR7uphcyeJFijv7Ae+Qelqekw9qv43TWiF/VCvVeYihLFEnQSNQ1/JJww2Wf tr0iVbifIthP4e6+eM81CgazfZt6JmbPXXGRw3GUKRwFGncPgX3cWNj2AjkceFPZ0OSnyrqOSOfn Cj2OkrnyOCb+tudzjPmhF1QEg9lmymnbKFKdQWX369jfd0mYh9PSNyQPPSjs9YcrB+E4heazMtnI rIx821dBh61AESpQXRTJzoDpHqQ4HSTZaRDtDlDs1ch2ygTbozSH3DLICEGxcsqa1Qk2SlA56qpO EagQmSp4h5OGfJypJ9nM56KJ4BiVpYp3VCDyFchCZaqbvLYT2dS9d3xaCmfZsGLxWRVH8TZqOGsN ksMhKusYnXOC7nSK5nia7nSUxlQlsZXhkgbojAa5CPg5wv2d7VcGv7XT1D9NUT9svqwwUhQHkKw3 yzfn6smXD/xk852D+UFV949JSrwkyy+GqzM6nfUbjXdX4T7pJH1WS/xiNNNPtjAp6Stpsj/diP+k C/dxt96n02bfDF7aMGywdoC+toK0pSv1FzE/GcbAsGkNApklsUiMJjWg74nECxIYIQ/NTl8Nedtd M715u20U2jih66VvI/xB8INwJxbB1wH8fAVacsL8ALah1wMRK2xVEGxUbIoH13HDmLAgh/mhVktj LSc+b2ABjVoIj+HyL5g/6GJLUpAneCsAOkuhxBQ5PUHEXwQKDKf50OIX4AwoP8wY2Q9ipgzQlBzQ scVFtKJQJl6sygw9tu+rA4dPR2WVzGDiJpAVhCbYYDCOPQBQGE0TnoPILYGTUQmMMQmBGzYi7Bmw 8yNfFKg6kkWJZE4kWRBBkIaQLoYwCL4swdcFzpCxRl9BMeGXVxdIIysWmCGsIwxNDz5gPeG5/2F6 3+D2GwW/ycnJHTt26OrqYl8RYRdPT09j1iUAus6fP3/58mUDAwMASNbW1uBgQ0PDW/DDagsAkkgk AmJnZma2efPmo0ePYgYyWA4A/EpLSwGVXLduHYlEwo6DhDm2dnJyOn36NNjBwiGBNDAwsH79+n37 9oGy7d+/H+y8hVJwastnn4F7YV9HC5/Ef7UvB1K9XXnbd+dt25W7HYDf7sydP+Tu2JX6+TcFakfq LhISt3ybuR0c3JO944f07d+lbQdff4jZ/GWDQCBDnUcEP2EnwrL9VdP7+sc7k84tLzUSW43EA+Cn QIGYoaTLAsyvDtP5wR4O3/q/A9wxeTWqOFsFAlMRMD9tHvG6z4tRLJ4f/A347xFRsB/H3EdyltNk GJkF9aGzkPlJYEhbsP+4vv/UJRc5Ikue6qxA5ezRvOOOgR/27oHZ0sTs+Stu+3E8FSpvP5W3h8A9 YeTa2o8p81awVoViT7ytAvTp7AzD/pE5+3UB8/PCwA8NgFDqwgvOUdBhKJCcFUjC/TpsC9c0OD+F WPNmQ1MVOCShgQyTEYEfD8/KiKbe8joMRSpPjsYF8KlA4kIXoESeMl6oSOAB7itPEnx/+r5HFBTw gntOL4uuOwXtvWANDYLAZXBZIVeRAC13QNkUCVxF6LSTp0hxUaK4wvjsWndj8spglSQSqCSWyTg+ 6fJnHcBPFIhceTxPAc9TJnBV8SxVHFOFwAI1lYcxHPiqoPFxTirEdztzeef2K4HfGG0ttk3QPhii f1B/ff9ocSQAv64s34LrZ2cKAmXzXVP5gY1X9g0zTskGCsGkQjZUMVcSOOJ/tfvq3hrczqmn6SD7 8VR+69VvB2kbJ0h/GqP8cYD6xz76miG9DaN6m8uJn3el/lKdH8Q+wMkkMOQ4lL8gFIH1RhgmEUND SEiilme6m6tampunlyCTgdgihogghuQOTpsgcsA/MJIEHL8wciSFqxkWsY4ugX/gUcjZoLAQoM0y gDPIrZbFS1Ot9U87urvmxSjUMTq/KFmBKAwngmLpCswSLvqWwkiEkFehXCHtRMVGeARFKeCVhJCK qCCao8HOCwq5DFAH/EC80t/+LDU6vKqybhkZeS4DNJXMgVkszBKW6s2kDgIhmtfBigG+t7wCBZno GnhvUHIxxHIRpvMG5VuGXBnxWfhOQPAGiL2EVnC90UhjbzUUcyHDLEhvYR1hjRHFRdkt/4wGYI/s zYP7v6T3DW6/UfCbnZ399ttvL168iH1FY8pqBby8vLZu3Yqp65qamj744ANLS0sZAr+PP/74LfMD wLZp0yY+n7+ysgI6HmCNGhoafwt+AFABLmpqamLHQXr06NEf/vAHd3d3AoEAKCAgfNhxgIJ//OMf QSbz8/OqqqqgeG+ZX09f77qNnxgYGmJfWz38Y7Z8nbX9B4BqOTt25+78IQPA287vc7bvyt+2O2PL Nw8Pnmy7bRm/fVf2ju+zIUCine17MnbsS9r0ZY6mtuTlJPauYX1O9rPH/O5H+U+l9/WPdyadW75Y 1FNFtGJahcxV1GWeMhLUPYfhFdGzQooCNNLAFxC+4miCCOeI8EZJ+VWH8ZYqOFsNCldFk0m55jU0 gRYsIQQBf92i8vcRmPtofCUyR/mcpS0/8TVauQaFJEisCvZdIosUdRxVCM7KBL7cBUufVYMXEaaZ 6Jua17ziqqLDVgfYRuXK4VhnDJw7YYh2kM8SGnNkIWnFijgLeTJDicRRIbNUyBx5XSbB1KdnDAaz lSIHaCA7QUi2oqatKrTYdFa8yLBzy1x1rv/3ErxiclFGNXVT0rRRITkqU5yUyWyQiTqFrULgqRFd VaFXboESyXnvOUvfmIdvs6ztGiab+Srp2qvgGapEuJQQiltRvD0V6F8URl+CvA3HVNO2Y3inzL5d 04eahe+brnyegaIUYXabLqpEgQaRr0HiqQMUhN7LuEo4xkEKx9A+8bC+UAXWHVJAuB4Dw7n3iEP/ J+D3puNK32ILSJIlBH5aLfStg3rrBumfvKBseEHf2E9f+1x/bfUdlZHSGIBwHamuBVdPvXoQKJt9 Ppvn32r05w79LS1czefpAlHnE5loRPa6fT6D1XpFYeJJCsh0KtW5+fI33dTNY/QNY9Q/DdLXdut9 1kf9bExvWyVp+y/U+aETMMi7FMZ9RRJO1AegMG51SgMHaThOQyb3k6wwkTcYp6WiZXgWDtuwtRAC IVSDHAeN+QBb0OwJ9UL4SkBEQcCCveywk89jNlBYuaANE7xYtCRdWoaW7FjJ4EFoy7uKPnC6+aa0 2KsE/0HhpHRRKoE1gmV5A35iCHIYj/vJM4WvLaj3a5FkRixZRI8NvcCryI2BEtZsEJogPUT3Qq88 oJjIZdIqqRVBgz2sUbHHDyEP3FKEDIIgJGO4uoj51JGg9xKuYwdwvwynD7DBZahpFiDKYxPMvzyn t2X+6Zd3fX9Pp/2Ngp8MRaMFiIXtY6Xv7u6ura3ds2fPsWPHsOPFxcX/8R//gTG/xsbGDz/8MCQk BDtlZGQEcBGLtPDq1att27YdOnTorc4vNTUVgF9JSQnIWUVFRVFR8a1yMSEh4fe//315ebm3t/fv fvc7AJPY8fz8fPAVE7ECxrlx48aJydVFY8/q6/7XH/7Tw90dflkRl1y9lbB5Z/b2HzJ3/JC1Y1fu DrCzG+zkbfseUMD0Ld9kHz7V5uoZ//WPWdu/h8xvO7jse3jxtr1Zn30X+eX3g3nQdgO+J/B9gHXH +s+vl97XP96ZwCAIaB/YlEgCJQoal4l8dSLrYU3Xzy99TwpMLlXTsVElOioTmEo6zAvGwqo3XlFk CLtsvBLlCCw5KqSVGjjmIV0br6iCVTdPb1JIRoWaDkNVV6hK8Nh/3pHhnv7T89Xd48f02Oo4jhoB BpFQxHOPkJm5Fe1vLwDPm+mfsV/bRpHMVqMIVQiwFko44Ul918q2vwRJnpXKLIRRStqgtExVAltV 29E9qmJKJJkWSSYWJZNL0inwOS+ZWZJMzklmFiUz85JXC5KZBcn0smRsSWLBT1HTdYIGPmSWKlw8 Di1ZVOEaD4BhLBUSWxmAGZ4VnVe3KJbMzotBPi8lspK2KROnpENUDrwpdF4K8U+V4gx9uWE/x7NO GQi5wSU9L8Wzy7KZBSm46atF8axIEppafQSQcgLKmQywzUWZKFAh8FUBcCKvoapE9vmrXr4ZLWk1 M6ev+CjgGEjf+SuBHyJNGH96qxAC1Oh1T6m1Zj1tR7f+lp4r37y0O9x6Xb5Of2cN9dNqB9x0y1PA /BpCLLL1lWYf+srm26fyAxquybcYff2QurPs0p4O8xN9YXZLQ89kUxWtHEJfqqdMNCHtyK+8e6iB vLWPtrnfaEuv/o428o5+gy/76Zsr/pFF7rDAIihxgzJPyRuJG6oFRAaILtAeQyqBEsrVYR1lgcyc IOtBbxNEMjjdg7UGcCiCwPdmPoiixkOTlWVkHIL4lRip0mRII7iMYiRDMxJ4CM0Y0UkxMkORQtEg sgOXQRMaZJcFeSfIEoLTKoSK4Y0xlRyiVGjtPEJfVBX4LJax2kN5JBpoILBIoR5RvCABeInEn1jV MFYJIRt7mhDpIB+GN8LqCuuN4SSGc3AuAM2OMYInhSseYOawANjvVvFPDDWsKGAgvDWGmlDkCu+E 2g5lC110L0OBEtSLQLkNxGMM5dEP33Jo1Darz/FNet/g9tsFv8LCwu3bt2OB+kDq6OgAnG9kZOTg wYOA4QHcAmh38+ZNwMYAIIEWe/r0KUA7W1tbUNWhoaHbt28DrPL19QWMDfA/AH7q6uqAUGJ+ztLS 0gBqgkzAfnR09EcffYTtg0QikQ4fPgz4IuYUFCSQG7gv2Pniiy/6+6FaC9wLiliDg7CfODoxvv3y 66E+eGp5YCTl6NnUz76C5i07APmD4Af2c7b/AMAvZ/uelC3fZJ64MJaambBHOWPrt+CarFXw25UN qOHWH+I2fpFnYCBbge5s0WQNpdVO+N4H+U+mfyhb7VsBqijqtxKZr0zhwCDgBGdFHNPYyjejqKG4 pruouruoprugor2kuru4+nlJdVdRZWdRFfjaXvbseVha2bmr7go4JnSgTAHDtFABxzJwCEkqbSuo 7SuqfeEWkX9Mj7Ef4CK4C8lFHS9Qwzuq6953dE0rfNr/sKq3pPp5ztMufasQZW2GOsFFmeCuRBQe p3N840qKqp8XVXXmlbYZ2oeBW6jheRokvgrZRYnoooJzIt/zTCxsLK7pe1TbG5lWcUafp4jjgt+q 4l00iAI1oosqwUtNl3/FNijrSdPD2q6Hz3rcYh4e1YORFlQg9vAOkPk4U1+6pS/dCm761n50cx89 Cz9DS18DCx9DuPka3/c1AUfMPQ0s/bSv+qoTYfAmAHvKkO25K+G5qlSeEgWwQKY6FaAyS4MmIN31 v2ThaXLfzeS+p5FloJFDtO7dUA0qD04syEj4SeErEjlqVL4SCUadBUh2TN9ZzzLssm2k8d3AK/d9 L5t7Gt/zNrQIJN/1V6cAFstXBIhFESpCv50uKhRXJRgfSgAdCxA5Zy97GNlHEe4GaMDlfRzILH8t 8Fsd72WrozEcObF4fpUOOvW0LzppO157UmUdCdP5rq1MnR6OzuuyOMnyjGyqsVVIfUDfPfvQXbbQ PJrvV3n3+OuYOzNZdj3Wx8oIX9Ra6y60P5FNP2t3pVezKYsDT2Qrva8ehrTanK8w+K7d9shivtOr 0KsvDL7o0dtQTtv2j4Af5CQAigDxmUNerqE0DkMLZAuzDBVsy5AGojUtq/AA6cvKAgQtRAFXWQoA GMm8BJqPIPaITsEzABwWVyDGQvYkAmQRLe5DyCGFQY3gcL/qTRuJUxEYA6BD9Ar8cF46D7WJCFoW UMFgrkgpOI+IFHZ/sUS0JFpCDBDapSCuBcuxBAvwhs7B4kmWVlFJKluCijkYvR2C9Wo+EJuggF8C r4X4CxO0OsWmBlhdYc2hig6iDzgH7Vog21hBwmCkIFw1BYXUFeWFNJ/op+ghiJD1DmxZSGwh6XvD iZdF0sXX4vllJMZdhqOVFLYNFJ++mYpAhSLUgUphHuK3Txk+z/d02t8o+GHFjYyMvH79emZmJmBj FhYWgPaBg48fPwaM8Jtvvjl37lxRURGbzQY7AMAGBgbMzMxUVVU9PDwePXo0ODgIuOPOnTsBWIaH h4NMwI5AIACQWV1dDcjijh07mExmaWkpyNPT0/PMmTOurq4cDodCoQCKiZXh6tWrAEF//PFHcMej R4+2t0PegJUtOTkZEFAOi+3m4a6Dx1U8gXoXkIYfPIz5am/2598CwMsGmLdjF9oA+O2GKxx27En+ 7Jv0E5pzlXXJB05nfPZN3vZd4BTASIiCO38AGJn5+fcRO78dQrajGOxh6c0r+quk9/WPdyZN0wAV krM68oOlDGgTGCsJAkgytC1Uzl5VOmcqd8FaUYchd9FGQdNeUQvsOMhdtFfUcZQ7byV37t5+TRt5 AJwkZwVdByW8k4KuUB7vIqfrJKdjK3fWWvGMlfJ5exUiWwFvr6Jrq6rNUQfYRuYqEWyUz1tpnHdU 1bJVvmC994ydMo6niueo4J0UiTxFmosCga1wwVrprKUSyOGc9X48Zx/RWUmHrazLViIKAMTK67B/ BLe+aKt60VrlrJny6Vuq2gwVIoBerqoOT0WLoYLjqBJclbSdFC/YKJy/r6x1X+mi5Y9n7yoT2Epk dzm8QJnsCiiUvJatgrbN3gsWirp2+7Ws912w3nfRRk7LDq7l0HHcr+0I6gtqrahr8+MFcwVdhhpJ oIDjKOF4KngXBR2OEt5xL85WngpQhw0Lj3NSIDAVcI6K2rYK581VdexAhnLajgoEFiR5ZL4Cni2P A63BhvyMyFIEV4JGw7FhlGCCI7hY/gJot/uKmtaqOmxFLT7Mimi3X9teGc9UglEduKApFEAZyEI5 gPQkvjKBo6xjp3jBQlnHRp3EUkNxkX5d8EM6H8RNllFo00npq2eNjhc6KTt7ydsnuARZd7Zsrn5l rEwyXilb7JNJxsfT+A0me6oMds0XuMhe1U7medU46kq7U2Wz1eLByrmu6oX+Nun8kKw2dvi+SrXB tzOxtrLxFtn8xPJQ8+vuR0uDhbKZ4uUs6xeXdrww2FRG3vrL1/lB9ZhoeVEmGZFKesXiTrGoVSTq EYvGJSimHzbIQ6mjGFI0MI6vGmxCogVBDgIYAiKIbOADmqPAwRhK+5DiDtI3QNyWRCvzAD2QtFIE NV/LyNYTgpm0sK469dmzPokEyQMBDq2sSKAqD94FagAhdmIsaFIq7hSJnovF/RLpK7j4Q1YyPhxV Wza9sghBRLIsFi1Dk1MEMgBsMSiC4C2ClpiIYi2LoGknNMWEA4EEgOySSLoyL1mag8JaREtRjWHV 4B7kXdCAB1ZbtCxeXoQsWQb1iqJ5QBlhIyPERoZggFYiC06wL1oAdBlqLuEiEmjXg+gshrriBal4 VCweh5Y4oIVAJvMyiGgyqOOXwDgbENhWEORBLriqEJRAwF21UEKzEyRu/uuR8n2D228X/LASAwyr rKwEcAV4GHZchny+ACKIBb8FR168eLEaSFYqBbgFUBDLBNBBQPvefh0dHcX2+/r6Wltbwa/AJ4Zz IPX29hYXF4N7vdULOjk56ejoYHevq6vD1kLAvoFMncD+2Ojoo5KSJ2WlM7NQRYQ5d3nG5sVu+ip3 +/eQ+e3cnQv43M4fMr/4IXvnbiTe3J3y6dfpxzSXO3tz8AYpm7/O37Yrewe0eclB+AdQEHxN3PRV zgVd0cQEeo9Wn9wbccWvkt7XP96ZLpgGAR6jDimFM5TmEdnKBKESyeUInWNiF3KFEY+7EwxG1Ys3 fKHgjsA8f93vuLGnOplDs4687BSned1HCcfWwLNpd/0shCk3nFKO0F0U8HanTPiXHWKuWEUcowiV iHyShf91ZoiBeagGxX0vkXf0Go9w10MDxkLinr/mRTQPUQE5X3LRvuGuQmHuR1HUTxnxTeyirtjG n9V3USBxzpn5XXGKuOIYdtKYc8yAfYkRbciK170dcpwm1LcMvsaIpFlGKJNYF0x9TBxjDW0Cj+gz VEiORHPfK05JBpaxR8jM00ZCA7uIg1SOGsXl3M0ANRJLg+hoZBN8X5hhYh99hMw4a+hs4pBgbJ9w 8aqvGp6tDlfc8zRvhh6mux7W5+rZBx03AgcdCXf8j1G5p/SEhlYRV5lhuuY+iiSmBp5JuuF/1TGR bhulTuOcvOypddNfScf24i2vc9d91Ijghyx1vBPBNPgKI9XAOvowkXGU4nSVEXvPJZNmFQ1lsERb 3D2PS6xIkmWgBrQC5asSPI4Yuhg7Rd5gxd5kx+FueRyhOGre8FajsA7Q+RdvBqoTmWcvuZs4xF5x jNe85qlCYEDijpDv1wE/2LdQ5xUjjRkU6MlkE9LZmlrLoz2Uz4epn7fq/9BmrzX30EM2VCKdb5b0 Fg3FOzXe1uigbuugf7kQfkNaEzIdY1l1U62NTxaVh0knW2WLgBr2z5XFD7A0h+mbeogb2kz29nve XqnOk832y+aeizrSesKutpjufmH46Qu9jU/Jn/9ynR9m85FZWUrmsHSYjng+86yTjS6LEfO4bA5T wiOYAGRGtCJCgy0cGQCuLWAWG1gLIYYlQoxvdUCRYrJBSOswLgYJCsIkaKC5vIQxQ3AxGOnYUSF3 wyOalpbhMkCpaEm8gGARXoB4GUARcEbSMvjcKijgIoON53L1XZ2zX7zoksmcayv1g70HFmdRjWBB liD4oCIjO2wozZSi2YgIkqcl8SIiW+jqVcku9Kcwj+zWoCMxFCcLcjhEqaBRqViExI8A4AAng4s2 ICGDyIj9RWiGcApxNQiSSK8ElYHzKP7FIpoMIOtUrDTSyvbWOz4BJb0vkCoVnJ9fhkAI6yuVLEiW Ft/cHhYUTimQaBjOqt4Mi6BhF+Hc6ifPGKX3DW6/dfD72cGfHfk76Z+8GEDgvn37wsLCfnZc9p6y QdEFODXzOuuCbsqmL3K2fZeFwA8Qu6wvAPjtyt2xJ2fHHsDtUjd9mXlKRzYx/eiOVczGL7K3fZe+ /YeM7d9n7PguE1wMieCerG27I7f8+ZnAXYaERAht4RwH3uJdd//n0z+UJ2J+fDXMRILMgpafRLhc j2gWkFo2ZOXxUM82+iidI4iuJd4OkNe0DMyuv8SIOmYoiC/qZAXkhuS2n77kZmITGZvfbsZN8E5q EkaXKWhb3HZOjclv9k+ptPF/rEZx9kyq5EUUXmUlqVPd5XA8YUplQePAuUucH7Uczb1ya4aXCfc8 7vDjPeJr1cgseTJ3P4Fxix8fmt3kFVvlFV0JaJlvbnNQdsU9l5Qzl4S32LFp5T1WAfk0qzjKnaCM 8gFmSPFVVgbgYR5pdd4pNWG5dfaBOYfoTgHZTYLoyhvcTHWi0w1WcvWQTM8m7KyJhzC2VlHLzMoz LTK/w4ybfs8l/xDJyUKQFZHVaeWRT7gTqqLLAhz0GM3FI66ZaBaiecujvG/WI77oBN0hpei5ziWB oWVkeHaHlUdGVHH3LV6yhq69S0SVILzS1DlXneasey88vKCfeMfTK72WZhMpr2WnRmQcpvAC09q5 oU9NeZnH8E7coIfuceV3nVMiC7oNbCMP4C0jHjQ5hRVFPOy8yUtR0AW00vmYsZupICW3esQluopo 6n/BmOcRV3OEwr5wyd0rqUUVZ2PtkRlf3G8Bynw3CEwg4IIHyOB/FfDDhHwwwTFLiuZvAG7mpXOt lTan2kifTBpsHKBu6qJ+3nt19/NbCu23VbrvqbVc+q6V/OmI3pYR8qYxwy9Hbv7YZfJdB31Hh/7X bTf2d94/3G12vOOWeuulH/r1t07R1k3ofdJD3dxJ3/n86t72O8qtd5Wabu1uv7Szm7pu1OCTAf3N Tyk7fjn4Ae4CAMC/uOgsSxD05Gn1QG95b3dFT1//9GtMmrYgEo8vLb1GP0CGi4vgPximx1dEU1Lp a2TOAQbuyeWlYZlsFhG06aXll2IxtOwAYIMEc/NS2ezK8iKCSjgvkED1GCTFIHOx2Cna715ISNOi aFKKpJqiOUwvBjkgdHgPEETUMTVh4ud7Jyy8cmSkfXyIn+B/kusUPjrGbm7V8/cbWV5aWFmZRcJA tCQBwgQAkLGVxRnInBBfEi8tyJZBCcdFkimRdB5NtJely9NLS69WVWsSTPgKKODo0hJgG68gdkIC u6pwg9lCXBxeWB5H94IJNRP4mFpemoJMEIMouM5xGt5LPAMJKGw+2B1go68AJjo4M5Pb2PFiHovT LlsAd1xcmMSothQjngDtpC+XVxZQ0MMFhLjg6MyKaHIZuUNFMw/s4E/T+wa33yj4yd4zymMH3576 6effXvN3jvztqZ9dIxKJAPh9/fXX5ubmFhYWt2/fvn79up+f31uKCT+xFxv+QapkwAWf1ER9vTfr 8z9nb4fgl71jd/52KMwExC5/216Iajt2pW7+IvOsrmx+ocHdN37Hd3lf78n8Vi7723053+zN+XZf 1tcAI6H+L/nz72K+lx/NL5LB7BH6obu+ow7/ivS24r8kaZl6qZBhtHFFsrMyhaNGZqsRuEo4FvWe f1ReO+6692E65zCV7RbXQLoTuP/i3dCc2husyFMmbrE5DcZ3ecE5DReuubpFVjB8Huw+efvcZbe8 +v5zl1zvcLOc/TLuukQ6JzccpnFdIwpMHMIP6gsV8dwzxj6hWU3RGeXXbf32atncZCcmFHewQ3Nt PZO8E+oAy1QgsRVwjmbOse7RhffZEaFJT9W0rINzm5nBGcf0ePvPMe/x0xKKGnB3PVTwbL27AemP 2vWtww6SXFQ0bf3Tahneya5heW4xZQAkAlPrrztFHjN0ltO0vsNNCcpsEcRWkm/7ukWWnaDbhea1 XbKJkDtrJa/DUtRlWLrmekSUal5zUQPtQBLsJwuO0J39ExoodwMIZl6xBY3xBfWXbANT8pvxl4VG dnFMv8Ifjt++bB8RklZ/nOrEjXhsYh910tBdkcAGbNjRtzCnus/GM1kJxs7lKpOgY9LAtKZL9kGH 9Li6V/wTH/WeN2HtPnHTwi2VH/n0OMkmOqfpikNQQGqNlVijQwEAADbHSURBVHuWvC4TlEGJyFbU MQ9KqyObhe27YHv+Ejs8u87YJtLMKSEko00ZZ+3gleGTWHXOxEWDwlEiANrnjIVxWF32/h7k+5+B H5SG/eU1ebutSOc6yx3OtRlsHKb99yTto5fkj1+SNozgPx4hrO3T/dMw7ZMRg81DtA0TtPUT5I9G iB8Mkz8eoW4c1d/WR93YT1gzgf/TGOHDMcqGMfLHo8QPpg02jtPXj1M/HiV9MET60yB5zQCAPfBb yppxEgxsVE7Z+fwXiz2x8dbzcdl5r7DKcWzRy+ppQGWej48H5ObdDwmNqq7tQqudpmaGcmsrk5pa OWnpT0dGq4bG8+uaM6vLGfEh3jVPKl5NF/X0MmNj+OkJ1RPDE0iPOLW4lFVdw4qJDntY1D0zDeCh b/ZVem1TSk2bT3bh44EubmKQTURI5exydH1b1eTUClwtsfKkdTCvtmsBMh1Igoo7Gs86cwPrYWhZ UMLBuZFLAT6ubc+FTW36fv6Z7c1u6eke2UV1oy8xYvdyZSm3sYqVEOX9oKhhHLqLnl6ZT24sj21t csl5lNMx+Lin/0FzfVLVI/vwkNjy2pFFWLsFiahrtC/6YaZDdEh4XVXbwtwMIq5Ing3J3PjcTHrl U4eoSJ+HJU2T07NoIchr0Up+Yx0rPt6v4EnbSxhqsmlsOK25KaSs2jfvaUFj1+NnTeOvoeebVytz 5U1lDX3NzS8nE+ra+5Ff0xfTL0NKimwiQsPLytrn5mdQ44/NzsaUPmIkJEQ/rX4xN/9aJp6RiKsG Bl1SkzgJ0Q87uieWxYtixFL/Or1vcPvtgt//78nb2/v3v//97/46KSkpDQ6uum/GqBjCT2gADNJT R270pi+yt3+fBVcvYEsd3ix42P5j9vYfwJa0+cssHQqYy71IzUz+897CP8s/+FY+7zv5vO8V83fJ Z377I/R/BoMc7UrZ+GXC4VOvkKIRKhaglBvKDX4NAHxf/3hn0oLMT6hKdFEku4JxUw2GVuAr4p2I Zh4PG4f5EWVEM/8jZIZHbB3J1E/uzM2o3JrrjOAT+ryi6oHmvilucK6ylnlQYp0lP1XurNlxGuPB sx78Tc/brOT0gnpe6AO6XexRMis8rSY4s9rIMU5e0+oaI7a4fuTh0ybviIeK2nbmgkRrYbQwPC+x sNEt8slBkoMq2VFZ1/oOJ7S6a7ym6yX9tqcyAID8mtSK9pvcJKXz9mbs+NKOEe/c6gumwWRTv+La AZ+UWqJpgNK5O0GpVXW9kw+rejUNHY9TGNF5TZE5DXf4aQoX7pnzE80FKczAIkH4I0FQ3nkDp6D0 JuI1F0VNKwU8Q17Hxtw1Pf1Jn1PIw5NXXJRwzP0k9hE60y++lmQWQL3n5xFbZuGSEJHXnPmoQ/Oy wMA+gR1Q8ONZU+0rLsGJz07RHN3iygPT6u/wU9VIDnJnLMzYcQ0vXl6zC5I776hCclEkwXUO4Tlt McUNt1wzyKahcUW9J/VZ8uesrjqG8YIen8DbxOc1N/RPJ5d0HiXZQLMgaLbDPUCyDM58RrWI2qdp fcbELulJvW9aZVhmfXhui7yOua1nSnb1oI1P4SkTD0UcSxk5XP0p+P2FAv7T4Aen/G9QBb0sGAou S+eelzueb9L/ZFj/gxHKf0+RP5wmrZmmfzJCWz8MA9WuG9Tf2Kv3ybDh+hH9P43Q/3vS8ONhyrpB ysYROsC5NZP0P45Q1wzRN4/qfTpGXz9KWvOSsn6Sum5cb8Ow3mf9lM3DtE3j5HWz9PWvqOvGqJur KV90Jf9i8IMURepWWnrCLyTvxRCgGoDnAeSQSBdqXrTo8Ll6gf7WSVFnnHlGyWl9S0sdg614Z4f9 LMbl0NCioRFeTv5FB4d7wb7mCUFHhdYqPDtSZMi9xGiKwJHu71E4OTEoFrskphh7uN2MCqMFeBj6 85+vTBWN9BxxYh6145pHxJeOj7CTQi3CfMoXF/Qioi1zc8cli2PLC0bByXaZT2EUdbRQomdy0MiX ZxIbkj0w0PEa+lQHeDYqkQZXlx+2tST7ed1NSbwo5BgEejWLl3tFIv7DB3QB3zY2hhIQjPf2rZ8Y bZ0ZPsVzUOGwrkYmxHX0WqSlHrIzvxYTbBYXdsbenJGW2SsSlw6PXhbyzUO8WLnJpz1dTVPTRpEq DpIvqWRuYdQ5MZTg5myVEq3nKdR28S6YmB6XSUIKM3DuQrPkVBNf/6uebi0L84HPquVtrM47uzNS 8tJaOm84C7JbOl5KpW3T/ab8e3ltZZEtDRc8Q0um5nrGBu55uRM9/e1SEikcW5Ow4NLXc73Ly8zQ 4Es+nqYJ8TrunpYxUS9FSwlt9ec83K+GBdhE+59hsl3Kmqcw3eZfd9L3DW7/Br93JKyxAN/S1NTc sGGDtrb25cuXiUTixo0bAf65uLi8uQZr5VWB5MrwSOLhMymffo1Ud3+15ezYA61adu4C4Jew+asc oiFg8WNl5ZF/3pOxBYo603fuyti+Bwk/v0eqwV3I+HN39KZvMi5SFnuhqnIFsxdGK2f+5el9/eOd SetWAFo95qpIclOCXqrZamRnBbwTzco/LL/xtBH7pD77CInhGVtv7ZarecU5qeS5gbnf2UuuoSnV jq7xAam1Gnh756CHUdnNRynMa6yY1NKuY1TH+4JM7/BCpfOmclo25wxdPcNL6Xe9ThpyVPHWgphH IWmVXqGZZU3jZ4w9LIXpVsIEwk1+Te9cWEazOs5RmeCkgrO5z49zjyjxjKm09MhV1LUOK2q19o46 TnU4qONkJUwOySlTJlvs0XKi34/IetxNuO12yoB1EHc/IKWW5Z0fnvHsql3gCTojKLX6snXAST2W qo6FlUuShUvmWQPn9PLh6Jw6DS3z0Mx214jCo/rsczd8VEn2Vp6ZvJCCk8aOh0E5iSwFCvMwnRGQ 1kS6H0C/6+OX2nDqEis4p7pxePbMFS7dLtoz7skxQ1tBTJkwpOwwkeEcWWxg7nnWkHWI5nDhsjAs q4UfkAfw9fQlHwU8F4DfQbrAL7nh7CWWnJblcaowsqD7Bi8RsGr32Kf2HoXHcbYR6TX3eCkxeR2E G66qBCd1nECVwDlAtgzPb6TZxMhpO569zPdLrT5OddS+LAjIaFXCWzn4ZXnGV5405B7R46tBU1I+ NAH9dcAPwxXsNxiwoG1eOt/21P50K33DCO1P47Q1k3obR6kA+SD4jdPXjel9PExfO0hfN6y3ZpT+ 0Zjeh8O0D4f0AR38dBj8hPrhOP3DYfr6Af2tA3qfATicoG2YBPhHWwcAsp++cdBgyxDtk1HahnHa x+PkNaPUTZWkf0DsiUBE4vm0TIHvejM+xaegwCMnO7HyycT8sEt8AC0guFoqHZPJ4rt7Drt5R9ZW dkw+1/XgsZubeuHyexmj4CElMLB9Cco8PRuKNPg2oQN9QzJZbnvTRT4zqLkloatbi8UK7+ysEq3E Tw2f9bCN7ixLG3hx2CMwoLV3FHA4mdQ+yd8s0veZRGRf+kTX37NlZqRypP+EW0jkwCu4uBiZUopl 0pKexss+bucdHK/7BiZU1XTPzU3KZEFVTwhuvMr5eXDThOcNOq7stInx8J6e4x5unpWVrUvLGUvz J32E4VXFVbMjp7zdnJ93dslkLSsrpmmpJrGRXVLpqEwa8CSLIBRm9g+XDI7EPqupeT39dP61bc2z 0+4+jQtLsIGgqEs6ONJizLOyTE9pEItqZBKbnILU4cmisW4cx8yrq6FkZSF5ZEgv0MuttMizsfFY QHDK8Pg4aCWpyC7Ai5WZ2SASBzdW6LvadYomotqaD7mGZ82Kwh/nXPVxLXo1CxqzcqDXPCIiZ2g4 oLyMKOSkTI4/WVkKeN4BKljQ38F+kHPW1yd/eqoHNPWzeufShsElJHL96076vsHt3+D37gTay8zM DPC8t2stZGgd/aZNm/T09OAF8B8EPynqiuBIT2JqzLYfcj7//mfIhzG/bKgChIad8Zu/fKB/Gdxg oas7UfVQ6mffYKYuOdv35MIF75AdZkOnMN/Dle/bdsVu2plDpC7B10cGlc/Iu+C/PL2vf7wzaZn6 q5D4qkSBIskVrnaAzjOd5fFszZtuEQ9afNLbzT0LVHH2RjZxIXl9nqlNnIhHh8hOx4zcHf0KT1Ft 2OFP8Gah54yEAalNTiHlwpT6y4xoRW1LY4fY+9wUeS1reTzrCE0gCK0KyGjhxFSfv+Vp6Zt5wZin euaOe1Q58X60sXWsiW0soF/8yBJuSIWKLuAuAmU829g26gYjEXcjgBdVc5AmYIQWRhQ2eCY0Ue9E GVmFOAZlqlKZcrpcrRuB4dktPlmt7IgnR6h2dj4P9e6H33CMcQgoOkRjOUc8Dsvp5EVVn7nsom8d ctkp5cezVsywUmF0qdJFKz3z8PC8FqewCnZ0/QkjgaFteGh2m1dqvalrtjKOpURmHqIx7XyLNG/4 4K+7OwSUqpIZNAuviAd1xy/xte4EhmQ1eac/889qu3jZSxnHtA146J/R6JbwjGgRYOgQZ+mWraF9 jxdRZmAbr4BjKJPZGmSevU/JGWOhoq6Tqjbnkm24b2aTXeAjt4RqzSt+h3BOnKCHZ4xdbDzyLdxy FQksNYKLEoGvQWYwAx/r3AmT02aeMvK09Sw9TnG/YOhu5/dIEe94zSkx6kGvd0rzTX6WMgEyP+jg 5tcBP4QoaMOM5SEPFMHFkwstFQ5nOqibJygfj1M3DtC39Bhse6H32Rh1wwR17QSAQ+pHU9QPpygf TVLXjgM6SN8woA+3Ib0NYzRwzYZR2qZ+QPL0ABxuHKeum6R+DKBuBOLluiH9tUN6YFs3oL8efB3U 21hB/qWOrdGZeals0bu8VIHrej0xUZiXycrOiqp42jPVZ+PJE+aVDCH1VfvCinFwtFt+ev1Eq5Gf b1RH9xxUickcC4svJyQNi+CitJS6R1QB6+HYFDhV0dFM4jADm1tZFaWHnFnXM7LsnpTeyk085+ng W/coaWDkXHBm1sgilKPKlm2TPG9EB1SLRDkvJ/BurOzO2sCyYt2AyKcrolfQbgauMcCMRV7LZMVN LfZhoacdLI2ioooW5j0bqy/5eYzBnGSVPY1UPiuyb5DTUCfnzDZJSXUoKLYoyjnp7uBTmls8NXQ+ 0CdpBsZufrG4fC813TEVxmGQylZqu6ppAmFQYyuobHF3m/ujbE5FiWFyxhGOW8XMwgyyiJHKlpfE U0F5ySR3gVV+fmBdfcX07AuZLKS25BTr5o2cqHtPcm7kpJ73FDiU5Lk2tpDjMiqRn1JAG7NKc4x9 PRInp/Sz86wL8qeky2lNDSfdY2OmRPZpcZaxgS+kEkyruiiWTUhl5olRR1yZVwvzzJ4UXk2Jorg7 Z7S3F/UPGPkGmkSHcCuLk3p6OiQS6CPxb3ro+wa3f4Pfu1NLSwu2TPBnx/F4vCHy5IKgD01+MPq3 NP/A+Gr85q8AeqGFfT/Dv91Q84eB36YvS66awt9NTmWc10na/GUOlJECtAMXfAdQMOPT71I2fJW0 cWfiph1JG7cnbdwS/OGmpBM6k88a0T2Rhdi/Or2vf7wzaZl6qpChoYQi2VmRwoXL9WAEVBc1IuMQ yeGkodsBOk8Rz1DGcw7QBAf0nFUoLAUCS5HI16DwlXSslPF2alQwRnNUdRhHwVkD5/0EJ0WCnRLe 5gAFEBEByFZe2+EIlX9Mn39Aj6eqx1GmOKjoOhzQZajqOsrrMhS17BV1mCAHJZytKp6rSvbYTxDu 03ZS0nFQJ8JYS2p4lpKOowrO4Zge56Sh+0GSQIMI+BAbObR0VtZhHSHzDhu7HjRiAiakimcdIAqV tBkaNGclcA3O+iDFSYPGUadxVSlsaAxCclYkMjWobDUiS/6ilYqO1Qljz0N0oTqBoapjewAP7sKG LIrgDC0ncQ7KmqCc3IMENiBhoJDqeOYBElcJz1LUcTxO550wcAWwp6DLVCDy1Gi8o4bCY0YuqnSu Bt1NleCopHN/v7YdcuzCUQGFITCUNa2VtW1hYxKEKlrmh2kOx42dlfFW+y7YKumw1MGDINjv17Q5 CAoPF0U4K5DBgxAc0OXKaTrt12Go4biHCO6qmlyVi9aAHMN4hDiXIwT2MQrjIIWlBn0U8FQoMEjv rwh+UuSgA5r3YVg4L13oqHC40E7dMkleO0mBSDZA3zxE3zRGXT9O3TBOXf+SsmaG8sEU9U8TANJo nwzRPxnUWw8gbRxAI2X9BHX9KO0TAHuj9PXjtI8maB+M630wovcRuGaEDk4BvFwLPgFkDuutHdBf W07Z8jz1Fzm2RicAVC17lz055RtUODYBvowhVBuY7bPxdXYteTqMbD67l0XG4TEeD7IbR9r1Pbyj 27pWABRJpQ4FhTcSkseRBUZmVaEex6F4dBIAUW1rHYXL9W7tsCl/ctzT2SEv372wxCU/K7zmcc3M RFL/yNnAzJwhaFMzL1uyi/e6HBlUubzSI5Pdi/A0z0ighEQ4FZd3w+UWkhUxIDgrbeOjpS+GMH0Y uHXpxMBBgZttWy+7vdUkyH9qHrpMqnteS+HYAPDjNdbvF3LuZqV75BcI8rJCKorrJ/urpofO+vkm vny1CC1WFsySE5mZ6SgIkaitq1ZfIAhuaY/vfUHm87nJ8eldHcynlUd57qVzSxPQBlUqlSxKZPOg ZbJ6ex3jE+g8vmFQXMHMXGD9k7PMG4ziDGeAeQXZAU+LSyZHXKtryZFJta8XkeXpfN/0gCFohNr6 Y4HxiaNTKzJxdl3VCffIiKll24wE2+RI0MgobIT01eJiv1h8JyX6mDvHprCAX1Tk8SAnsba6fnoG FKNBLPUpenjT3/28wNm1tmEERqN7M4d5k943uP0b/N6damtrf4diOPz04OzsrJycXFxcnAw9FSl6 W7CGnax4GrNHMfXzb7K3w7XqcPsZ+MHP7/O3747b9NWTO+bwN8uioiu34j//KuerPZlf/5j19Y/Z X+9K2vZtusaJJ7fvF982L75z/4np/Se3zMGWbXzjkZff8hwKevdzU95/QXpf/3hn0jL1UCEjtylk ZyUKXCUNwE+JKDxE45w25CvrOB7U45wwcVchcg7ShIcMBPIAOQzcDxt4Keiyzlx2O3fFVYnAliNw Txm6nDEU7COz95O5xy/xThhzlMgCBYLrIUPXc9c9FLRsDlF4x4zclMgsdbrwuIGbBpFLuBdOsAgh mwcRLSLV9flHjJ0O6/GUiNxDxm4k2wiyZcgRA4ECzumkPsfIOuq8iZ8yjqNI4CkSwTUCVaKLOt75 KJ170cRDTZerAAgrzeHCTY8DYOgnCI8aeCkR+Wp0Ie6OP8UC5OO8X9deheIsD3CLwlck8cFZZYI9 3syPbB56ACCiriOAPeLtQCO72KN0lrKunTrBWRlnd+Gal6Ftotb1UDUS64ge96QRgDSBEs7luL77 aWOhEo6pqut8hC44dslNnigAWAsQSwkvBPugMVXwjoeoDIpNpNbNAFXo0tPpCI1pYBWqZxN+1NBZ Fcc5f8nlAImhTGACkk23jtS5E6FKAfDJPHfDS0mXeZgqOHbFCxZYl3WS7kyxi6PYRByictV0+fhb QQbWQVq3XaF1Lo6Lu+arZxF0TI+njFl7ImxDMwO486uA30+1fzKRdL73qYN2K20rYH7T5DWvyB/O kD+coq4Zo60bpm0apn06QV33kvqncfqfhvXWAOQD2ygdQNrH05Q14LJR6BF0HYBAcM009Q9T9P81 YvCHfoM1/fobR2gbJ6ifzJDXTZPXTVCg5HNQ/6Ny6qfPf7FjaxlcXCfyeVJyztO7ahgGgFxC2/zK uGtSIME3oBHZVGR3th0RCBObG7pHXxh4+oW1PQcwOSeVsnLzTWMSJhH4pVc9pDs7FI6Pg58/a3lG cha6tz13f956ls8u6O7DmrLpRc/YwmxWT98p76iHo/AFX5IuMeMCboSH1SyuAACIq3ygwOXs5noX jkOZpxgiHUCchZSqsosMQVpLF5ZP5+TAKZ7vnfpe+7YOw0C/lwugFrLy50/JXIvE3v7g7s4j7ryI 5gYpetWbXgxMzoy0Trw47+OfMDMHcHJsefFuauzNmNCX6BEnP0qn8ngpQ6OmmQV6wTETyJ8Kv6z8 MI9fMj87Aa0Q4KgxNNIX/7i4dg5wZVnf6+mDDD6vqy99rJPodDuhvQm6U5PJukb6Ol9OeldU0cLi amcXkAGUeE4mdUyIvCh0owSnNK5AHzS5z8pPeITGz674PH5g5OFc/Ro2RedovzA58dHYuHN5oZYr p3J6VorWyrS86O95PZfe3BnX3IXQWnYnPe1seHz9HAo0/NfpfYPbv8Hv3WllZeXEiROffvppUVER wLzXr1/X1NSAI7q6umgh4FsvlZjoU1Jh54RMXQB1gzq8v5V8YswPA78qWxhlEKQ6nkvyV9/l79qf t0vhwQ8Kud/sjdurOpiLQvP8NIEbicXSxUXpMnTQDgOE/PyKfza9r3+8M2mZ+sGxkuisSHJRgoaC bMAnFAgc/F1/QVSZ3Pm7JoxIQVytqq79TU6GmWv2Xi2rq/ysu24P95yx8EyuSy8fOEh02I9nROe3 ByRW7sM77dV1cI0vTXnaowAokQ7H2CE2v3mGet+XYhrgk9yiSnQysE9nBlcdoXAdA0tz6qcyqkZd k5qOXXK29Eux8MgGMGnh+yCxYsg3vV7b1Pcgne2dVBGV32Xt9UgBx1IkCZRoLvJkvhK07WRbuqSm lQ6cNXADBOvcFeeitjlTbpaypqNjYNUxQ3ftOwE5NVPRD3oCstpJZoEArVUo0O2nEoGviOOZuaRF FrT6prZeuO4LKOwtTkJYXo9PRmtgTvs5E2dFLccrjMiQgm7P1BZ2eDVAVjP3eKegAmU8T+4C0y2+ KqGsW53OlDvvcE+YZeufp0RgqpI56gSBGt5NheKqgOce12N7JJQG5z8XRD5TI3LUKVzn6KdBWe3+ WR3GzER1Et8zsVHrmtcxA2FccVfC4352WI0akXnHPeFR12vtq14UsxBh4lMlnM1ZE6FfZq1rRqN3 VgfeLPi4vmv8o8Ho4uf2oYUKeCtDh8jw/K6AzDY9uKDCHjpdgy5DfyXwk2KbFMMZbE+6Cn7N9K2j tI8nqGughJP2p0nah4DGQWsXvQ3D9I9H9T4cpgPk2zBK3TJG/WwUMsK1U5Q1Y/Q1AOcG9QEWrpui fvSS+t/jen8YMvj/+mEAh01jlE1T5E9ekdbNkDZMkjdPUjeM6K2rJH/2C0MaoRNQohNQUHSOwW7o 65XBaaoEjbBzdT31+p7uV4KDuYkxFE/B7YTk/vm59u5OPbYgurF1Ednis+KT7wdHTMMBXZZUlkew v184MAjwqqKh+pyFuVd1bZto2TYyxMjZRZCezklKsvB1650ZLu7puiDwKRyckqLFBqwgD3PvgI45 qNjrmx/WcHE9Hh7ftrKCHFgvwoUVEtHwzAw3Ns6QL+AkJnpkpBm78I0D4h++nhPWlNPdWOMLUDlY 3lGBt74VX9/UujDHSIulCVjM1BROetYtd/eOF+3PR3rOOHHTx16B4o0tLdmkxGvxHHk5aazkaALb lpWe0SUSxTe26TJYNuEh3IyUUyzmARvrRxMw/BiMRCSWjIwMWnkJDT2cXVPiLUMDdT38MyZfvpCJ PNIiCSwHXlKyW2yco69X9VB/4JNyfa+I9lnouEosBWOoOL2xWuPWNbfCsgnYtks5VU+OOwjyxmYB o70f5Gni48FLTrjm424VFdE0Pd3yetrM18PIw5Ofnm4TFcUJDR+aehn7sJjE5DAS4rhp8RcEztzH 5aPQferqY3yb3je4/Rv83pGwxhodHSUSiVu3bt23b5+ioiLgfJaWlgAF0QXINwGEP/guLbZ3JSod y/j0zwD2sOV9P7V5yUFbJvgE4Lfth7jNXzfyhdiNugIjY7fszACQCf2/fB/66VcVDmy0KudtwkYM tAc7DTJ5+ddj33v7xzvTzw1e4LIHvjzeiWrhF/6g6ewllpN/dkhm0wEdK0tBBsM3T+7C3duCTKZ/ kdyZuwEptXU9c5csfYlmPu3D4vDkCjlNm+OGvMSilqKGIV1Tb8WLdpdtwnKqX/glP71uHRSd036Q 4HCNmekRX38Ab6eha+UWWcgLzj9EdJLTtODHFDJ8C9Q1bR38Cuy8UvHXnCEbux+cVt5jcN/zCMVR mcQAJVQg8/ZTAa3kH9RlekY/SnzYeN0uQu7MPcItt6yng/6JjZrGAmFkzSlDoZ5VSFxu82myhY1r anRe92GaQIXIUCM5qgEepsUMyWr2iSs+S2eq4O00rzsnl3UR73go6li5xD219889SHaKetB8jR21 X9v2pCF/H8HcNiDRI7ZIQZtxytAtIr+hsGNE+577j2cs7b1yncMfqOKt1AlMDRxfnSCEJpc6TMJN 98etoyZ2ASdoDqq6dle5aWF5bYdJjocp7GMGAg2yMDSvU/eW5yljXmx+/R1GyAUjofwFczu/pNLn M4LgUhPzwJDsKiXN2wz/POfIXEWS1RE69xCJrXXLN/phC93S8/QVFzkda6fQouDs5rMGnAMkR3Xo NQY5/Py1wA8mKcQTGIxjGWn8oEflue4Key0AfoP0tcN0qJ8b1F8zovfROO3DMdpHgKsN6n8IN731 Q4AFkrZNkT4fhR6r109QoT6vx+jjXqO1I3rrx2jrIVnUWzNo8NGQ/vpR6sZJysaX5A1TFACTGyfJ WwH+jdI2VkIPL7+Y+cEXW1rTN5hQVjnx6qVMvLQoEkPwk4KBe+lZXw8nOf5GdKB7UWHL6znwm8mJ ycyyitqJSbTWW/S0raOwsWUWLgCUNQ31JZc9eT77GoDVi6mhxMePKoZHQCMMTE8GPsy/k5BgmZqa 0tz4WibunpmIq6ptezUHvbHIJJX11U9rm+ag2k42LVsmhYXZVD8bhjr/5RVkjAp1qDLZ7NJswuMi i9iY6ymJjvn51RPQ3cbTgefpzx5PQ69m0v7p4fSy4qbRMVCY0bmp4KL8u4lJ91LTouqeTYsWZxZf xVVWN85CK5HRhUVGctIVX0+v3Mz78dGCxyUtr18vSQGXXcmvLrOOCbNOSQyoqgwpLeuaQa7UoYcV WIbmsT5BdpJpXIRtakpGx/MhtPx8fGku5HHJ/fh4h5S0lNqGaan02eBI+rPWEeihDPxbFMsWBhZn E8qfNE+Mz8NOsdA+1BdTWtE5MwfybhntZ2clX0mIZhbkN7yaxZR/PSMj7tmZtxNjbdPTi553giHr 9fJCenXl/cTI6wnh3sXFfa/n4dODftn+qpe+b3D7N/i9O731c93T01NSUlJWVjYOzZRggsCHCB+M z4jelgaBO6B9edu+y962J3v7jwD/oK3mNgh4udt25ez4HmBb9rbd4ILcz7+P/OyrNt9VaerYg+L4 r3dlbv0mZ/ue5E+2J57FLQ1B16PIBR7CVkxq9CbBm715U/+16X39453pp+AHnbwQ2OpwqQOTYOZe 3Drun97w4NlwWFaduuY9C36Ko3fW3gt3bjtncPwK5E7fdo96lP2k3SU83849Kfdxh2dYofw5y0s2 IVG5dQEppQ7eGftO3bvhEOPkk+IRWxKUWBqWWnMQb3edmeIWW3WQYKNw/rYg6AHDO0fpov3+i3ac qP/T3pX4RXVk6//gzTiZTIjGOGbMJEYTjAF6hRgnJnEFWnpvdtS4Y5RF9t6gN3YEREUEETGCsioG NwTRcYlKdEwkUYxrosQXE2VtXp1Tt1vi6LxxnmR8Q32/67Vu3VpOFX3ru6du1Tn7ktY0imbHGQv2 V7V0pBTse48oTCpzQl5dxcGzKyxbhAqtUJFC6Jnnb3GT6dThuaW72zbsaE4v3if0jVEvz8ouaTYX NOrz61I2HJwVlhoQWVBac9JrzkLVYnPVoaszF2TzZQYvdTLRwwRSfXBEfln96bWfHp0WZAiJLaho +vIv6ljCwQv1RZlbW2bPTy2pO/6+f6yHTC+Qaif5xSTmV2eWHOR56xfFlxbXnVhbcyQqu9r1w8iE zFrCYyK/OC+F9l2FRaRI4ylNQqVxqiohIauy4sDF2PQKkXx1esVp08a9brOixFK9wE/npUpdX3/e Lzx9+nx9XcuFHXvOLdFuf3PGSl3eNltpU+amozkb9uZXtExRRGUWNy/VFk7yiRHM1QslSd5L0uuP Xyys/3yevtLNVy9dlreuqm199TnJ0jU8aZJIbRZrrENEfvTXimwCdjDBrDHE3rPf/ep4vG+7ZtQt 9W9u+Y+4FjTicuhvvw0ecZP7XDfietBvYcITVnv+7geYw/zD9YDnrwcSVnuO8B9JfzVoBLl10/+F m/6wBJSkJHnJ3duaEUQdvBH4XzBNqnnxe80frgU+h+T3T2l+dm5HNozHXFP7u3rRgwPYocSoLtys 3U3Nizk65B58q+vugpWiADBmQ20+YYHd6BB2AHN14xPdi4X8iEtLu9EUTD+Gwd6ls5PtdpKg4sL5 2Vl5Vdepx0vOKMwAjFG9+LEP5kBv4MqXXpSc7vIG42W9wJNQDIkH17SEywa+hwU1YGMFzHzaYXL2 Jyz2yv2fIraX6aoq+9CuCnz2pASH28vpxC/aW4GlLl32XrCgjSZeoK6BgTtoBPU+ZKQTq9BqEtmJ RdHS6NsPSA++AHupbH2w8Z86bcCOgkbDXr+fHXlhDhom13CnlyMS5aHT6NCHtxyFgxVU8D7o6EDE 4wY3Rn5PDtDFQPGjz8LP7e1lwvcrRr66ewzsUqj50+u7/vha3ejXKl1eLXMZt3XUqzvHjq8Fo2UT ieZXPWZC8cuvt28uoyX9cPbsNjdR9ajXto8eXzx+8vXPmgbg79cLfrocVl2cz+CQ4nG/j0dCEr5G qCbqgoWntvHVKWJVsqfSwpcb/SPXbm740nuexVBQv6H2Cy9pXKStKn1L64RZq6Jz9xvXNrrOWJG9 tcWQU15Uf3Lr7tPG7PLcrUf53onGdY0ljec21J/cWHNMPFe7IHFbfFa1YmV609lr2xrPesoTPjZ+ mrbthEiZ4OYbmbqxWZfXyJcaJkt0yVsOJOTuFfkmxuc2RKSWzQ4FA2MCtc1dEh8Slb29ud0vPFck MYllYMFkkiQmJqO+rvW7tZWttcc6Zs5PUyzLySk9PCdEX1B7tLjxwgfBloCY9VvqP/fyWbbcUFr6 2dfvBtl4Shss5yF8oDF5yRKnyWOK6tsS1u73W2irO3JRuijTdVaMbh2hz4aPAq2Ve88FRq119da+ 55/qLtPq8vbklLSKJHpT7q7t+87mVR9dX/s53zcuNqPWunEfT5IgUBjFKlg06xZg5fmbvVRJYkmE fMma2iM3/JZkRuXsLqw9JpREiuQJU/0Nnhrbxt0XZOHZMxaYCMsuil4/TWN7xzfWsKE2Ia9hfnRx 86kfSxpOuc9ZlVp0yLSu/m3vaC+Z8T2FZe6ygtI9p2VLze8HWcVyC1GOPSURmWVHU8tO8GWJhPwc yt9QkR9HgDh5AYf9J/vdC3+N9zuvHntT9eINjcul4Be+CnP5KmzkN0FjOgJHXw58qSNo1KXgFy+G PN8R/Nz1gN9dC3j+65CR34S8dM3/peual64GvHg50KUjyKUjYExHwDiS6+tgiLka4HIl8IWO4N9/ Hfpce+jzF4NHXQoa2R7y4n7/V87vNA8QKul/6JGCrxeOCI78enB874EvDWAZhcZ021F29LgKHIPj LNcuVMPsYJms6x4Y2KLTu0D18H8f5kcnBeCrCFyig3HMPpoVrEXbwV05WPnE6vrBZAYScm9Pz39n 1GyfkpSo++zQNz2990Bc9MwArhsIgYCpTiQMsLoCjgJBwSaDRg94j0UrLOh4EEYriOsBH7pAQig4 8El/N1j2hLj7l7s6o3aW63dUcM51oZ3wXzfavKb9YodvLvfuD/wMXnDR6wTQOwjcRe2XdaPdUXx3 gFK60IbnPXBhhQ4SQZCePriCroFXIRCvq68f3Ev0YYXwcdh+vw8tYkOl0D9QSx84p6c6HRTUg/ol 1xdo2rMXDGHB/seeweoC4nGDGyO//x3wZ3R0Hw1TzQ8mcAb6juv1JS+MrXv59WpCeCNfLXUZW0bO 490qpksOR8Seiksqf+2d6pfH17wyYdfYiTvHTCgZ53qlto6W1n3zevUH3hUu4zaO/vMJE8yFwt8a DObiU4CXg5/UocPjfh+PBFp4gZWTYBNLkyJUJguVZr4iRR1ZlFne9vaMiMX6rWt2fuGlSFKuLKg8 esNUfqLowI2QmKLJc6Izy08sTCxM2bQ/rbQ5PLnUWnpsWlB6cWOHIjJ/1kJLaWO7bGVRUGx5fO5e vjQmp6J1e8tlviwhzPipeevnIrVusiTGsL4lLncvT2Zw9U3UbW5anfOZh29c3NrG/No248ZDquiS mUvWpm07Zytpyak4+VGoVeRn8oJ5xRSB2mDedHKxrsJLsbqwoS04odRnUVZ62TEP71Xx6+rqv7g7 JSBFGVVQf/y7rK1/3bTn4gLdVjeZlq9OE6hS+YQb/C1x+c2W4pbChi8XJVcK/WJNhU0b6i9qC48U fXZJEZ4rkCQY8hs277sSv6FVX3RySoAtJqshZX3zRyFppbsvBEbmzvg4ufTARb/w/E9sOytarqWU HA/VVvIVJp7K6qYxvy3VSZblpW05bi0hHHn+gyDzhyHmzY1fpZUft245ttRc4alOzq8557skZ/o8 W/m+r7NKTyblt34QbI1ZU2csbObNidlY82XZgXZ3SZxm5brtTR3JxYdTt5zSrCyeNT9n+8Er5qKm qKw9RJiVqTXW4uYNdecjMmo9/BJwwYsF9q44SO4pkh9yHWUNygmUWX60/3ypIT64MVB4JNj9cOCk lpC3muZNPBg68VDopOZQ18OhruR8KOzN5rCJh0PHt4aQY0JT6FuHyK0Q1yPBrq0hbx4Ondgc+mZz yKTmkMkkF0ncEkoSw3EobELTvPGkwENhb5E0B+e9VRrEO1lTiIwGblORdmhDOObDC+5/+tyh7U1O /eN0rUHpBiV3hCEN+izH0APYucZzXAek6bhNb8EVfSfohQvnYAM6zP2jfztbc/Lzb7t7f8K+g3uY BTiAK5RWjsM+bRosRuEEBa6AALYXy3WKjJdQN/h6GOi+29/V9t2Nv928ySWCWmhROAlmp51hB1Nk aOGFtglTUlmgJmpr09GoASQ4WJ4OPwCUFF0VomrqkJt6JnogFdaESyqcYtBkNAlmg6ZAJ2LI8TZD y8eOGFTa4LwPg5HfP4vB/IfkB7hzvHXzhMmlz43eOmbC5rcFVTN8W1bEny/acvvU6Z7bP8Bfob+/ JVJb8sKfamGp58Tq0W9snuD+ffPhAfo37e7dr5lX+BuXaomy77ub/fADw3pQ8fv7v+LQ4XG/j0eC DIKDx0SBQ2OYGpLhE17IlydPX5Djt2K9WKkTK7UBsSXRaxoC47eI5Ekihd4vfN1HYRnvBVrI8eG8 TO9la98NsCijS8SaFL5MK1258cP5WdPCMmYuyuXLddMXZCkiNwmVhmnzMnyWrxMoDSQ8a3HujIW5 QmUKX2GYszR/9uI1IoXOZ+ma5baaFWl1cz/JnxJoWG6pis5s8FmSK5DrvDQWotkIVGaxv9V3RZGn v5UnS/JdnjdjQcbUQLPv8gJS7/vBNmVU8bsa49TAlIXJlSvT6tRRhXxpgpi6kFVBCaRGVfSmqJxd oYklXmq9UAH+YBenVEdm7/FbsU4gI63TkvbO138ambPHP75MpDLO+DjbBxpoVkZvEqsNfHmSdNWG D8LSZ863LUvZviqtXhVZBAas1Rax0ixWGt8PNC837VidXee7LI+0lCdLnLMoKyJz96qMXd6Lsz1V urmfrJsSaPFSJ4fFlkSl1q0wV38UbJ69IMN3ca5Qppu5IFsRQbormeeXpFq1PipzV7ilenqIdYpK F5awJSK9/mPdtqkag2x53uqs3YuTK2CrgxK8DILLJDByBnbO0Mjnoy2c/QvkR4dc/GHjbxsG8PsD /XcHum7f+ur4rbYDnacaOk/v6jxT29lW1XlmZ+eZ6gdHGx5nqvAYFMmFB0Vy8VVYSBVmxDPc2nm7 reZ62/67318GHaavC801c4vGuGHzwYOGz96v99j9Y/xCjCGW6UHxQ1zRvwGPG9wY+T05cNoTnpKe 3n2m1HIfxZEkwzfbKm6fOdN/BywBOgHfE8iL7pWrldOIevfnmlcmVr302qduXnfQOzy+Wg4ciUzI e2X8jX0HIAYmAmj5jnfOx/zZnjoe9/t4JB4mPyU9m4jy5y41kMEUNpzN1XlqTCK10UOa9LZPHDmT QdlTY3b30/HlRnASJDeSZDyZkZDKOxIt9bNK7jpuoQdzRYrbXC0GknlSPZCE2kx0PpKLJPbyt3pI wSWQWGPiSZPcfeOI0iOQJRKS8JDEeEji+DIdKVwEeowVPbta3GV6cN8DxEnE0BOR+HIDKZNUR6oW qYgKa3CTJLj5xAj8EoWwGpO20SpWW4VKqMXNZzUPPAEle6lMYiLVXK27b5JAqhMrjISTPFVGdHiU 5C5NAldBCmgpqQULTyENcffTCuRGoVxLJHTzjeVJtZ4aWGwpVllJ64RyvYcklieJIbKB43jYNahz 843xmBvH90t8V5PCk+qIoiZWmfikFu/VROUFV70ynUAOPm+h20lFYHDOxPNLdPOJJcKA2ReVgQTI pQfsINQLpEkevrGkWE+lQUS0dtJA4DwgP1QBn6Zha6feR1kFPSDYYa4LHO70D8BMXhd+1rmLn3Lo 5VAcoNyAYWfCfD2wVBKeMmoy99klP4ang8cNboz8nhxIfuQR6bnf1dl+se8O+Fpy3MHD3t8Nfo7x wyv2++WqmuJXXSv++EbFqHG1f5nV9S1YB8XZhoEjeYX7DCl4SdcEwKsy+qmCsrj8Q48nquch8qPM BwqEEgdNwoWw05wuoAeFiYzvhAPESIpiWB1qFoEPVSAhDMPGajiDmgUBGiPWWGjYGYNfpzAL1GIR qahdEvDOSgiMjPiwdlFuJOqaGKxiwsQsTuWRcmwkMRpxxnI0IJgYy/FEVhOBY3qY98MspByzWEEK ISVbwO6zyspTmInkJAulPU/wik50NbNQbiJnL41VKCfpTULSTGgyKZz0hhnOCugTeD8gWThDKlCR GLgQ1EqRxsYDA2NWIdwFYgN1E94nSDILSKJKhq+qRGzSTA3MT5K79JKciUggP6e9gaEycgbORo7n +lMFTYZLRwwUSMuES1Kv83jK5AezXPj5h4Je4azWoMje3n57/0ORTxm94HgHaiZnqIpheOHh3yWC kd+/Au5VET38wT+cqMcTvWsHX5XgxApWbgHF9Xa3Rq0udRlXPnJsg0JtvwP+/3BVl73z8tV7nbeg QPoaCif6pRwL+rXeQh/3+3gk/p786AGzizgQAzMprYRvSBjJia6kN0OMykZuCehwDCZFzHwckSkn OclJoEKNjRKVxsxXJIs0Fr4yGeKBAEhdFtDnlEBsfAVhSiuSrhlrNAOLwGxnCs5YYkrU/DgLJsg6 qMwRciLaZKpYbROrUoHqkL/FRHglUcVsEENK1tjA7wHsaCSJLSKFRSDHtkAbbZ7qVAFYmYGWOg/K JUQ2GqAy0AAf5IS8AnKmzOefytNYKQUiT6NnYBUQNuVRYDiue0mAlJmKTImEh+wOl1gUCfCUwIJ8 Eq+xwtc7DJMAxlD/wxzH43sJuKfHMoeE/BgYnlkw8vs/AfW8RwwHSGMYoKuRBgbuX2yvnDKj8Pcv HwgPJ1xIMzo3VDyykF8TTyTA35MfGZeBfh7wnw1tJeNQTsKOoR/HVitVgOg0KaUrZzm45p67BDpx aE40PU3J6ZfcAeRHWESsSUWmwbo4NQg1IY0NqQvIj6R3Kn9iEo/pnSwFVKSmhZCYVLEqjWqWDuYw gaoKbtAthCZFDj4jueiZliD8RWMxhpIciVdQGrYRroWqCWUqbXxYMWviaczkAB/rQHtpAiXcIlmI kLTJji4C9qW8SNpFDvDGoEmFjNwXOxAYuwgslkE8JoN4OHNZSECILxCorFNRuYNqpc5lnw8djPwY /pPAyG9IAPobDhPwAcEOX/NI+NKOHVkj3zhlAqcQOLsJyp7TL/y/F08kwyPJz0lOeDhHT27Uxrvc 0AzpkVFQKUFLkrCRwAJ6icrEx8PpWxwOFSQA/3ZIQqC4aLAKpLHBFTkFcOQFZz0w9Du+ZjmVP6ck OB9ocq7ZoYxLSRrPJr46RaAx4RoQmgZuAW0gHVJ1EJvmbDseatoc/JzGtXcQKwMpEn610VxQOBUJ VE+i8KUhBwOHoTDOluL05iDu594GuEucAuWkAjkf3KXdgrXTGGR0Stvw9jCI/37Zil8ejPwY/pPA yG+oQPkPt7bAul0wbNDbvTta21ZWMUAXAThXPD8DeCLyY2BgYPj/DkZ+QwVKfna6fwd2vALX3bv1 3U/XrtNlnc8U3zxTwjAwMDAMNRj5DRUeaH70uh8tOXC3YKPrM8U3z5QwDAwMDEMNRn5DBUonjplN cOWJpEdtLuDW32cJjPwYGBiGFRj5DS0clGLnbPLQRaD2BzeeETDyY2BgGFZg5McAYOTHwMAwrMDI jwHAyI+BgWFYgZEfA4CRHwMDw7ACIz8GACM/BgaGYQVGfgwARn4MDAzDCoz8GACM/BgYGIYVGPkx ABj5MTAwDCsw8mMAMPJjYGAYVmDkxwBg5MfAwDCswMiPAcDIj4GBYViBkR8DgJEfAwPDsAIjPwYG BgaGYQdGfgwMDAwMww6M/BgYGBgYhh0Y+TEwMDAwDDsw8mNgYGBgGHb4H68W22yXqzYfAAAAAElF TkSuQmCC ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





ISSN: 2661-6831

Vol. 9 No. 2, pp. 82 – 106, abril - junio 2025<= /span>

Revista en Arte, Educación, Humanidades<= /p>

Artículo de revisión bibliográfica sistemática<= /span>

 

www= .exploradordigital.org

 

 

 

Esta revista está protegida b= ajo una licencia Creative Commons en la 4.0 International. Copia de la licencia: http://creativecommons.org/licenses/by-nc-sa/4.0/=

 =

                 Gamificación                  Página 81 | 106

 

------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/image011.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAlgCWAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAbaBNkDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD4n/4S zxV/0M3iD/wc6j/8k0f8JZ4q/wChm8Qf+DnUf/kmufor/Wv2FD/nxQ/8E0f/AJSf5/PE4i7/ANox G7/5iK/f/r+dB/wlnir/AKGbxB/4OdR/+SaQ+LPFJ6+JfEB+us6j/wDJNYFFHsKH/Pij/wCCaP8A 8qHDE4jmX+0Yjr/zEV+3/X83/wDhK/FP/Qy6/wD+DjUf/kmj/hK/FP8A0Muv/wDg41H/AOSawKKf saP/AD5o/wDgml/8qNvrOI/6CMR/4UV//l5v/wDCV+Kf+hl1/wD8HGo//JNRN4s8Vbj/AMVL4g/8 HOo+n/XzWLUL/eP4fyFHsaP/AD5o/wDgml/8qD6xiP8AoIxH/hRX/wDl5vf8JZ4q/wChm8Qf+DnU f/kmj/hLPFX/AEM3iD/wc6j/APJNc/RR7Gj/AM+aP/gml/8AKhfWMR/0EV//AAfX/wDlx0H/AAln ir/oZvEH/g51H/5Jo/4SzxV/0M3iD/wc6j/8k1z9FHsaP/Pmj/4Jpf8AyoaxGIuv9or7r/l/X7/9 fjoP+Es8Vf8AQzeIP/BzqP8A8k0f8JZ4q/6GbxB/4OdR/wDkmufopewof8+KH/gmj/8AKTf6xiP+ giv/AOD6/wD8uN8+LfFWD/xU3iDof+YzqP8A8k1D/wAJd4r/AOhn8Q/+DrUv/kmsVuh+h/lUFaQo ULP9xQ3/AOfFHt/15M54jEXX+0Yjb/n/AF+//X46H/hLvFf/AEM/iH/wdal/8k0f8Jd4r/6GfxD/ AODrUv8A5JrnqK0+r4f/AKB6H/gih/8AKSPrOI/6CMR/4UV//l50P/CXeK/+hn8Q/wDg61L/AOSa P+Eu8V/9DP4h/wDB1qX/AMk1z1FH1fD/APQPQ/8ABFD/AOUh9ZxH/QRiP/Civ/8ALzof+Et8Vnr4 m8Qn/uNal/8AJNJ/wlnir/oZvEH/AIOdR/8AkmuforGdChzfwKGy/wCXNH/5SawxOI5f94xG7/5i K/8A8vNx/FvisYx4m8Qjr/zGtS9v+nmmf8Jd4r/6GfxD/wCDrUv/AJJrCk7fj/So60jh8Pyr9xQ6 /wDLij3/AOvJE8TiOZ/7RiOn/MRX7f8AX86H/hLvFf8A0M/iH/wdal/8k0f8Jd4r/wChn8Q/+DrU v/kmueoqvq+H/wCgeh/4Iof/ACkn6ziP+gjEf+FFf/5edD/wl3iv/oZ/EP8A4OtS/wDkmj/hLvFf /Qz+If8Awdal/wDJNc9RR9Xw/wD0D0P/AARQ/wDlIfWcR/0EYj/wor//AC86H/hLvFf/AEM/iH/w dal/8k1HJ4u8V8f8VP4h7/8AMa1L2/6eawqjk7fj/Sj6vh/+fFD/AMEUf/lJSxGI5Zf7RiN1/wAv 6/8A8uN3/hLvFf8A0M/iH/wdal/8k0f8Jd4r/wChn8Q/+DrUv/kmueoo9hQ/58UP/BNH/wCUk/Wc R/0EYj/wor//AC86H/hLvFf/AEM/iH/wdal/8k0f8Jd4r/6GfxD/AODrUv8A5JrnqKPYUP8AnxQ/ 8E0f/lJcMRiLv/aMRt/z/r91/wBPjof+Eu8V/wDQz+If/B1qX/yTR/wl3iv/AKGfxD/4OtS/+Sa5 6ij2FD/nxQ/8E0f/AJSafWMR/wBBFf8A8H1//lx0P/CXeK/+hn8Q/wDg61L/AOSaiHi3xWX58T+I ep/5jWpe/wD081h1EPv/AIt/Wj2FD/nxQ/8ABNH/AOUkTxGIsv8AaMRv/wA/6/b/AK/HS/8ACWeK v+hm8Qf+DnUf/kmj/hLPFX/QzeIP/BzqP/yTXP0Uewof8+KH/gmj/wDKTP6zif8AoJxP/hRiP/l5 0H/CWeKv+hm8Qf8Ag51H/wCSaY/i3xUBx4m8QDn/AKDWpe//AE81hUx+g+v9DR7Ch/z4of8Agmj/ APKSo4nE8y/2nEb/APQRiPP/AKfm5/wl3iv/AKGfxD/4OtS/+SaP+Eu8V/8AQz+If/B1qX/yTXPU Uewof8+KH/gmj/8AKTb6ziP+gjEf+FFf/wCXm2fF/izJ/wCKo8RdT/zG9S9f+vmk/wCEv8Wf9DR4 i/8AB3qX/wAk1zzdT9T/ADpK3WHw9l+4obL/AJcUey/6cmDxOJu/9pxO7/5iMR3f/T86n/hLvFf/ AEM/iH/wdal/8k0f8Jd4r/6GfxD/AODrUv8A5JrnqKw9hQ/58UP/AATR/wDlIvrOJ/6CcT/4UYj/ AOXnQ/8ACXeK/wDoZ/EP/g61L/5Jo/4S7xX/ANDP4h/8HWpf/JNc9RR7Ch/z4of+CaP/AMpD6zif +gnE/wDhRiP/AJebsni7xXx/xU/iHv8A8xrUvb/p5qP/AIS7xX/0M/iH/wAHWpf/ACTWFJ2/H+lR 01QoXX7ihuv+XNHv/wBeTVYnE8n+8YjZ/wDMRX8/+n50P/CXeK/+hn8Q/wDg61L/AOSaP+Eu8V/9 DP4h/wDB1qX/AMk1z1Fb/V8P/wBA9D/wRQ/+UmX1nE/9BOJ/8KMR/wDLzoP+Et8Vf9DN4g/8HOpf /JNH/CWeKv8AoZvEH/g51H/5Jrn6KPq+H/6B6H/gih/8pD6zif8AoJxP/hRiP/l50H/CWeKv+hm8 Qf8Ag51H/wCSaP8AhLPFX/QzeIP/AAc6j/8AJNc/RR9Xw/8A0D0P/BFD/wCUh9ZxP/QTif8AwoxH /wAvN5vFviraf+Km8Qf+DnUvX/r5qL/hLvFf/Qz+If8Awdal/wDJNYj/AHT+H8xUNH1fD/8AQPQ/ 8EUP/lIfWcT/ANBOJ/8ACjEf/Lzof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJr nqKPq+H/AOgeh/4Iof8AykPrOJ/6CcT/AOFGI/8Al5uv4v8AFgxjxP4iHX/mNal7f9PNM/4S/wAW f9DR4i/8Hepf/JNYMnb8f6VHR9Xw/wD0D0P/AARQ/wDlJtHE4nlX+0Yjr/zEV+//AF/Oi/4S/wAW f9DR4i/8Hepf/JNH/CX+LP8AoaPEX/g71L/5JrnaKPq+H/6B6H/gih/8pHLE4nlf+0Yjb/oIr+X/ AE/Oi/4S/wAWf9DR4i/8Hepf/JNJ/wAJd4r/AOhn8Q/+DrUv/kmueorOdChp+4odf+XFHy/6ckQx OJ1/2nEdP+Yiv5/9Pzof+Eu8V/8AQz+If/B1qX/yTR/wl3iv/oZ/EP8A4OtS/wDkmueorP2FD/nx Q/8ABNH/AOUmn1nEf9BGI/8ACiv/APLzof8AhLvFf/Qz+If/AAdal/8AJNH/AAl3iv8A6GfxD/4O tS/+Sa56itYYehZ/uKG//Pij2X/Tk1hiMRZ/7RX3/wCf9fsv+nxvP4u8WAceJ/EI5/6DWpe//TzU f/CX+LP+ho8Rf+DvUv8A5JrCfoPr/Q1FV/V8P/0D0P8AwRQ/+UkTxGI5v94xGy/5f1//AJcdF/wl /iz/AKGjxF/4O9S/+SaP+Ev8Wf8AQ0eIv/B3qX/yTXO0UfV8P/0D0P8AwRQ/+Uk/WcR/0EYj/wAK K/8A8vOi/wCEv8Wf9DR4i/8AB3qX/wAk0f8ACX+LP+ho8Rf+DvUv/kmudoo+r4f/AKB6H/gih/8A KQ+s4j/oIxH/AIUV/wD5edF/wl/iz/oaPEX/AIO9S/8Akmj/AIS/xZ/0NHiL/wAHepf/ACTXO1Zs 7SW+uobWEZkmcKCeir1d2/2UUFj3IGBzis6lDDq37igt/wDlzRX/ALhLhicQlJvE10krtvEV7JJN t/x+yO78KT63c6k+vXOq6o81u4+z3L3921w90EVfO85pjITBHhUbdkOV2kGPA9T/AOEr8U/9DLr/ AP4ONR/+Sa5e0tYrK2htYRiOFAo6ZY9WdsYyzsSzHuxNWa4KsaVSSbpUmopRgnSpu0Vslem7LrZW XloeDWxmInVnOFevCMpNpRrVo3V3rLlrRvJ7tu71s3ob/wDwlfin/oZdf/8ABxqP/wAk1CfFnirJ /wCKm8QdT/zGdR9f+vmsaoG6n6n+dZewof8APmj/AOCaP/yoUMVibv8A2nE7f9BOI7/9fzf/AOEs 8Vf9DN4g/wDBzqP/AMk0f8JZ4q/6GbxB/wCDnUf/AJJrn6K2jh8Pyr9xQ2/58UfP/pyafWcT/wBB OJ/8KMR/8vOg/wCEs8Vf9DN4g/8ABzqP/wAk0f8ACWeKv+hm8Qf+DnUf/kmufoqvq+H/AOgeh/4I of8AykPrOJ/6CcT/AOFGI/8Al50H/CWeKv8AoZvEH/g51H/5Jo/4SzxV/wBDN4g/8HOo/wDyTXP0 UfV8P/0D0P8AwRQ/+Uh9ZxP/AEE4n/woxH/y86D/AISzxV/0M3iD/wAHOo//ACTR/wAJZ4q/6Gbx B/4OdR/+Sa5+ij6vh/8AoHof+CKH/wApD6zif+gnE/8AhRiP/l5uv4s8VYH/ABU3iDr/ANBnUfQ/ 9PNRf8JZ4q/6GbxB/wCDnUf/AJJrEfoPr/Q1FR7Ch/z4of8Agmj/APKQ+s4n/oJxP/hRiP8A5edB /wAJZ4q/6GbxB/4OdR/+SaP+Es8Vf9DN4g/8HOo//JNc/RR7Ch/z4of+CaP/AMpD6zif+gnE/wDh RiP/AJedB/wlnir/AKGbxB/4OdR/+SaP+Es8Vf8AQzeIP/BzqP8A8k1z9FJ0KFn+4obP/lzR7f8A Xof1nE/9BOJ/8KMR/wDLzoP+Es8Vf9DN4g/8HOo//JNH/CWeKv8AoZvEH/g51H/5Jrn6Kx9jR/58 0f8AwTS/+VB9axX/AEFYn/wpxH/zQdB/wlnir/oZvEH/AIOdR/8Akmk/4SvxT/0Muv8A/g41H/5J rAorSFChZ/uKO/8Az5o9v+vRlUxWKuv9qxO3/QTiO/8A2EG//wAJX4p/6GXX/wDwcaj/APJNH/CV +Kf+hl1//wAHGo//ACTWBRV+wof8+KH/AIJo/wDyk0WJxNl/tOJ2X/MRiOy/6fm//wAJX4p/6GXX /wDwcaj/APJNH/CV+Kf+hl1//wAHGo//ACTWBRR7Ch/z4of+CaP/AMpD6zif+gnE/wDhRiP/AJeb j+LPFIHHiXXxz/0GdR9/+nmo/wDhLPFX/QzeIP8Awc6j/wDJNYj9B9f6GoqPYUP+fFD/AME0f/lJ tDE4nl/3nE7v/mIxH/y86D/hLPFX/QzeIP8Awc6j/wDJNJ/wlfin/oZdf/8ABzqP/wAk1gUUewof 8+KH/gmj/wDKRVMTibL/AGnE7/8AQRiO3/X83/8AhK/FP/Qy6/8A+DjUf/kmj/hK/FP/AEMuv/8A g41H/wCSawKKPYUP+fFD/wAE0f8A5SKGJxOv+04jp/zEV/P/AKfm/wD8JX4p/wChl1//AMHGo/8A yTTW8W+KFUk+Jdf4/wCoxqPX/wACawqqzPk7R0Xr9f8A639aUqNBK/sKF+n7mjv/AOCTVYjENpfW MR/4UV//AJebJ8WeKSST4k1/JOT/AMTjUev/AIE/h9KP+Er8U/8AQy6//wCDjUf/AJJrAorD2FD/ AJ8UP/BNH/5Ub/WMR/0EYj/wor//AC83X8V+Kdp/4qXX+3/MY1H1H/TzUP8Awlfin/oZdf8A/Bxq P/yTWM/3T+H8xUNJYegv+XFH/wAE0f8A5UH1nEf9BGI/8KK//wAvN/8A4SvxT/0Muv8A/g41H/5J o/4SvxT/ANDLr/8A4ONR/wDkmsCin7Ch/wA+KH/gmj/8pD6ziP8AoIxH/hRX/wDl50I8WeJ1Vmbx Jr+AB/zGNR98Af6R1JwPrWbJ4m8TOzO3iHXGLHJJ1a/J+hzcZwAMD2xWVI4yEz7kdie35DPB9Rjm m15eMhQlNQVCjyw3/c0dZdf+XX2Vp63O/DVcRGPO8RiLy2vXru0VtvWe719LGl/wkviM9df1o/8A cVvv/j9H/CSeIv8AoP61/wCDS+/+P1llQfY/561EVI6/nXH7Ch/z4of+CaP/AMpO1Yqv1r1l5+2r W/8ATpqP4l8Rg8eINb5Gf+Qrf+//AE3pn/CSeIv+g/rX/g0vv/j9ZD9R9P6mmUfV6H/Pijr/ANOa P/ykaxFduX7+tZPT99W/+XG1/wAJJ4i/6D+tf+DS+/8Aj9IfEfiI/wDMf1sfTVb4f+16xqUAk4A+ vsO5/D/61NYei2kqFFt6L9zR/wDlI3iK6Tbr1rLV/vq3/wAuNyLxF4kU7v8AhINbz0X/AImt/wDi f+Pjg9uvTPrU/wDwk/iX/oYdc/8ABtf/APyRWH0orq+q4eMF+4oXVrv2NHVvf/lz93lY5PrWIlO/ 1iuk72Xt6+1tP+X39M3P+En8Sf8AQw65/wCDa/8A/kik/wCEm8R/9DBrf/g1v/8A5IrEoqPYUP8A nxR/8E0f/lRp9YxH/QRX/wDB9f8A+XGp/wAJP4l/6GHXP/Btf/8AyRR/wk/iX/oYdc/8G1//APJF YdFavC0N1QoensaP/wAqMFicRdf7RiN1/wAxFfv/ANfzc/4SfxL/ANDDrn/g2v8A/wCSKP8AhJ/E v/Qw65/4Nr//AOSKw6Ky9hQ/58UP/BNH/wCUm/1jEf8AQRX/APB9b/5cbn/CT+Jf+hh1z/wbX/8A 8kUf8JP4k/6GHXP/AAbX/wD8kVh0Uewof8+KH/gmj/8AKQ+sYj/oIr/+D6//AMuNd/E3iQHjxDrg 4/6C1/6n/p4pn/CT+Jf+hh1z/wAG1/8A/JFYz9R9P6mmUewof8+KH/gmj/8AKTX29fk/j19v+f8A W7/9fjc/4SbxIeviHXD/ANxa/wD/AJIpP+Em8R/9DBrf/g1v/wD5IrEoo9hQ/wCfFD/wTR/+UmX1 jEf9BFf/AMH1/wD5cbLeJvEm0/8AFQa3/wCDW/8AX/r4qL/hJ/Ev/Qw65/4Nr/8A+SKyiMjB71GU I6cj9f8A6/8Anij2FD/nxQ/8E0f/AJSaQxNbZ16979a1b8/bGz/wk/iT/oYdc/8ABtf/APyRVCbx N4ilbLa/rTADC7tVvmwO5H789fUHsPSsyZ8LtB5br1yF7n6np+Z7VVrhxdOhK1JUaKtaUmqNHfov 4XzfyOyjVr6zdev2j++rfN/xfkvmajeIfEA5Gvaz16f2pfe//Teoz4i8QHrrusf+DO9/+P1mP0H1 /oairg+rUbtexo3tf+DS/wDlR1uvXcE3Xrb/APP6r/8ALTVPiDxD217Wfp/al7+n7/8AnUf/AAkX iH/oO6z/AODS+/8Aj9Z1IQD1qXQorehR/wDBNL/5UYurXe2Irry9vXt/6e0NE+IvEB667rJ+up3v /wAfo/4SLxAOmu6yP+4ne/8Ax+sooR05H6//AF/88Uyl7Cj/AM+aP/gmj/8AKh08RiYt3r1+m9as ++z9t+TNn/hI/EP/AEHdZ/8ABpff/H6T/hIvEH/Qd1j/AMGd7/8AH6x6KPYUP+fFD/wTR/8AlJ0L E1n/AMv66fZ1q3/y42Ytd8QzTiMa7rIXqxGqXvCgDP8Ay34J6A46kZrc/t3W/wDoM6r/AODG7/8A j1c/aQ+Wm8/flAPTov8ACPXkfMR6nBGRk269zB4DD06Sc8Nh3OpaTvh6D5Vb3Y60HbR3e2rt0PFx mOxFSq1DE4hQp3irYiuru/vS0rq+qsvJabnUUUUV9SfLvd+r/MKKKKBw+JfP8gooooNgqF/vH8P5 Cpqhf7x/D+QoAbRRRQAUUUUDW69V+YUUUUG4jdD9D/KoKnbofof5VBWtPZ+v6GVTden6hRRRVkBR RRQAUUUVlP4vkjWHw/Nkcnb8f6VHUknb8f6VHVw+FfP8yJ/E/l+QUUUVRIUUUUAFRydvx/pUlRyd vx/pQUvgl6ojooooJCiiiguG79P1QUUUUGoVEPv/AIt/WpaiH3/xb+tBnU2Xr+hLRRRQZhTH6D6/ 0NPpj9B9f6GgcfiXr/mRUUUUG5A3U/U/zpKVup+p/nSV0LZei/JHO936v82WKKKK5wCiiigCOTt+ P9KjqSTt+P8ASo6a3XqvzNV8Hyf6hRRRW5kFFFFABRRRQA1/un8P5ioamf7p/D+YqGgAooooAjk7 fj/So6kk7fj/AEqOg2h8K+f5hRRRQEvhfp/kFFFFZ1Onz/Qmn1+X6hRRRWZoFFFFaw2fr+iNYbP1 /RDH6D6/0NRVK/QfX+hqKrIn8XyQUUUUEhRRRQAV6R4T0v7PbtqEy4mulxAD1S2yDu6cGZgG75jV CCNxFcfoemNql8kRB+zxYluW5x5YPEYIxhpW+Qcghd7jOwivX1UKoVQFVQFVQMAADAAA4AA4AHQV yYmaVoJ6vWXkui+dvu9Tixlblj7GL1nZz8oraP8A289X5LzFoooriPMCoG6n6n+dT1A3U/U/zoLp 7v0/USiiit4/CvT/ADNQooopgFFFFABRRRQAx+g+v9DUVSv0H1/oaioAKKKKACiiik9n6P8AIAoo orAAooorWns/X9DKpuvT9QoooqzRbL0X5IKKKKBjH6D6/wBDUVSv0H1/oaioNYfD82FFFFAqmy9f 0CiiigKfX5fqMdtqk9+319foOpql1qyx3H2HA6/icfX9MUwoD7H/AD2rGbu/JGyjdaNX6ohopSpH X8+1JUjUnHR/cxr/AHT+H8xUNTP90/h/MVDQahTXbapb06fXtTqqzMScD7o7+p7/AJcj8/asq1T2 cG/tPSPq+vyWv3FwjzSS6bv0/wCDt9/YiJJJJ5J5NKGI9x6U2ivMavvqenF3itl0sttNP0JgwPT8 j1p1V6eHI68/z/8Ar/55rNw7fcUQzABhjj5Qf1NRVLMQWBH90fzNRVSinFJ9vmiYt3lrs9Aq1CmB uPVv0H/1+p9ePSoI13sAeg5P09Pxq7V0qdm5PW2i/V/Lb5jqTk48vzdt7dNPX8hpUH2PrURUjrU9 NZQ39K2aumjGLs02Q0U4qR7j1ptZOLW/3myae2pXooorYwCiiik4p+vcpSa9OwUUUVk4tea7mikn 5PsIQD1qNlxyOlS0x+g+v9DVqKcVftv16m/2Pl+pFRRRUuDW2q/H7jIKQkKCxOAAST7ClqleSkL5 a5yeWI7L6H69f61lOShGUn0Wi7vovv8AwuVCLlJRXXd9l1f9dbFKSUvIzjocAD2HA/z+lAYH2PpU NFeU25Nt6ttt+rO+MnFJLZaJeXkSv0H1/oaip4y2QT05H1/yaaRg4PaptrfysbqScUttRKKKKbSe +oBUfyt7H/P5/wA6kppQH2P+e1ZSila3UqLSunsyMqR7j1qa2i82QZHyLhm9Dzwv/AufwB71Hll4 PI/z3/xrWgj8tAMAM3zNj1Pb8BgfXJ710YOh7aqnJXhTtKXZv7Mfm1d+SfcxxM1Th7r96d1Fdl1l 8r2Xm12HFiGPpxx+Apd49D+n+NMf7x/D+Qpte6eI936v8zsKKKK9g8d7v1f5hRRRQOHxL5/kFFFF BsFQv94/h/IVNUL/AHj+H8hQA2iiigAooooGt16r8wooooNxG6H6H+VQVO3Q/Q/yqCtaez9f0Mqm 69P1Ciiv6E/2UP8AghJfftA/s/fDX40+Ofjrqnwu1f4k6IfFNl4Mg+GcHiNrDw3qN1cP4Wv59Uuf GugvLJ4g0Aaf4gjiXT0W3tdUt4TLLIrtXzfFXGXDnBWCw+YcSZisvw2LxX1PDSWHxOKqVsR7KdeU IUMLTq1nGFKDnUqcns6acFOSdSCl7OQ8OZxxLia2FybCrFVsPQ+sVuatSw9OnSdSNKLlVryjDmnU lywhdylaTStCTX89lFf1N/8AEOF4c/6O21v/AMMvYf8AzzqP+IcLw5/0dtrf/hl7D/551fCf8R88 K/8Aoo63/hkzr/5jPqf+IUcc/wDQqof+HPL/AP5afyyUV/U3/wAQ4Xhz/o7bW/8Awy9h/wDPOo/4 hwvDn/R22t/+GXsP/nnVnLx68LG7riOr0/5kudf/ADGaR8KuN0rPKqHX/mZ5f/8ALT+WCTt+P9Kj r+qI/wDBuD4bbGf2t9c4/wCqL2H/AM86oZv+DcXwrbwy3Fx+15rEEEEbzTzzfBrTYoYYYlLySyyP 8TlSOONFZ3d2CooLMQATVx8e/CyyX+sVZvayyTO3dt6JWwV23dJJK7bsk2RLwq44bb/sqhb/ALGe X9v+vx/LHRXV+O9L8MaJ428XaN4J8QXXizwfpPiXW9M8L+Kb3TU0e78S6BYalc2uk6/PpEV5qKaX JrFjFBqB09b+9+x/aBbm6uDGZX/ZvwX/AMEBf2yfGXg/wr4uPjn4BeGD4p8OaJ4i/wCEb8T+I/iR aeJNAGtabbakNG8QWlh8LNSsrXW9MFyLPVLa01C+t7e+hnihu7iNFlf7/POMOGeGcPgcVxDnODyW jmSf1L+0fb0KleUaFHEVIKjHDYmtCpRpV6TrQqU4eynL2U5KrGVNfJ5bw5nec1sXQyjLq+ZVMDJR xLwbpVadO9WrRhL2sq9GnONSdGp7KUJzVSEfaRTptTf4c0V+9f8AxDxftkf9FV/Zm/8ACr+Kf/zn 6P8AiHi/bI/6Kr+zN/4VfxT/APnP183/AMRg8MP+i3yL/wAG43/50nsf8Q942/6JrMv/AAHDf/N5 +ClRydvx/pX73/8AEPF+2R/0VX9mb/wq/in/APOfqjf/APBvP+2lBEZLX4j/ALNF+yKx+zxeMviZ BM5AyFjN18IYrfLYxmS4iUEjJAyQ14v+GDaS43yG701rYxL73lSS+bS8x/8AEPuNVCV+Gsz3Wihh m/uWOPwaor9UviT/AMEX/wDgoP8ADmyutTT4PWPxA02yUvPP8NvGPhvxHesgzza+HLi+0vxXqDHH EWnaDdzcjMY5x+Znifwr4o8E67qPhfxn4c17wl4m0e4a01bw94m0jUNC1zTLpPv2+oaTqlva39nO veK4gjcdStfWZPxLw9xDGc8izzKc3VNKVRZfmGFxVSlFtJSq0adVYilFtpc1TDQjdpc3M+U8DMsj znJ3FZrlePy/mfLCWLwtalTnK1+WFZxnQnK2vLCvKVk3ytJtYFFFFe2edDd+n6oKKKKDUKiH3/xb +tS1EPv/AIt/WgzqbL1/QlooooMwpj9B9f6Gn0x+g+v9DQOPxL1/zIqKKKDcgbqfqf50lK3U/U/z pK6FsvRfkjne79X+bLFFFFc4BRRRQBHJ2/H+lR1JJ2/H+lR01uvVfmar4Pk/1CiiitzIKKKKACii igBr/dP4fzFQ1M/3T+H8xUNABRRRQBHJ2/H+lR1JJ2/H+lR0G0PhXz/MKKKKAl8L9P8AIKKKKzqd Pn+hNPr8v1CiiiszQKKKK1hs/X9Eaw2fr+iGP0H1/oaiqV+g+v8AQ1FVkT+L5IKKKKCQpQCSAASS QAAMkk8AADkknoKSut8K6V9qujfTLmC0YeWCBiS54K8EHIhBEh6fOY8ZG4VM5KEXJ7Jfe+i+bIqT VOEpy2itu76Jer/V9DsNB0waZYojgfaZsS3B7hyPlizzxEvy9cFy7D71bdFFeVKTlJye7d3/AF2W yPEnJzlKUndyd3/kvJbLyQUUUUiQqBup+p/nU9QN1P1P86C6e79P1EooorePwr0/zNQooopgFFFF ABRRRQAx+g+v9DUVSv0H1/oaioAKKKKACiiik9n6P8gCiiisACiiitaez9f0Mqm69P1CiiirNFsv RfkgooooGMfoPr/Q1FUr9B9f6GoqDWHw/NhRRRQKpsvX9ApjnAwOp4+g7n+n1+lPqAnJJ/L6f561 MnZebCn1+X6iUUUViabBTCmenHt2/wDrU+igvmT0kr+fX+v6sVnBAIPt/MVBV1wCpB56fzqsU9Py /wAP/r0GzSVrO6sn+BCxwOOp6f1P4fzxUNOY5Pt2/wA+/wDgO1Nrza9Tnnp8MdF59383+CRrFWXm 9X+i+X5kTqBjHf8A+tTKlcE4x2zUVYnXTm1FX1WvruFFFFBsmnsyJ+o+n9TTKnIB4PX9f8/pTYk3 Nk9F/U9h+HU/gD1quV6eZm21J27k8abF9zyf8Pw/nmpKKK2Ssrdibu9+oUUUUDXvOz37r9V1/BhT CgPTg/p/n6U+igGpR1/FbfP/AIJTKen5H/H/AB/OoyMcGrFIQD1FAaPyf4P/AC/FEFFPKEdOf5// AF/88Uykmnt/wfuE01ugooopiGsueQcEdDTGLYwR369j1/z2+lS0x+g+v9DUKTUrdL/d6Gyk1DR9 P1IqKKKsSmnvo/wGuwRSx6AZ9MnsPqelZTMWYsepOTVm5kywjHReW+p6D8B+p9qq15+ImpT5VtHR +cuv3bfedVL3dWvitr5f8Hf7hpUH2P8AnrURUjr+dT0VyuKfkzoTT2Ik6n6f1FI/3j+H8hUoUA5H /wBaon+8fw/kKyas7Mv7C/xMbRRRSGptb6r8QoopQCSAoySQAB3J4H+e1Fr6WvfS2930NE01dP18 vUsWsRkct/DHg89C38I/D731C9jWgQR1FPijESKg7csfVj1P9BnkAAdqkIzwa9nD0VRpqP2n703/ AHn0v2irRXo+5w1f3knK+2ke1l/nv8/Iov8AeP4fyFNqaRPmOPbj8PX/AD9aiwfQ/ka3OCUWpPTq /PqdfRRRXsHjPd+r/MKKKKBw+JfP8gooooNgqF/vH8P5Cpqhf7x/D+QoAbRRRQAUUUUDW69V+YUU UUG4jdD9D/KoKnbofof5VBWtPZ+v6GVTden6n1X+xL+znf8A7Vn7T3wm+CkEdx/Y3iPxFDf+Nr22 JjfTPAPh9G1rxjeLcfct7l9Esrqw0uSQhZNZvdNthuknRG/0SNN06w0fTrDSdKs7bTtL0uytdO03 T7KGO2s7CwsYI7azs7S3iVYoLa1t4o4IIY1WOKJERFCqAP51P+DfX9mI+Gfh18Rf2q/EenmPVfiR dy/Df4dTTxOkieCPDWoRXPi7VbRyoSW08Q+MLWz0gsCXhuPAtyo2pcHf/RxX8DfSG4v/ANYONXku Gq8+XcKUpZelGV6dTNq7p1s1q6NxcqL+q5epatfVq8U17yP6r8JeH/7I4ajmFaHLjM9nHGy5laUM DTUqeX09VdKdP2uLa6vEU32YUV+I/wDwUH/4LEWX7Fvxwtfgh4S+E2mfFjWdP8JaT4g8aX1543uf CyeGtU19p7vSfDv2a38Ma4bm7bw+NN1+4naaGNbTXNOjjVpBPs+FP+Ijrxd/0af4c/8ADv6n/wDO 8r5XKPBjxHz3LMDnGW5BGrl+ZYeGLwdWrmmV4WdXD1HNU6roYjE061ONRQc4e0hFypuFRLkqQcvd zDxE4PyvG4nLsbm6p4vB1XRxFOGDx1eNOrFRcoe1o4edKUoc8VPknJRlzQb5oyUf6o6K/lc/4iOv F3/Rp/hz/wAO/qf/AM7yj/iI68Xf9Gn+HP8Aw7+p/wDzvK9B+AnimtHw7Q/8PeS//NZyLxR4Heqz mX/huzP/AOZT+qOvym/4LHftOj9nP9jPxjpWi6gLTx98cnl+EnhNYpVW8tdL1uynk8ea5FH/AK5Y rDwil/pUd7A0cmn634g0KdZFkMYbjP8Agm7/AMFT9b/b1+Jnj74fap8F9L+GcXgvwKnjKLVLDxxd +KZNQkbxBpeiHT3tLjwvoS26BdRNwLlbiZt0Ii8nD70/A/8A4Lb/ALTh+PH7YOq/D7Q9QN14E/Z2 s7n4b6ZHFK7Wlx44kuI7z4laosTEiO7i1qGz8H3LIAksfgy3mTcsu9vV8NvC3OJeKWByHiXARw64 dpYbiTN6CrYfF0nh6bhXyqhOth51aEvr2PWGi6fM37PDV4yjuji4x42y+nwRis2yfFus82dbKMtr KnVoT9vU56OMqxp1o06sfquGWImpcqSnOlKL+FngX/BLb9mb/hqP9sr4Y+EtU077f4E8EXR+KfxH SWEzWcnhbwXdWd1b6TeplA9r4n8TXHh/wvdIJFkFnrF1cRhvs7Cv7+a/B7/ggj+zP/wrD9mrxB8f df08Q+Kv2gNbB0OSeNPtFp8NPBVzf6Towj3r9otTr3iSTxJqs6qyQ6jpkHhm82OsUEh/eGuXx84t /wBZePMVgcPV58t4YpvJcMoyvTnjITVbN68bNxbljWsIpLXkwDje2hr4WZB/YvCuGr1YcmMzmSzP EXVpxo1IcmAou6TShhEqzi7Wnim7XCiiivxI/SAooooAK+Nv2x/2GfgV+2v4CvPC3xO8PWtl4utL CeLwR8VNIsbZPG/gi/IkktpLO/xFJq2gNcuX1XwpqU76RqcTyPGLDVY7DV7D7JorvyzNMxybHYbM 8qxuJy/MMHVjWw2LwtWVKtSnFp/FFpThNLkq0qkalGtTlKlWo1ac5QObGYPC5hhq2DxuHo4rC4iD p1qFenGpTqQkmrOMk7NfFCcXGdOajOnOE4xkv82P9pP9nr4hfss/Gbxp8EvibZR2/iTwhfiOLULQ StpPiTQ7tBc6H4o0KeVEe40fXNPeK8ti6pc2kjT6dqENtqVleWsHhdf2Ff8ABfz9l2x8ffATwz+0 5oOmp/wmPwS1Sx8PeLbuCJfP1H4YeMNUSwgF24Pmz/8ACMeNb7S59OiVTHaWnibxLdSFU3MP49a/ 0o8MONY8e8IZfndSNOnmNOVTL84o0lywp5ng1TjWnThduFHF0qlDG0INvkhiKlJOUaMW/wCOeNOG nwrxFi8upucsFUhHGZdUm7ylg8RKfJTnKy5qmGqQq4apLefsqdRpOpIK/YH4Zf8ABFv9pXxh8NfD fxT+JHxC+BX7POgeL7Oz1Dw7pnxk8a6hofiS7stRtY77T57yx0/QdR07SpbyyljuU0u+1ePXrUEx alpNjMjxj8oPCF1pVj4s8L3uvRCfQ7PxFol1rMJTzRNpVvqdtNqMRjAYyCSzSZCgVt4O3Bziv7SP +Clmnfs0eIfEnws8bfGX9hn9oD9sTQ77wMF8H/EP4IeIPH994P8AD1hfanc6j/ZN3pfgLx7odlZ3 mrQXVjrFr4gu9JI8Q6fPZ2lrq19Hof2Ww8LxM4xz7h7NOFcmyRSw/wDb39sVsTj6WX5TmWLisro4 WVLBYHD59nnD2T+2ryxMq1apicy9tHD0rYXDV6jmo+3wRw5lWb4LPMxzNKv/AGXLAUqOEni8dgqD +uSrc+JxNXLMtzbHunBUlTpQo4NwdWTdapTikz+Q79pT4EXn7Nvxc174SX3j3wF8S7nQrHQr1/F/ w01eXXPCGoDXNHs9XSHT9Smt7WSeawW7FnfqYEEN7DPECwQMfAR9/wDFv61+/P7FvjL/AIR//gpp qHwt+Af7JnjDwj+zx8bdJ8P6D46/Zv8AjNpupX2r+EPAlv4S02DxJ8StWufH954ivLZNI1t9f1+0 k1DUriHXtF1+fwXY+Vea1pMVn73/AMFOfBej/shfBz9nj9nP9mH4b2Gkfs2/E34pX/iPx58ZLW80 7xTqnirxlF41F9b/AAv1HxNBFJe2lrplvZQzKb64M2uaV4b0zQLSeRPCfilL66fiNicFnfDvCeMy 14zNs6ynLczpZhWzDKMDTnhpYLMcRm1TMcHga2Y0MvzTD1MvdPA5TgMZmNDNvazqZdjpYfBYypBV eCsPi8vzXPcPjpYTAZfmGMwNTB08Fj8XKnXWKwOHwEMJicVDBVcXgqscbGpicfisPgquBUVDE4VV KtFS/mQr7Q/Zp/Yj+IP7T/wl/aV+L/hDxX4N0DQ/2YvBR8ceL9N8SSa2mra/pw8NeNfE5tPDa6Zp GoWb3v2PwPqNvjU7rT4PtN3ZDzvKM8kP9TH7Svxt+K/gr/go18AP2XPBH7Pvw4+IfwC+Kng7wVdf EuK/+EEetzaVa+I/GPjnQ/FevN4ktYRpthZ+GvD+h6drVxZ6taXVgYILlLqPF9DJD4n4J+FXw3+C t5/wXu+HfwmsbDSPA+lfBXw7qenaDpRj/szw7f8Ain9mv4veKtf0HTo4f3FpYaXr2s6lbWWmQqkW j2qxaQscf2EqPlMV4y5ljMlw1bCZPRyXH5ngOGc+yussxwOf0ZZPmPG+TcMZhQzDDww+DqZbj3Tx mIeHhXjNThJV6E5To8p7OH8NsDhsxqwxGY1czwmDxOcZXjaU8DisomsfheHMdnGErYOs69eGNwqn RpKrOjKKU4ulNcrnb+QOmP0H1/oa/qc+KPxO8c/8E8/2D/2Edf8A2KPhP4J1G8+OPgnRvEfxh+Js 3w6HjbVtY8Uap4O8H+JYtG1nUrMJOz+KdX8R+KLWxtdRnnu9M0zwrHoWiPZLZTAfUmr/AAf+GNt/ wUX/AOCcXxUf4X+Evh58UPjv8Cfjdrnxv+HGnaDZadp9r4h0b4R6Xq1leat4deABdZtta8VeJ9Bu dT1CBtRvx4btIrqea50t3X2a3jJGhTq42pw5L+zK8ONY5PWhneDqZhisRwPTxU8fTzTKoYT22TUM YsFXWDxE6uKcG6EcVThLEUovzqXhr7SdKhHOn9cpS4ceY05ZViYYSjS4jdNYeWBx8sR7LMamH9tT 9vTjCipJVHTm1C7/AIuqK/pJ/aw/bU+FH7QGi/tMfsP+OvhJoMX7Slp+2Pr3wo/Zp8b+Fvh34X0f wh4e8NeG/jR4Z8NeE7zxb4ruPEp8SWHiK6tLHxZo/iS70Tw8+m6jpF7YRyWym5vjD+w/hCK20T4/ eE/2dfj38cPgt8UPF/inw7f3msfBzTv2HtV8N6N4ltJ/CeuauGtvia2teKPBWm2liNJu9Se21qa4 l1O10+TRpLK01HU7Ros818YcfkuX4XFZlwZXw2LxNDHZhTy55u69XFZLg8Dk+PjnOXV8HkuKo1sD Up5vHDVauO/suGGxuGrUqjnSviF0YDw5weZ4nEUsFxLCth6FTD4WWKWWqEaOY1sRj8NPL8XSrZlS nRxMJYH2tOFD6262HrQqLkny0pfwUN1P1P8AOvtLxL+xB8QfDH7E/wAPv25LzxZ4NuPh58RfG174 G0rwlbPrZ8Z2Wo2PiDxv4eku9QSXSY9DWye58CalOhttXuJ/Iu7HdCshnSH9+Pgf8G/h5+zN8Hf+ Cofx7+AfwM8F/FL46fB79qb4p/Dz4YeE9e8KN45Pgb4f+HdY8IPpljoehx79bg0/RdI8W+I9ev5d NurW51zTvDFlY3l5LFpErDR+MfizW/2sv+CZX7DGqftHadpPgy4+LX7cXw18IfEq00Pw+3gLS9I8 LXXxb+K/gi7urbRmYHRSfCdvHezXRZRJcSS6mWAmJqcx8XMZicxyhZNl0cJklHi7KcmznGYvE4LE ZrjKGL4SxXFGJwmDyKNN4qhT+rPDQo5r9ZarYrD1KGHozhXVSJg/DzDUcJj/AO0cZLE5nVyLMMdl 2HoYbFUsBhqtDPKOTUMRXzXn9hVq+19pOeXujeNCsqs5c1Fxl/JXRX9jnxd/aE+NvwS/4KH/AAX/ AGGfhJ+zb8OrP9knxLL8MvD1/wCGbL4QC40rxJ4O8Vx28HjzxkupWsKaZFa+BIpdW+04t3sVfw1e S+IRe/a5ttv4NfD74Yfs0/Gz/gtPc/B/wf4JTTfhP8O/hB8T/Bnhu/0PT9X8N+E/Fk/wP+LfxF1D RLTTiqRWehp4odpDodhJZQWGnNBosH2eOxhESl4z1aWBp4uvwtGM8xyTK+IcjoYfiPA4z6zl+acT ZbwzTpZrUoYC2TY6nic0w2IlQlTxdKdKOIpwq+2w9RLNeGVOeKeHpZ9NxwuZYvKcyq1slxOG9jis Jk+JziVTARrYtLMsLKnhatL2sJ0ZRk6c3FxmfxsUV+qv/BQz9tX4E/tj/DT9m3UfCvwwbwT+0F4L 0O/tPjh4g03wN4a8IeFfEV/qejeHhPa+G7vSfEmta3q+iWHiLT9WutEh8R29tPpVnqMy27B728Rv yqr9byDMcfmmWUcZmmTYnIMdKti6NfLMVXo4mdJ4XF18NCtTxNBRp18Ni6dKGLwlX2dKU8PWpynS pSbgvzvOMFg8vx08NgMzo5vhFSw9WljqFKdGM1XoU60qVSjOU5Uq+HlN0K9PnqKNWEkpys2Rydvx /pUdSSdvx/pUde0t16r8zhXwfJ/qFFFFbmQUUUUAFFFFADX+6fw/mKhqZ/un8P5ioaACiiigCOTt +P8ASo6kk7fj/So6DaHwr5/mFFFFAS+F+n+QUUUVnU6fP9CafX5fqFFFFZmgUUUVrDZ+v6I1hs/X 9EMfoPr/AENRVK/QfX+hqKrIn8XyQUUUUEk9tby3dxFbQrulmcIg7c8lj6Kqgsx7KCe1ezWNnFYW sNpCPkiUAserueXkb3diWI6DOBgACuV8JaX5UTalMuJJgUtgw5WHOHl56GVhtU4z5a5BKyV2tcGJ qc0uRfDF6+cv+Bt63PLxdXnn7OL92D1859f/AAHb1uFFFFcxxhRRRQAVA3U/U/zqeoG6n6n+dBdP d+n6iUUUVvH4V6f5moUUUUwCiiigAooooAY/QfX+hqKpX6D6/wBDUVABRRRQAUUUUns/R/kAUUUV gAUUUVrT2fr+hlU3Xp+oUUUVZotl6L8kFFFFAxj9B9f6GoqlfoPr/Q1FQaw+H5sKKKQnAJ9KAnsv X9Bjnt68n6f5/lUdBOST60VnPp8/0KirK33hRRRWYwooooAa/wB0/h/MVTmbC7R1b+Xft36dRVty AjE9B/iKpH5uWHJ/T2HJx74OM5PesqsuWNusrr0XV/p8zqpQcpprRRin5N9F+vyK9FPKEdOf5/8A 1/8APFMrgcO33dTqdnpJWfdf1/XkFNKg9fz706inFq3K9+zNFFqKe611XqQlSPcetNqxTSoPsf8A PWk4dvu/4P8AmG2xWZWLDHsPzP8A9erKKFUAfj9T1/wGecYpFUg5Pbp/jT6uKaim13S72/4L/Ah1 Pfknra135vp/wQoooplpp7BRRRQNOzTCiiig1Uk/Xs/61K9FFFBit16r80FNKg9fz706ik0n691o /wCvU6Gk99SEqR7j1ptWKaVB9j/nrRdrfVd1+q/y+4zcO33f8H/Mhpj9B9f6GpCpHX8+1JRo7Pfs ykvdttoV6ZI+xSeM9FHqf/rdT7VYKA9OD+n/ANas6Vizkdl4Hue56468D6e9Z1qns4N/aekfV9fl v9xMabckntu30sunq9isy9TnPc568/8A1/pTKmf7p/D+YqGvMPRilKOvTRdLKyCiiiglxcdYu/5/ 8EKhf7x/D+QqaoX+8fw/kKmUb67P8DRT9xJ6e89f62G0UUVk01uhhV6zi3EynopIT/exyfwzgY7k +lVEQyOqL1Y4+g7k+wHJrbRQiqo6KMf4nv1PPWuzB0uaftGvdht5y/8AtVr6tdiJzsnFbytf07fN /gmOooor0zIhf7x/D+QptOf7x/D+QptBg936v8zqKKKK9g+fe79X+YUUUUDh8S+f5BRRRQbBUL/e P4fyFTVC/wB4/h/IUANooooAKKKKBrdeq/MKKKKDcRuh+h/lXbfCz4ceJvjB8SfAnwr8G2v23xT8 QvFmheENCgbIiGo69qNvp0E91IARBY2hnN1f3L4itbOGe5lZYonYcS3Q/Q/yr9Rv+Cc//BOf45/t iweMvih8L/ijD8ErT4Za1p2g6V44kTxJDqWpeJNV0y7uNW0/w5qPhu5sbuzn0XRbiwbWZReRP9m8 SafAiSx3Nx5fj8Q55l/DmSY/NsyzLCZTQo0/ZU8djoV6uFo4zFKeHwLq0MNCpia8Xi50pSoUIOrU p0qsU4R56lP0cnyrFZzmuDwGEwdfH1Kk/a1cLhqlGlWqYWhKFXFKFbEShQoy9hGcY1aslCE6kG+a XLGX9svwX+FHhj4F/Cb4d/B7wbCIvDXw58JaL4U0xzEkM16ulWccF1q16kZKNqWtXoudX1SUFjPq N7dTszPIzHX+JfxC8NfCb4eeN/if4yvPsHhX4f8AhXXfF+v3IMfmppfh/TbjU7uO2SSSNZ724jtj b2NqHV7u8lgtosyyop/nd/4c2ft6f9JFvE//AIVHxl/+aysfX/8AgiX+2r4r0e+8PeKf2+r/AMS6 BqcaQ6loev6r8WNZ0fUIY5Y50ivtM1HxLc2V3Gk8UUyJcQSKssUcgAdFYfwX/qZwHicf9czPxkyP FLEY361mM4ZDxNHFYlVsV9YxrhVq4WUI4iuqmJ5alSMoQq1YzlFxpqB/VT4g4mpYb2GD8Psyoulh /Y4SMs44f9hSdOj7LDRlCniFN0abhRUoQak6dNxi1JqS/nC+N/xa8S/Hj4vfEf4x+MJN/iL4j+L9 a8VX8SyPLBYLqd3JJY6PZtIS407RNPFpo+mRsSYdPsbaLogry2v6Nv8AiHP+MP8A0cl8Nf8AwjvF H/ybR/xDn/GH/o5L4a/+Ed4o/wDk2v67w3jJ4TYTD4fCYbivLqGGwtCjhsPRp4TNYwo0MPSp0KNK C/svSNOlRpwiu0dW25N/z7X8OOPsTXrYmvklerXxFarXrVJYzLnKpVrVJ1as5P67vOpUnJ9FeySS SX85NFep/HD4aw/Br4wfEn4TQ+KNO8aH4b+Mdd8FXfijSLWaz0vV9S8OX0ulatPp8E8s8otItTtr u2glaVxcRwLcJhJVUeWV+m0cRRxdChisPL2lDFYehiaE3GcOehiKNOvRnyVIQqQ56ValNRqQhOKm lKEZXivialGphqtbDVoqNbD1q1CrFShNRq0ak6VSKnTlOEuWpTnHmhKUW4txk1qfrV/wSw/aLsP2 VLP9s/423Ett/a/hn9ms2fguyufKddU8e6/4/wDCuieDbE28jA3duuu31pfarFEskkei2Wp3fltH bSEfn38EPhZ4x/ad+PvgD4V6VdXV/wCLfi749stMvdZuRLez2/8AbF+994m8VakQHmnh0fTBqviP VpsPIbayupiGIOfIBf3sNlc6dDdTxWN9Naz3tokjLBdTWIuBZvPGCFlNt9ruTDvBCNKzAbsEf0gf 8G9f7M39t+Nvif8AtW+IdP36f4JtH+Fvw5nnhJjfxVr9rbal421azlJUx3WieGJtJ0RWAkjmtvGe pRnZJb1+dcX4vA+H+T8d8epwlm2aYTLMLhHOMbvE4PA1MpyXBxvrOH1/F4jMq0VpJUJ3TjFtfZcP 0sRxdmHCnCjjNZfl1XG4jFJSdnRr4v6/mOIfL8LeEo0MDSb95Os2mnJI/qP8C+C/D3w48FeEfh74 RsV0zwt4G8M6H4R8OaepDCy0Pw7pltpOl2xcKvmPFZWkKPKVDSuGkb5mNdVRSEgAkkAAEkk4AA5J JPAAHU1/m3UqVK1SpWqznVq1qlSrVqTk5TqVas51alScndynUqVKk5ybblOcpPWTP7BjGMIxhCMY QhGMIQilGMYQjGEIxiklGMYxjGMUklGMUkkkl+Of/BYD/goD4z/Yt+Hvw28P/BrVNGsvjJ8SvEN5 fQz6rpdhr8Gh+AfDNuF1q/m0m+EsC3Wsa1qOj6ZpM11A0MtvbeIXtz9psA0f8/3/AA/J/wCChf8A 0UPwP/4a7wb/APK+vn7/AIKY/tPt+1f+1/8AE3x/pmoNf+A/Dd4Phx8MCkryWh8EeDri7tLbVLIO FZLfxVrM2teMFRkSSL+3xA4/cgD4Gr/Qbw48IuFst4NySlxHwzlGZ55isMsxzKvmWApYnE0a+Ycu Jhgeaq1KEMDh54bDezsuWssVdc3Nb+UeMfELPcVxHmTybOsdgssw9Z4PCU8HiPZ0asMJzUamKsqc +aWJrxrVFPmd6So2921/11n/AOC4n/BQ6aJ44/iX4MtXdSFng+FngZpYif4kW50i4gLDsJIZF9VN eWp/wV5/4KIx+KLHxVN+0frl3c2d0lydHl8KeALfwveRqyl7O98N6d4UsdJmtZowYX220dyisZLe 5guQk6/m5Ucnb8f6V99R8POAqCmqXBnC8FUhKE/+ETL5uUJJxlG9WjWlFNNp8kqb6qSaTXys+MeL KyUqnEmdN05RlC2YYiCTTTTapOlGWqWk4zW6aabT/wBF79ij9qTw9+2L+zl4C+N+iQW+m6lrNrNo /jjw7byPInhbx7oZjtfEuioZZJZvsRuGi1bRHuJGubjw9qmkXdzsnuJEX6ur+Yr/AINwvHl9No/7 UvwxubmVtM03Uvhl480azLkwQX2tWvi3w/4luVjJ2pLdW+geFImdRmRLRA5xEmf6da/zy8S+GsPw jxzxFkODTWBwuMjXwEZNydPA5hh6OPw1Fyk3KX1eGJnhlKTcpRw9Nybnzyl/WnB2c1c/4ZyjNa9v rOIwzhinFKMZYrC1amFxFSMVpFValBVuVJJOrJRSiopeIftL/DKD4zfs8fG74UzWkd6/j74WeOPD NhFIoYR6zqfh3UIdCvIwQQtzp+tGwv7R8Hy7q2hkwduD/mvdOtf6iFf5k/xO0mPQPiV8QtCiRY4t F8ceLNJjjT7kcena/qFmiJj+FFhCr7AV/Q30V8dUdLjTLHJulCpkuY043do1KsMfgazSvZc0KVC9 kruKveyt+UeN+FjfhzHJLnf9pYKUurgvquLpq/aMnVa85aaHD19yfBn/AIKU/txfs/8AhKw8CfCz 9oTxRovhDSYFtNH8P65o3g3x7p+iWUf+qsNEj+IPhrxS2jadDkiDTtLe0soASIoEBIPyD4LVX8Y+ E0dQyt4m0FWVgGVlbVLUFWByCCCQQQQQcGv9Lr/hXngD/oRvB/8A4TOi/wDyFX6V4yeIGScGwyPA 55whg+LsNm6x2IhQx08D7HC1MBLDUudUsbl+PjKpUjirKpTdGUYxcZOcZcq+Q8POFMx4g/tPFZbx DisgrYGWGoTnhIYh1MRDEwq1eWU6GMwrUIOivcmqicnzLlau/wCAuP8A4KXftsw+OPiL8TLb40JZ fEP4r+FtJ8FeOPGun/DT4Q6f4m1Dwxodlc2GlaVpWsWXgGC98JpaQ3bzC58IzaFezahDY6rcXMup 6bp15a+d+DP2zP2gfDfwks/2b7r4hTal+z83jCy8V3/gHWPCXgfxO1nexeILLxDd3Xh3xB4i8O6h 4s8N3B1K0fU4I/D3iLSIYtSu9RuohDPq+qS3f+hx/wAK88Af9CN4P/8ACZ0X/wCQqP8AhXngD/oR vB//AITOi/8AyFX41H6QHCEKfs6fhTl9KKlgqkPZYzKqcqdXLaNXD5bVpSjkvNSq5dRr1qeAnTlB 4SFScaEYRnUjU/Q34W5+6kasuPcwnOPt0/aYbFzjOGKqUq2Kp1IvNOWdPF1KNKWKhNSVdwi6jk4x cf5Ev24v+C3Hxm8ffEqxf9jD4oePfhb8H5vh9pmma7ofij4efCyHxJN45GteJZNZ1fT9YubDxrrt haz6FceGrW2k0/xLYeTc2NzJb2NrM0l1d/lL4C/bG/aU+GmifHTw/wCEfinqdvp/7S9he6b8cpda 0bwt4v1f4hW+pWHiXTNQfU/EPjDQte8QWF9e2fi/xGlzqmianpepzS6k929213b2c9v/AH6/ET9k 79mT4s6Zd6T8RfgF8I/FdteQvDJcaj4D8OLq1uHGDLp2vWthb65pN0ATsvNL1Gzu48ny51yc/wAv X/BUv/gj1Yfs4eGNW/aI/ZnbWNS+EWmXCy/ED4c6rdT6zrPw3s7y5SC21/w/q9wZNR13wVBPPFZ6 nBq8t54g8OhoNTutT1rSptSutA+p8LfETwoxscFwdHhOjw9XxbwWFw9bNqOVZpTznFYTFLF5fDMc 3pYPC16uPhjVSq4KpmNCMJYujhfZVaWJhh3PweOOEeO6DxXEMeIKubUqH1nEVaGBqY7ATy+hXw6o YuWCwEsViKMcNLDKccTTwtZ1PYTruUKlKVaMfzd+AX/BSf8AbS/Zl8GRfDr4Q/GrUdH8DWklxLpf hjXfDng/xppmhvdTy3Vwugf8JhoGuXWh2s13PcXkunaXcWumTXlxcXktm9zNJK3HP+3f+1ofj9p3 7UVx8Ztb1D45aPpuoaJovjTV9F8Ja1Doui6rp+paZe6No3hPV/D994K0nSZLTV9U8vTtP8OW9nbX V/dahbQw6hM90eC/ZY8DeG/if+03+zt8NvGVlLqPhH4g/HL4UeCfFOnw3d1p8194d8U+O9B0PWrO K/sZYL2ykudNvrmFLu0nhurdnE0EscqI4/svP/BEP/gnMevwd8R/+HY+J/8A81Vff8ecW+Gnh3ms VnnClKtmPE+XY2risXlvD+UYipjcHLExweNoZjXrVMLUqrFVHF16clOOJgr4iVVqz+T4VyPjTi7A N5bxBUpYPJcZhqdHD43NcxpRw9eNCWIw1TC06VOvGHsIXVKXMnRk7UowWq/h/wDFnj7xf438f+Jf ij4l1u4vPH3i/wAYaz4+1/xJaw2mjXV14v1/WrnxFqut21volvp1hpVxPrV3Pfww6TaWNpYyOqWF vawxRRp+hOm/8Fk/+Ck2lWFnptr+0tey29jbQ2sMmpfC/wCCesX7xQII0a81XV/htfapqNyyqDNe aheXN3cPulnnkkZnPwx8cvDGjeCfjZ8YfBnh23ez8P8AhH4pfEHwxoVpLcT3clro2geLdX0rTLeS 6uZJbm5eCytIInuLiWSeZlMksjyMzHy2v0vE5Fw3xDgstnmWQ5RmWGpYTD1MupZlleCxawWHxGEw c6dKhCvRqrDxWH+q05U6MlTSowglJUoSPkaeZ5zlGJx1LCZrj8HWlia0MZPB43E0Fia9DEYmnOpU lTqU3WbqqvONSpHnftZSbTnJH1n8P/28f2uPhT8U/iL8Zfh78a/EHhf4gfFnXbzxJ8R9QsdJ8Ky6 F4v128vLy/k1PV/A95oFz4FluYbrUL97AxeG4k0xL26g01LSC4ljfe+P/wDwUW/bJ/aj8D23w3+O nxjbxv4MtPEOm+K7bR08AfC7ws8Ov6Rb39pp2oLqngzwT4d1jdbQapfItudQNpIZxJLbySRQvH8T t1P1P86Sur/Vbhl43C5m+HcjeZYOOGjhMw/snAfXcNHCUY4fCxoYpYZV6Sw1CMaFDlqN0qMY0oNU 4xhHmee539XrYP8AtjNPqld1nXwv9oYv6vWeIqSq13Uous6c/bVZSqVbxtOpKU5Jybk/008Pf8Ff v+CiXhjwdbeCNO/aL1a402zsBplnqmt+Dvh34i8VwWYi8kB/F2u+EtR8RX12IyQmqalqN7qsbYkj vkkjjdPnDwF+2Z+0z8M9P+O2m+EfitqlvD+0zY3GnfHS61vRvCvjDV/iFb3dl4o0+6bUte8YaFr2 uafeXFp4z8SpPqOhahpWoyvqZuHumuLSxltfmKv2L/4I0/si/An9sD4yfFrwh8evC1/4q0Hwr8Mr XxJolrYeJfEPhmS21eXxTpWlvcPc+HdS024uENndTR+RcSSQhmEgQSKrD5fPsDwPwXkGe59ieFsp hl1GGHx+bUcuyTLPb42WHzDCVcLOVF0sNTr1MPj6mHxdFTqUoUq9NYinCNanCR7GU4vinibNssyq jn2YPFzdehgauMzPGqlh1LCV410qkJVakFVwsKuHnJQqTqU5+ynN05SR+OlFf1z/APBQT/glB+xB 8BP2Ofjp8Xvhj8Mtc0Tx34I8N6VqPhzVbr4jePtYgs7u68V+H9Lmkk0zVvEN5p12Gsr+6iCXVtKi s4kVRIiMP5GK6OBePcm8Qcsxea5JRzCjhsHjnl9WOY0KOHrOusPSxTlCFHE4mMqfs60FzOcZc6ku WyTeHFPCmY8I4zDYLMquDrVcVhniqcsHUq1aapqtKg1N1aFCSnzxbsoyXLZ819COTt+P9Kjr/SG/ Zu8A+BLj9nb4CXFx4K8JTzz/AAW+Fs0883hzR5ZpppfA2hPJLLI9mzySSOzO7uxZ2JZiSSa/jo/4 Le6Zpuj/APBQj4j2Ok6dY6XYx+DPhc0dnp1pb2VrG0vgnS3kZLe2jihVpHYu5VAXYlmJJJr4nw/8 ZqPHXFmO4Xhw9WyyWBw+Z4h42eZ0sXGqstx0cE4KhDB0JQ9s5e0UnVlyJcrUn7x9ZxX4by4WyGln LziONVWtg6H1dYGWHcfrlKdXm9q8VWT9ny8tuRc173jsfkhRRRX7oflgUUUUAFFFf0uf8G5Xh7QN e8S/tZrruh6PrS2uh/Bk2y6tpllqItzNf/EsSmAXkEwhMojjEhj2lxGgbO1cfJ8c8Ux4K4WzXiee ClmMcrhhZPBwxEcLKt9ZxuGwaSrzpVo0+R4lVHelLmUHFWcuZe/wvkT4lz3A5KsSsG8b9Y/2l0XX VP2GFrYn+EqlJz5vY8n8SNubm1tZ/wA0L/dP4fzFQ1/db/wWh8GeD9J/4JwfH3UNK8KeGtMv4L34 R+Re6foWl2V3D5vxp+HsMvlXNtaxzR+ZDJJFJscb43dGyrMD/ClXjeGXiBT8R8hxWeU8qnlEcNmt fK3hqmMhjZTdDDYPE+2VWGHwyipLFqHs3BtOm5czUkl6HGvCj4PzShljxyzD2+ApY32ywzw3L7Sv iKHs/ZutXvb2HNz86vz25Vy3ZRRRX6KfIEcnb8f6VHUknb8f6VHQbQ+FfP8AMKKKKAl8L9P8gooo rOp0+f6E0+vy/UKKKKzNAooorWGz9f0RrDZ+v6IY/QfX+hqKpX6D6/0NRVZE/i+SCtXRtMfVb6K3 AIiUiS4cfwQqRu54wzkhE7hmzggGsqvXvDelf2ZYBpVAurrbLPwMouP3UOcZ/dqSWHIEjPgkYrKt U9nBtfE9I+vV/Ja+tjmxFX2VNtP35aQ9er9IrX1sjZVEjURxqESMBEVRgKqjCqB6AAAUtK3U/U/z pK8w8YKKKKACiiigAqBup+p/nU9QN1P1P86C6e79P1EooorePwr0/wAzUKKKKYBRRRQAUUUUAMfo Pr/Q1FUr9B9f6GoqACiiigAooopPZ+j/ACAKKKKwAKKKK1p7P1/Qyqbr0/UKKKKs0Wy9F+SCiiig Yx+g+v8AQ1FUr9B9f6GoqDWHw/NhUbnt+f8An/P6VJUB6n6molK2i33+QTdrPz/QSiiipbckrLbf 5/8ADDjLm+QUUUVBQUUU1mCqSe386Hpq9lqCV3ZbvRFe4cgbR7Fvz4H8ifaqwcHrx/L/AOt/nmnt 82c9Tz/WoSpH09f89K4ptzblrbZeSX9X+Z6sFGEYx68qb82+35L0JqaVB6/n3qIMR0/I1KGB9j6H /P8A9f2qC2k99SMqR7j1/wAf8496bVimlAfY/wCe1JxT3+/qOLcdFt2epDQBk49aUqR1/PtT0Hf8 v8/570RjLmSvePV9UgnKPK3a0uiWzY1hggeg/qabT36j6f1NMroaTVmjkj8U/VBRRRWbg1tqvx/4 JabWwUUUVKSvZ6GkZ30e/wCAUUUU3FrXdd0WV6KKKkFuvVfmgooooOgKKKKAConUDkcc9KlpknT8 f6Gs7tTt0b/qwOTUX1stL9PR/wBIpzybEwPvN8o9vU9+g/Ugd6zqlmk8xyf4Rwv09fx61FXHWkqs vdlpG6S6Pu16vr2SNIWt2b3T39Pl+dxrAkED/PNQ1YpCAetY7aSXz6/5NHRC9m0+uz2/zRBRTyhH Tn+f/wBf/PFMpNdVqu6/VbotPo9H2f6PZhUL/eP4fyFTU0qD7H1oSv2+YpJW1vv06eZDRTipHuPX /H0p8MRlkC9urH0Uf49B7mmoOUlC13JpJPu/0637GbbgnK94rVvp810f6l2zi2qZW6sML7Lnk/iR +Q96s4ZenI//AF/l/L3qQAAADgAAAew6UtesqcaUIQitk7vu9236tv5WXQ5FOU5Sk29XdeS6L5K3 4jQwPsfQ/wCf/r+1OppQH2P+e1Nyy9eR/nv/AI0Gqn3+9DX+8fw/kKbSsckkd8fypKCHq3bu/wAz qKKKK9g+fe79X+YUUUUDh8S+f5BRRRQbBUL/AHj+H8hU1Qv94/h/IUANooooAKKKKBrdeq/MKKKK DctWVhe6pe2mmaba3F9qOo3VvYWFlaxPPdXl7dypb2trbQxhpJri4nkjhhiRWeSR1RQWIFf6G37C 37Ndj+yb+y78K/gykFsviLSdETW/iBe2/lP/AGn8Q/EhGreLJ2uYiwvYLDUJzoWlXLMzHQ9I0qLh YlVf4j/2IP2X/wBpf9o74oy6l+zDbaXb+Nfg5/YPxDTxRrt/p2m6V4b1Wz1u3PhiZLjVrHUtPn1m TUraXUNLsbizmSaLR9QuSpWzYH9zv+FD/wDBwT/0cD4Z/wDCp+Gn/wAwFfzj46UsNxP/AGZwxHjn g7hynl1V5lmmAzzMsVh8bXxVajyZa5UcLgsVGOHo4WeIr0/azjOVbEKapqMYTl+yeF7rZLHG51Lh niLNp42CweCxWWYLC1sNTw1Ko5YtKpiMdhZOrUxMaVOfJBwVOjy87k5Rj/S1RX8fP7W/xC/4LKfs heA9J8UfHX9p+20rR/G2sT+D9GtPCmv+BLzxPfXculXt7fXOnppHgyw1Swt9Os4P9I1u0vLWTTLy 70xYbmK8u7Mn8zv+Hh37c/8A0dj8d/8Aw4viH/5Mr8lyX6Ouc5/go5jlfGnCGPwM6lSlSxeA/tnG YarOjJQrRjWjg8NFypVGqc0ozSldc904r7zM/FvLMoxTwWP4f4hwmKjThVnQxUMuoVYQqpypScFj cRpUjFyi3KLsvhs03/ob14N+1F8Z7L9nn9nf4yfGq9eBX+HngHX9d0mK5G6C+8TC0ay8JaTIMjI1 jxRd6RpQyQu68BYhcmv4Qf8Ah4d+3P8A9HY/Hf8A8OL4h/8AkyuJ+If7Y37VXxa8J6l4D+Jv7Qfx Z8deDNYksZdV8L+J/GmtatomoyaZfW+p6e15p91dPb3BstRtLW+tvNRhFdW0E6ASRIw+jy36L+eU cxwFXMuI8ixGXUsbhKuPw9DDZtGviMHSxNGpiqFKVWKpxqV6FOpRjKo1CPtpNtWTXjYvxsymeExU MHlOa08XPD14YWpWngPZU8TOjUjQqVFCrKbhTqyp1JKMW2qdknzM+d7+/vNUvr3U9RuZr3UNRu7m /v7y4cyXF3eXkz3F1czyNzJNPPI8srnlndmPJqpRRX9jySi1GKUYxjGMYpJJRikkkkkkkkkkkkkk kkkkv52i3K8pNylKUpSk225Sk3KUm2223Jttttttttttua0sbzU72y03TrWe91DULqCxsbO2jaa5 u7y7mjt7W1t4UBeWe4nkSKKNAWeR1VQSQK/0Tf2Iv2dLL9lX9l34RfBWOG3TW/DnhmC/8b3Vv5Tj UfH/AIhd9c8ZXRuYh/pkEOuX11pulzyNI66LYaZbBzFbxhf5Hv8Agi1+zP8A8L+/bL8N+LdasDde Bf2f7SP4qa48sbNa3Him0ultfhzpLSBHjW6bxMV8TxQTBY7uw8I6pCWBIB/uOr+OPpM8W/WMdk3B eFq3pZfTWdZtGMtHjcXCdHLaFRJ74fBLEYtxl8M8ZSlZOzP6J8GMg9hg8x4jrwtUx0/7OwLktVhM NKM8XVjdbVsW6dG63jhZK7Vwr8yP+Ct/7T4/Zk/Y08e3Ojah9i+IPxaV/hJ4D8mVUvLa58UWV2vi fXoArrcQf2B4Qg1q4tNQhR1s/EFxoCSNG11E1fpvX8TX/Bcb9p8/HD9rWf4V6DqJuvAv7OVjdeCI EhlZ7S7+IepyW178RtRVCF2XFhd22k+DLiNlbZc+ErqWF2jusn8q8GOEP9cOPMroV6XtMsyeSzzN eaPNTlQwFWnLC4ad04tY3MfqlFxfx0qWIVnHmPufEPiD/V7hfH16VTkxuOi8twFnaar4uE41a0LN O+Gwv1itzL4Zui7p8p+LlFFFf6RH8bhUcnb8f6VJUb9vx/pQUvgl6o/pi/4Nv9Eu5fFn7V/iMIws bDw78JNEaQjCvd6tqXj6/REJ++0UOiyNIFz5Ymi3481M/wBVVfkp/wAEZ/2UNY/Zj/ZH07VfGumS aV8SPjjq0fxN8SaddRGHUNC8P3GnW9l4F8OX8bEPFdWuiJJ4gvLSeKG80zU/E+o6VdxrPYso/Wuv 80/GHO8JxB4j8T4/A1YV8HTxVDLqFem1KnWWVYShl9WrTnFuM6c8TRxXs5puM4QUotxlCUv7N4Ay zEZTwfkmDxUJU8R9WqYqtSmnGdKWOxFbGRpTi7OM4Uq1FTi0nGTcZJSjJIr/ADNfjDqEerfFv4pa pFjytS+I3jfUIsHI8u88TancJg9xtkHPev8ASJ+LXjq0+F3wr+JfxLvtn2L4eeAPGPji781gsZt/ Cnh3UddmVyeArR2DKfriv8zSaaW4mluJ5Glmnkkmmlc5eSWVi8kjnuzuxZj3JJr9v+ivhKl+Nce4 v2TWR4GMujqp5jjZx9Y03Tk/KaPzbxvxEeThzCXXO6mZ4pq6uoKnhMNFtb2lOUknteLW50fgn/kc /CP/AGM+gf8Ap1tK/wBOmv8AMW8E/wDI5+Ef+xn0D/062lf6dNZfSp/3jgj/ALB8/wD/AE/lRp4I f7txH/2E5Z/6j4w/mW/4LKf8FAv2u/2Vv2o/Bnw7+AnxdfwF4N1X4F+FfGOoaMvgb4a+JRceI9R8 dfErR73Uvt/jHwb4h1SIzaboGkW32SG9jsY/snmxWyTz3Ms35O2X/BaP/gpPa3kU8v7REV/FHJue zvPhJ8Efs1wqnJimNp8OLS6VGxhmt7mCUDO2RTzX0z/wcMf8nsfDv/s2XwR/6s34x1+Dg+/+Lf1r 9W8LuCuDsx8OuD8ZmHCnDmNxmLyOhVxWLxWS5dXxOIqSxGZRlUrYiph3WqVHGEIucpudoQ95csbf BcccScRYLi7P8PhM9zfDUKGZ1IUKFDMcVSoUoRoYKShToxqezjBSlJ8ihy3lK8XzNP8AuZ/4JU/8 FMZf25/DvinwP8SdH0Xwz8dvhzp1nrGrReHluLfw/wCOPCNzcx6b/wAJZo+nXdxeXOk3ml6nNZad 4m0x7u4s4rnVdIv9LnS31OXStH/WTxD4f0XxZoGueFvEmm2us+HfEuj6loGvaRfR+bZarousWU+n appt5FkeZa31jcz2txHkb4pXXIzmv4bP+CI/ijUPD/8AwUY+DumWc8sNr418PfFXwvq6RsVW50+D 4Z+KPF0EE6gjfENY8K6VcBSGAmt4pMZQEf3V1/Knjbwll3BXHc8NkdJ4LL8fl+BzvB4WlOoo4CtV rYijXpYabnKpTpQxmC9vho+0cqCqKEJ8tKi4fufhtn+L4k4Xp4jMprEYzC4rE5dia0oxTxMaUKVS lUqxUYwlUnh8SoVmoKNSUHKUU6lRP/PAv/gr8S/gp+3/AGvwI+E2tW2lfFTwJ+1DoXgr4QeJ9bit Gs4PEtt8RbC2+F3ifVIdR07V7BrSWaXw9rV3Fe6TqlmYJJEuLC+g3wS/0SH4Pf8ABwvjj9qH4Ig/ 9gb4Sf8A0PZr4C/bB0i20r/gvp8OntY0iTV/2kP2M9XkjQAKLm4tvhBb3MmABh7ie0kuZTyXlmdy csQP7GK/TvFbxBxuEwHhrj3kfCecVs84Iw2aYmtxHw5gc6r0sTUrYOnXjhquJnTeHo1ayrV6tKmu SdeftNGkl8bwNwpha2M4zwqzDPcvp5bxPWwdCllGc4vLKMqCpV6lJ1qeHjKNWpTpzp0oTm+aFKKp q6Tb/wAyn4uW3i+z+K/xOtPiDfW2qePbX4heNLbxvqVktulnqPi+DxJqUXiW+tEtLTT7Vba71lb2 4gW2sLK3WKRBDaW0YWFPRP2f/wBlD9on9qTWrnQ/gN8KPFHxCmsJYYdW1SwgttO8L6HLcK0kEeve LtbudM8L6LNPEkkttb6lq1tc3ccchtYZtjAe56b+z9rX7U3/AAUe8YfAbRLmWwl+IH7TPxUsdV1e GFbiTQvC2m+NPFOueLtejgkKxTzaN4Y0zVtQtraWSOO7ureC0MiGcMP70fg58HPhx8Avhz4Z+FPw o8Maf4S8E+E7CKx03TLCJFknkVFF1quq3QUT6rrmqTK15q+r3rS3uo3sktzcyu7cfqHiX4ww8Psp yDB5fgMLj+Is3yfBY+nh6rnRy3LcHLCYKCxFajh5RqzVSvKpRwOCpVKMPZYeU6laNGlCNT43hDw+ fFWYZvicZisRhsowGZ4zCOpBxqY3G4iGKxbdOFWtGUI8lJU6mKxM4VJyq1uWFPnnUlD+NnS/+CBv 7fOo2kd1d2vwc0KaQBm0/VfiPJNeQk8lJX0Tw9rNgWXoTDfSpn7rMOa0f+If/wDbw/5//gV/4cLW /wD5ia/oo/aG/wCCvf7Ev7Nvj7Vvhh4t8ceIfFnjbw5dy6d4p0n4ceGJ/E8HhnVIDtuNJ1bWZ7vS tDOq2kga31DTdO1LUL3SruOWy1SGyvIZbdLH7MP/AAVj/ZU/a2+LOmfBf4UJ8TV8ZatpOt6zaHxR 4Ps9H0k2egWTahfiS+g8Qai6TfZ0YwJ9mKyONpdMg1+Wz8WPH9ZXPPXwrQo5NHCPHvH1OFKkMJTw KhGp9adSvm1Or9X9nKNSNWVG06co1I88JxlL7ePAXhW8bHLFm86mYut9WWEjxDGWIlibyi6PsqeE mvbc0ZJ01K8ZRlFqLi4r+avxx/wQx/bZ+H3grxh491+8+Cx0LwR4X8QeL9aFj481e5vjpPhrSbvW dRFnbv4PhSe6NnZTC3haaJZZtiNLGGLjy3/glv4W/bh8VfFH4k2v7DHxE8I/DrxzbeAbe48Z6j4w tfDF3aah4TPiHTo4bK0TxR4I8c2q3K6w1nOWtrGyuPKRgbpoy8L/ANsP7U//ACbF+0b/ANkH+L3/ AKr7xDX8wP8Awbm/8nF/Hz/sitj/AOpzoNe1kPinxJxX4X+JWd57heH8fiMgWWU8HhK2S0amWV6e KeGqVYY/AVsTWpYyPPaUIznBQlCDSbgmeZmXAuSZHxrwbl+V1c2wlLNP7Tlia9LNK8MZCWGo1PZv C4uFGnVwzacozcFLnjKUXZSZ2/7aXwz/AOC1Gi/sv/F7VP2lPj/8KPFnwOs9C06T4heHdB0v4bQa vqmlN4j0WOzhsZdF+C/hvVEkTWX02djaa5p7mKKQNK8ReGT8xf2T/wDglp+03+2X8Mbv4tfCC4+G kXhWy8War4MmXxd4r1HRNU/tjR7DR9Ruylna+HdVia0Nvrdl5M5uQzyCZTEgjDP/AFy/8FZ/+Udv 7UP/AGJuhf8AqeeE6/AP/gmB/wAFZvgF+xJ+zlqvwe+JvgP4weJfEV98UPE3jeLUPAmk+C77RV0z WtD8KaZbW0k3iDxx4dvhfxz6DdPOi2DW6xS25juZHaRInwLxhxvmHhnnWa8FcM8PLiChxfg8FDLc g4cwOCwdXATy+nVxmKrYCnj8HRq4mmnRh9ZliVUjS5KapzS0XE/D3C+F4xyzBcS5xm39lVeH8XiP rWbZ3jMTWhi4Y5U6FGlip4XEVadKadWToRpckqic3OL3/rI+DnhTVPAfwh+FfgfW2tX1rwZ8N/A/ hTV2sZXuLJtU8O+GNL0jUGs55IoJJrU3dnKbeV4IXkhKO0UbMUH88H/BTL/gkp+1V+1p+1r4w+Nf wquvhZH4N13w34I0uyTxT4v1PR9ZW68PeGrHSb/z7G28M6lDHGbq2kNu63chkhKuyxsSi/0e+BfF 2n/EDwR4N8eaRb3lppXjbwr4e8XaZa6ikEeoW2n+JNIs9Zsre/jtp7q2jvIba9ijukt7q5gWdXWK eaMLI35g/tZ/8Fif2dv2PPjVrvwL+Inw9+NPiHxToGleHtWu9T8F6N4GvNAlt/Emk2+sWcdtPrnj 7QNRaaG2uUjuhLpsSLOHWJ5owJG/BfDrNOPcu4vzDGcFZVDM+JKmGzWONwUsFRxcadCrj41MwmsP VzDA04exxijTUliZuCfJGNRe+v1Li3B8M4zIqWH4lxn1PJ1XwUqeI+tVcNetClNYWPtqeGxM3z03 J2dFKdrtwas/5AP2v/2KfjJ+xH4w8K+CPjPN4Om1rxh4ak8VaSfBuuXeu2a6XFql3pDC7nu9J0ho bk3dlNiFIpVMWxzIC20fb3gv/ghV+25488HeE/HGh3vwUGieM/DWheK9HF7491i3vBpXiLS7XV9P F3bp4OmWC6FpeQ/aIVllWKXegkcKGPm//BVr9uf4Xft3fFf4Z+PPhZ4Z8feF9K8F/DyfwjqVr8QL Dw7Yahc6hL4k1TWVuLGPw54l8TWz2Ytr6KNnuLm3nE6SKIDGFkb9kfhD/wAF+/2Tvh98Jvhf4C1f 4VftEXeq+CPh34K8Iandad4f+G0mn3OoeGvDWmaNe3FhJc/FC1uXsprmylktXuLW2naBkaWCGQtG v9cZ/wAReNGG4N4Ox2ScN08TxXjvr3+tWAeU4WtHAez9p9T5cNPO6FPDe0tT/h4vF899eS+n4Nle UeGtXiHiLDZjm7pZJhvqX9h4n+0sTT+s+0gni/38ctqTr+znde/Qocmy59z82/8AiH//AG8P+f34 F/8Ahw9a/wDmKrC8Q/8ABBb/AIKAaLp8t7p2ifCjxbcRqzLpPh74lWltqExAJCxSeKtM8M6WGY8L 52pRLkjcyjJr9hf+Iir9j7/okf7Sn/hOfC//AOevX6C/sV/8FHf2df27P+EpsPhJJ4v8P+LfBtra 6lrvgf4haRpmj+JF0W7mW0i1/TTomueI9H1TR1v3SwuZrTVmvNPuZrNdSsbJNR057v8AMc18TfpD cPYKrm2d8JYPB5ZhXTeJxOI4dpLD0oznGnF16mE4gxNWjTlOcKfteSMIynBSqQcot/ZYHgzwkzbE xwOWZ1WxOMrRn7GjRzqu603CLlJ04V8rowqSjFOfIpSk4xk+SSjK38DfxU+EfxN+B/jPUvh58XPA /iP4feNNJ2Pe+H/E2nTafefZ5i32a/tHcG21LS7wI72OrabPd6bfRqZbO7nj+av6Lv8Ag20/5Gb9 rr/sBfBX/wBOHxOr9K/+C1n7MHhP44/sbeN/iW+k2y/Ev9n+xPj/AMJ+IYoI1v8A/hG7e8tE8deG 7y5A82XRb3w+11rS2xJEWt6HpVxGY4/taz/mp/wbaf8AIzftdf8AYC+Cv/pw+J1fR8R+INLxH8BO LM3lhIYDMcHWy7Ls1wdKc6lCnioZtk9enWws6n714bFYepGrTjVvVoyjWozlU9nCrPx8n4Slwf4p ZFgYV5YrBYqhj8Xga9SMY1nR/s/H0alKvGHue2oVY8kpwUYVITp1FGDc4R/Vb/gtj/yjV/aD/wCv 34P/APq7fh1X8F1f3o/8Fsf+Uav7Qf8A1+/B/wD9Xb8Oq/gur1/owf8AJAZp/wBlZj//AFV5Oeb4 1/8AJU4D/sQ4b/1OzEKKKK/o4/HyOTt+P9KjqSTt+P8ASo6DaHwr5/mFFFFAS+F+n+QUUUVnU6fP 9CafX5fqFFFFZmgUUUVrDZ+v6I1hs/X9EMfoPr/Q1FUr9B9f6GiCCW5mighUvLM6xoo7sxwM+gHV ieFAJOADV7avZakT0bb2Su/kmdL4U0n7defaplza2bBsEfLJcdY054IT/WOPZARh69WqhplhHpll DaR4OxcyOAR5szYMkhySfmb7oJO1AqjhRV+vMrVPaTb+ytI+nf57/ceHXq+1qOX2VpBeS6+snr9y 6EDdT9T/ADpKVup+p/nSVkYhRRRQAUUUUAFQN1P1P86nqBup+p/nQXT3fp+olFFFbx+Fen+ZqFFF FMAooooAKKKKAGP0H1/oaiqV+g+v9DUVABRRRQAUUUUns/R/kAUUUVgAUUUVrT2fr+hlU3Xp+oUU UVZotl6L8kFFFFAxj9B9f6GoqlfoPr/Q1Ef8/wCf8+maHobQ+H5sTqfYdPr3/Lp+ee1Qt1P1P86n qBup+p/nWDd3cVTZev6CUUUVdPr8v1FT6/L9QoooqnFPyfdGgVVmfJ2jov6n/wCt/jU7tsUnv0H1 PT/H8Kpda5K7cVyrW+7XRefa/wCXqbUYpy5n02Xn3+X5hRRRWMNn6/ojsnuv8KGFAenH8v8A63+e KjII61PRQ4J7aP8AAam1vqvxIQ5HuP8APepQQeh/DvUbqBjHemVm1Z2ZondXROc4wO/Hrj1J/ClA wMDoOBTVzgE+nH0/z37gCnVrBWV+r/LoZTd3bovz6kT9R9P6mmVOQD1qCqJjF3k1rt6hRRRQAUUU VE0rN9f+CNOzuFFFFZqTW33dDVST8n2ZXooorSUE9VowjNNro7r811CiiisjqCiiigAqnePtjCDq x5/3Rn+fT86tkhQSegGT+FZE7lyWPc8ew5wKyrS5Y26vbyXV/jb5jSun2S/HSxXoooricU/J90IK KKKXLde9q+j8v67m0JO1763CmlQev596dRUuMo6r70bKaekl/l/wCEqR7j1/x/zj3ptWKhb7x/z2 oS5vJ73Wz9V/kNvlSad0/wCtH/mNrQtovLQkjDPyfYfwjoMcckdiTVWCPzHGR8q4Le/XA/EjnrwC D1rSrrw9Nq85dNI/q09/JfM5MRUTahHTrLpfsmttN38gooorrbbtfoY0+vy/UKKKKRoQsMMcf54p tOf7x/D+QptUpNaaP1Rg936v8zqKKKK9Y8d7v1f5hRRRQOHxL5/kFFFFBsFQv94/h/IVNUL/AHj+ H8hQA2iiigAooooGt16r8woor6//AGDv2bbn9q79qn4UfB57eeXwzqGuJ4g+IVzCXQWXw98Lgax4 pLXCK/2SfVLK3Xw9pdyysi61rOmIwIkrhzPMcJlGW4/NcdUVHBZbg8TjsVUdvdoYWjUr1LJtc05K Cp043TnVq0oLWaPRwOCr5jjcJgMLDnxONxNHC0I62dSvUjTi5WTahHmlOcre7Tp1JfZP6zf+CMX7 Mf8Awz7+x34c8Va5p32Px98fbi3+KXiFpovLvLXwzd2vkfDnRZG3bjbw+GXHiVYZY457TUfFuqWs oJiGP1sqC1tbaxtbaysreCzs7OCG1tLS1ijt7a1treNYoLe3giVIoYIIkSKGKNFjjjVURVVQBPX+ XHEme4vibP8AN8/xrf1jNsfiMZKHM5KjTqTaw+Gg3/y7wuFp4bDQsknGi5JLnaP7dyjLaGT5ZgMr wytQwGFo4aDsk5unBe0qyS+3WrSrVp7+9Vau+VH8wX/BYT9mL9u79rv9ovR7b4X/AAI8T+JPgv8A Cfwra6F4L1WDxL4IsrDXtf8AEUdprfjXxLb2GreKbG/tXluBpPhdhc2cBmi8JQ3UStFdK7/kt/w6 S/4KJ/8ARsnib/wrPht/82lf3zUV+u8OfSA4m4WyLLOH8ryHhmOByrCww1GVWlmjrVWpTqVcRXlD HwhPEYmvVq1684wjGVSb5Uoxgo/A5z4VZHnuaY3NsdmWdPFY6s6tRU62CVKmlGFOnRpRlgpyjSo0 6cKdOLlJqKu25Sk3/Az/AMOkv+Cif/Rsnib/AMKz4bf/ADaUf8Okv+Cif/Rsnib/AMKz4bf/ADaV /fNRXt/8TP8AG3/Qj4W/8E5v/wDPE8z/AIgpwx/0Mc9/8H4D/wCYD/O2+OP7Cf7WP7Nng23+IHxv +D2qfD/whd67ZeGrXWdT8Q+DL6O513UbXUL6z0yC10XxJqd/LcTWelajdDy7Vo44LOeSV0VCa+SK /o+/4OHfjsNa+JXwW/Z00q8V7PwN4c1D4m+LYIJmZG8ReMZ30Xw1Z3sWdkd7o2gaLqWoQAjf9j8Y I5O2RRX4z/sU/s73v7VH7T/wi+CkEdwdI8T+J7e78ZXdu3lyad4D8PpJrvjO9Sc4S3uf+Ef0+9tN MeQhZdXutPtV3S3EaN/TnBnF2YZrwDh+NOK6WBy11cDmGcVaeBhiIUKOUYWWJlh6rjiq9arKtXw+ Dq1kvaKM3XwsIRTneX4xxHw9g8DxXU4ayCeKxfJiMHl8ZYqdKpVnmGIVH20OahRpQjSozxFOL9xu KpV5Sb5bL+uH/git+zOfgH+xxoHjHW9O+x+Ov2gryL4oa000JjvLfwlPbfZPhvpLsSDJaf8ACOF/ FdurIkkFz4xv4HLCNSP15qpp+n2Ok2FjpemWltp+m6bZ22n6fYWcMdvaWVjZwpbWlpa28SrFBbW1 vHHDBDGqxxRIqIoVQBbr/OziXPcVxNxBnGf4y6r5tj8RjHBy5lRpTm44bDRf8mFwlPC4aFkk1RlJ Jc9j+uMoy2hk2V4DK8Ml7HAYWjhoytZ1JQgva1pJfarVpVq0tW+ara75Uz5h/bM/aI0z9lX9mj4s /G++e2bUfCfhm4i8I2F0UZNX8da26aL4M0xoGkjkuLebxBfWM2ppBvmg0a31G9CGO1kI/j3/AOCV f7KPw0/by/aN+Kvhf4/6j401C2tPhrrvxMk1Pw5r0Ok63qPiy48deE9Our3Ur+703VBdJdx+I9Tu LlPISSW7eOYzAIyP91f8HCH7T/8Abvjf4b/sneG9QLab4GtoPif8SoYJSY5PFuv2M9n4J0a7j2qy XGh+FbrUddZS0kNxB400yTCzWfHl3/Bu7/ydn8Yf+zdtY/8AVlfDWv6f4JyHHcFeBPF3F2FrV8u4 gz/L1meExlB+yxeDy3DY3A4XK1SqOE3B4iNXHY5+61KOKotp3i1+LcSZrheIvFDh/h6tTpYzKspx E8LicNViquHxGOr4TE18X7SF1GfsFDC4ZXfuyp1VdWaP1d/4cGfsI/8APx8bv/DhaV/8yFH/AA4M /YR/5+Pjd/4cLSv/AJkK/bCivwP/AIip4kf9FvxH/wCHD/70P1L/AFJ4Q/6JrJf/AAhp/wDyZ+J/ /Dgz9hH/AJ+Pjd/4cLSv/mQr3L4K/wDBHv8AYR+CHinTPGuk/C/UfHHibQ7uG/0S/wDid4l1HxbZ aXfW7iSC8h8OY0/wrd3VvKqTWs+qaHfy2dxFFc2bW9xGso/T6iufFeJXiDjsPVwuK4z4jrYevCVO tSeZ1qcalOacZ05yoU8NUcJxlKM4qtFSjJxleLae1DhHhbDVYVsPw9k9KrTlGdOpHAUHKE4tOM48 6qpSi0nGXK3FpNWaTRRRXCfE74m+BPg14C8T/E74meJdN8IeBvB2lzav4g1/VZTHbWlrEVSOKKNF e4vdQvrmSGx0vS7KK41HVdSubXTtOtrm9uYIJPjKNGtiK1LD4elUr169SnRoUaNOdWrWrVZxp0qV KnTjOdSpUqThCEIRlKUpRjFNs+gnOFKE6tWcKdOnCVSpUqSjCFOEIuc5znJxjCEIxlKUpSUYxi22 kmz8of8AguT+0XZ/Bv8AYz1X4bWF8kPjX9obWLbwJpdrHK0d5F4P0m4ste8f6siDCyWRsIdM8J3q M2T/AMJjCyq4Ryn8RFfcP/BQT9s3xH+29+0JrnxPvIbvR/A2jQHwp8KvCdy6eZ4f8FWN1PNbz6hH C8kDeIvEN3NPrniCaOW4EV1dRaTb3U+maTp2z4er/SPwg4Jq8C8F4PLsbCMM3zCrPN84inGXscXi qdKNLBOcW1L6hg6dDDTcW4vEPFcjcUpT/j3xA4mp8T8S18ThZOWXYKksvy+TulVo0ak51sSouzSx WJlOrC6UvYwoOSTlaPT+Cf8Akc/CP/Yz6B/6dbSv9Omv8xbwT/yOfhH/ALGfQP8A062lf6dNfh30 qf8AeOCP+wfP/wD0/lR+neCH+7cR/wDYTln/AKj4w/jN/wCDhj/k9j4d/wDZsvgj/wBWb8Y6/Bwf f/Fv61/br/wUR/4JHXP7eXxu8OfGGH4+wfC1dA+GOh/Do+HpfhhJ40a6bRvE/jLxGdXGqp8QPCoh FwPFgs/sH9nSmI2Bn+2SfaRDb/Cdl/wbast3C+oftiCSzEga4isvgKYbqSPPzRwzT/GKaKF2HAle CdUPJhk+7X2Hh14w+HWQ8B8LZPmvEKw2ZZbk9HDY3CrLM3rSpV4V8wqSpqpQwFSjUfLWpNSp1ZQb mlzXUuX5zjDw94uzbifOswwGVKtg8ZmE62HrvHZfSU6UqOEgpuFXExqwXNTndSpqSUW+V3jf4W/4 IRfDHWPGv7eXh7xvaWrto/wd8A+PvFmsXzIfs8E3iTw9efDnS7LzSNgvb2Txhc3NvBkSS2um6hMg KWspX+3Wvj39jL9iP4L/ALD3w6vPAvwntdSv9S8Q3Vpqfjnx34jktrnxV4y1Wyhlhsnv5bS2tLSy 0jSY7m7i0LQrC3istMju7yd2vNU1DVNTv/ZPj38bPBP7Onwe8f8Axp+IV8ll4X8AeHrzWrqMypFc 6tfKog0bw9pm8FZNX8R6vNY6JpURBV7+/txIUiEjr/N3inxdHxK46+uZJhcVVwro5fkOSUJ0nHGY 1QrVFGo8OpTlTqY3HY6cqVCUnOnS9l7WUZur7L9i4H4ffB3DEcLmFahGup4vM8yrRmnh6EpwjKUV WkoKdPC4XDRjOraMZSVSUFyKnz/yT/tQeLLLxh/wXt8GXenTCaz0b9q79k/wmrg523vhW4+E2ia1 CewMGu2eqQEDoY+fmzX9m1f55n7Mfj7X/ir/AMFG/wBn34neKpluPEvxD/bN+FfjbXpUyI21fxR8 adC1rUBCp/1cCXV7IlvEAFihWONFVEUD/Qzr7T6QWVvI/wDiGWTSalPKuB45dUlF3jKrg8bgqNaU XZXi68a7i7Lmjyysuay+b8KcdHNHxrmUU1DH8USxdNS0kqVfDV50k10ao+yut024u7i2/wCQ/wD4 JR6RYal/wWG/aPvbxY2uPDzftO6vpRcDcl/P8U9O0CRos8iQ6XrmpISOfKaQdCa/qp+MfiTVfBvw i+Kni/Ql3a34U+HHjjxJo6mMTBtV0LwxqmqaepiZXWXN3awjyyrB/ulSDg/xhfsbfHXRP2f/APgs B4j8T+KtQi0rwj4t+PXxx+GHiTUrieO2tLC38eeLfEmk6LfX9zMyQW2m2Xi0eHbvU7q4eOC00+C6 upHVYcj+3y8s7XULS6sL63hvLK+tp7O8tLmNJre6tbmJobi3nhkDJLDPC7xSxupR0ZlYEEiuPx4w 1fCcYcK5liqMq2AxXB/Cc6EZJ+yrQy2jhaePwsZNOPNJySqR3jHFwnJcsrv0PDOvSrZHnWFpVFHE YfiXiGNa1uenLFYzEVcNVa3a5E3BtWbpSineLS/y8b+9vNSvrzUdQuri+v7+7uL2+vbqV57q8vLq Z57m6uZ5WaSa4uJpHlmlkZnkkdndizE1+v3/AAQo/wCUhvgT/sn/AMUf/UVuK92/aU/4IE/tNeHP iX4hn/Zvl8IfEj4U6rql5f8AhWDWPFth4X8YeGtMuZnnt9B8RQeIBZaZqM2lI4sYNZ0nU7n+14YE v7rTtInnexh+k/8Aglf/AMEvf2wv2W/2v/C3xe+Mfgjw5oXgbSvCPjrSbzUNO8eeFNfukvtc0Kaw 06NNO0jUrq8kWW5dVeRYjHEuXkZRX9Ica+JXAWeeHHE1PLOKclniMy4Xx9PB5bPGU8PmLrVsJSVP BywFSFOtTxMZJ0XQUXadNxpynBQnL8d4Z4M4qyzjLJquNyXMFQwedUZ4jHRpe1wjpwqYjmxKxMas ozoz5lUVRrmaqJzjGfPFf0L/ALU//JsX7Rv/AGQf4vf+q+8Q1/MD/wAG5v8AycX8fP8Asitj/wCp zoNf0/ftT/8AJsX7Rv8A2Qf4vf8AqvvENfzA/wDBub/ycX8fP+yK2P8A6nOg1/OPh/8A8mW8Zf8A Fkf/AKThT9e4o/5OH4d/4c7/APTMz94v+Cs//KO39qH/ALE3Qv8A1PPCdf5/df6An/BWf/lHb+1D /wBiboX/AKnnhOv8/uv2X6L/APyRmff9lPP/ANVGAPzbxu/5H+T/APYmn/6sax/pV/s0f8m4fs// APZEvhT/AOoJoNfxk/8ABc7/AJSJfEr/ALEr4V/+oPpVf2W/st3cGofsyfs6X9rIstre/An4RXdt KpDLJBc/D/w9NDIpGQVeN1YEEgggiv55f+CvX/BL/wDav/aA/agu/jx8A/BNj8TfDPi3wf4U0zWN MtfFfhLw3rvhrWvDFgNDkjns/GGuaBDqWnahZW9heWl3pN1ezxzyX1ve2dpFbQXN5+PeCWdZTkPi pnWIzvMcHlOHrYbibB08TmFenhMP9alnMqkaM69ZxpU5zjh63Iqs6alKm4KXPaMv0jxKy7HZpwVh 6OW4TEY+tHEZPiHRwlKVes6McM1KpClTvOcY+1puXIptRkpcrjdr+Ynw34d1zxf4i0Hwn4Z0y61r xJ4o1rS/Dvh/R7GPzb3Vtb1u+g03StNs4sjzLq+v7mC1t48jfLKi5Gc1/Y3+yz/wQT/Zh8B+CtEv /wBpi31j41/E2+sLe68Rabb+KfEPhT4e+HtRmiSSXStAt/CV/oHiDV002VntZNY1rWpINXaIXcWh 6VFJ9jX8Mf2UP2X/AIvfsof8FHP2NPC/7Tvw/k+Hmo+JviR4e1zw5p2oa74V137e739/o/hy8Sfw vrmu2kEg8Yw2Nvbw3M8N0biON44irI7f3c1+ifSC8Ss7wFThzK+Ec8nhMqzXK8Rm9bN8kxkObMVH H1MvpUMPmWFlNrC0Hh60qqwlanKrXmo1KvJSVN/HeFPBmXV6WbY7P8rjWzDB46ngKeAzPDP/AGJf VKWKnVqYPEJL21f29P2cq1KXJRg3Tjebmfmd/wAOdv8Agm5/0bLpH/hw/i//APPBr3H4A/sEfsk/ sueMtR+IHwG+EFn8PvF+reG7zwjqOsWnizx9rTXXh3UNS0nV7vTJLLxN4q1vThHLqWhaTdeelmt1 G9mixTpHJMkn84fxO/Z2/wCC/wDd/EDxfd2/jH48apa3XiDVbiy1DwD+0h4T8NeDryylvZ3tbjw9 4es/iR4dj0TS5ICjWely6FpNxZwFIZ7C3kUoPu7/AIJYfCL/AIKleBP2jfEWs/tpat8a774TzfCT xLp+lQ/ET426V8RdCHjmfxR4In0iSDQrLx94nmg1NdGtfESwamdOjjt7dru3a7ja7WKb854i4dz2 lwxmeOxXjrkfENCOW/WK3D1DirOMdiMzjL6pN4CnhcTmUqeIqOVRP2dXCpN4WUnRhKCjT+yyrNst nnWEwlDw1zTKqjxkqNPN6uQ5fhaGEcfrEVip4ijhVOlTaptKdOs3avBKclNuX6p/t/gH9hz9rrPP /GOXxgP4jwLrZH5EA1+Bv/Btp/yM37XX/YC+Cv8A6cPidX75ft//APJjn7Xf/ZuXxh/9QTW6/A3/ AINtP+Rm/a6/7AXwV/8ATh8Tqngz/kwniz/2POG//eaTxB/ydHgP/sVZ7+WKP1W/4LY/8o1f2g/+ v34P/wDq7fh1X8F1f3o/8Fsf+Uav7Qf/AF+/B/8A9Xb8Oq/gur9z+jB/yQGaf9lZj/8A1V5OfmHj X/yVOA/7EOG/9TsxCiiiv6OPx8jk7fj/AEqOpJO34/0qOg2h8K+f5hRRRQEvhfp/kFFFFZ1Onz/Q mn1+X6hRRRWZoFFFFaw2fr+iNYbP1/RDH6D6/wBDXeeDtJwG1WdeTuitAw6L0lmGfU/u0PHAk6hg a5XTdOk1S9htEyFZt8zj/lnAn+sfuM8hUyCC7KDwa9liijgijhiUJFEixxoOiogCqB9AOvU9TzWG JqcseRby38o/8H8r9zgx9bl/dRfvTScvKPb1k/wT7klFFFcJ5JA3U/U/zpKVup+p/nSUAFFFFABR RRQAVA3U/U/zqeoG6n6n+dBdPd+n6iUUUVvH4V6f5moUUUUwCiiigAooooAY/QfX+hqKpX6D6/0N RUAFFFFABRRRSez9H+QBRRRWABRRRWtPZ+v6GVTden6hRRRVmi2XovyQUUUUDGP0H1/oai/yKkc8 Ae+fwwajoNofD82FQN1P1P8AOp6gbqfqf51Lin5Puiamy9f0EooopRi1e/kFPr8v1Ciio5X2qcdT wP0yfwB4PrVSaim3sv6/E0Su0u5BK+5sdlyB/U/pUVFFcMm5Nt7v+rG6VkkugUUUVKSV7dXc3c7W TvstQoooplb7Ecnb8f6U1VyeenenP2/H+lOUYGPxP1qXFOV/vRpe0F3d/wA2OoooqjMKr1YqvQaU /tfL9QooooKcU/XuFFFGO/p/Wk1dNGbi15ruFFFFYtNbokr0UUVuC3XqvzQUUUVLin5PyOpSa815 hRRTWYKpJ7fzrKScdXt36f8AANFJPb7uv/BKtzIRiMHqMt9Ow/r+VUmG4Y6VJIctk9TyfzP+fpxT K4ZycpN9Ht6dP67m8UuW3ff1ICCOo/HtSVYqMoO3Hsf8/wCNQS4Nba/n/wAEjooII60UFQ2fr/kF FFFBYVC3LEDrx/IVNUkMYZ95HC9/Vuw69gc9PSnTpudRKPXR6aJbt/d+NhTmowd+juvNvZff+Fye KPy0A43HliPX64GcDgVLRRXq8kVFRS0SSXfT+vvbOFtttvdu7Ciiis5R5fO5dPr8v1CiiipNCF/v H8P5Cm05/vH8P5Cm1ooJpO7WiMHu/V/mdRRRRXqHjvd+r/MKKKKBw+JfP8gooooNgqF/vH8P5Cpq hf7x/D+QoAbRRRQAUUUUDW69V+YV/W7/AMG//wCzGfBnwi8eftQ+ItOMWu/Fy/k8E+App4mWWH4e eEtQP9u6hayZXNv4m8a2z2dxE6HH/CDWNxDJsuWB/kir668Gft7ftkfDvwroPgfwN+0T8SvCvhHw vptvpHh/w9ouspZaXpOm2q7YLSztorcLHGuSzMd0ksjPLK7yyO7fnvidwvnvGXC1bh3I8wwGWPH4 rDPMcRjli3Gpl+Hk8Q8LSWDhOd8RioYb2znaDoUOTVzaPt+CM7ynh3O45vmuFxeL+rYetHBU8JGg 3DFVkqTr1Pb1KcUqWHlWVPlvL2lVy0UUz/Q+or/PmP8AwUp/bzwf+Mqfi90P/Mxn/wCMVD/w8q/b 0/6Oq+L/AP4Ujf8Axiv5rj9F7iyV/wDjJeG1b/pznP8A8oP2OXjZw7H/AJlWdO/ll/8A80n+g/RX +fB/w8q/b0/6Oq+L/wD4Ujf/ABij/h5V+3p/0dV8X/8AwpG/+MU/+JXeLP8AopeG/wDwTnP/AMoF /wARt4d/6FOdfdl//wA0n+g/TXdI0aSRlREVnd3YKiIoLMzMxAVVAJZiQAASTgV/nxf8PKv29P8A o6r4v/8AhSN/8Yqhqn/BRf8Abl1vTNR0bVf2ofi3e6Xq9heaZqVnL4kk8q7sL+3ktby2l2RK/lz2 8skT7WVtrnawOCHH6LnFXNHm4m4cUeaPM40M4clG65nFOik5KPM4ptJySTaTbSfjbw9Z2ynOm7Oy f9npN2dk39Ydk3ZN2dk27O1nyP7a/wAc5P2kf2q/jj8ZFupLrSfFfjvVIvCskh+ZPBHh7yvDPgmM oPkjceFdH0lp1j+Q3LTyZdnZ2/oM/wCDe39mj+x/B/xR/as8Q2BS/wDGF0/wp+HM08bK6+GdEubT VfHOrWxZCk1rrHiOLRNFgnikWSC68IazbupSbJ/lPr9Qfg5/wV6/bF+A3ww8GfCD4aal8NdF8D+A 9HTRtBsJfh5pl5ciEzz3l3d3t5Ncebd6jqWo3V5qWo3bhWub+7uJ9qeZtH9BeI/COfZtwJR4L4N+ oYanKnleWYieOxcsHCnkuW0aK9hTlTw1d1KuLq4TCQrLkhF01Xk2/a8p+U8G8Q5VguKa/EnEcsTO fPjsZQjhsM8S5ZjjqtS9SSdWnyQw9GvWdJtyfM6aVnBs/u/rh/ib8Q/DPwk+Hfjj4oeM7wWHhT4f +Fdd8X6/dAx+aul6Bp1xqV1HbJLJEs97cpbm2sLUOJLu9mgtYsyzIp/jBb/gux+3+uMeJvhlznr8 NNI9v+nivE/2gv8AgrB+2N+0v8KvEPwa+Jfirwn/AMIP4rl0p9ftPDXg7T/D9/qMOjapaa1Z2Uuo 20sk62LalYWdxc28ewXIt0hlZoHljk/m7Lvo08bzx2BWZYrIaWWvF4b6/UwuZ1auJhglXpvFvD0n l1NTr/V1WjRi5xj7WcJSklBp/sOL8ZOFoYbEvBwzOrjI0KzwtOtl7p0Z4n2U/YRq1PrUuSk6rp+0 kotqCnZXat8XfHL4ueJvj18YPiR8ZfGMu/xF8R/F2s+Kb6JZHlh0+PUbp30/RrNpCXGnaFpq2eja ZGxJi0+wtosnZX7Tf8G7v/J2fxh/7N21j/1ZXw1r8BKlhnnt2LQTSwMw2loZHjYrkHaSjKSMgHBO MgHtX9f8U8K0eIeDsz4QwtanlWHx2V0sqw1aGH9vTwNChLAexUMMqtH2kKdLAU6UYKrB2ak5NqXP /PeRZ9UyniPB8Q4inPH1sPja2Or03VVKeJq144r2rdVwqKEpVMVKo3ySWnKkly8v+oHRX+YJ/aWo /wDP/e/+BU//AMco/tLUf+f+9/8AAqf/AOOV/Nv/ABKtU/6LiH/iOz/+fB+x/wDEc6f/AETNT/w7 U/8A5gP9PusbXvEfh7wtp8ureJ9e0Xw5pUALT6nr2qWOkafCqjLNLe6hPb20YUckvIAByeK/zHf7 S1H/AJ/73/wKn/8AjlU7meadleeaWZgCA0sjyMBxwGcsQPbOKqH0Vvfj7Xji9O65lS4etUa6qLqZ u4J9nKLS6phLxyjyScOGZcy2582jy69+XAc3yW/dH94P7SP/AAWB/Ym/Z50/ULey+JVj8avG9vHI tl4L+DtzaeLI5rvy3MS6p40tpv8AhCdHto7gRw6gDrd7rNoru9voV9JDJb1/Jp+3L/wUY+O37c/i SI+NLmLwd8LtEv5L3wd8I/Dl3cv4e0mbbJBDq+vXsqwXHi3xStrI8Da3qFvb21os95HoOk6HbX15 bT/AFFfsfAngzwfwJWhmGFpV83zuCahm+bexqVcM5RcZPL8JRgsJgZSTlF1oKvi+SUoLFU4ykp/n fFHiPxDxRSlg6kqWW5bN+/gMA6qVdJppYvE1Je3xMU0n7L9zh3JJyo1Go2KKKK/WT4OG79P1RueG L630zxL4e1K8cx2mn65pN9dSKjSMlvaX9vPO6ogLuVijZgiAsxGFBJAr+4b/AIfgf8E6v+iseKv/ AA1PxF/+Z6v4XaK/OuPPDDh3xEnlc89r5rRllMMXDC/2biqOGUljZ0J1fbe2wmK52nh6fJyuHKnK 6ldW+14W42zbhGGNp5bQwFaOPnQqVvrtKtVcXh4VIQ9n7LEUOVNVZc3MpXaVmrNP+6L/AIfgf8E6 v+iseKv/AA1PxF/+Z6k/4fhf8E6c4/4Wx4qzzx/wqn4jdv8AuXsV/C9UQ+/+Lf1r8+/4ln8Pv+g3 ij/w54P/AOdJ9TLxo4qilbBZH/4S4z/54H9qvxF/4L8fsSeFdNu5fBGn/Fn4o6ysL/2fY6T4Qh8L 6XPcgfu01DVvF2paVeWFqx4kubTQ9WnjHK2MvSv5wP28P+Ck3xv/AG7dbsbPxTHa+A/hN4d1CXUP Cfwn8O3tzd6Zb3zLNBFr3irVpo7Wbxb4nhs5pLK31Gay07TdNt5bpdE0XSn1LVZL/wDO6ivteEPB zgXgrGwzPLMvxGLzSkn7DMc3xTx9fCuUXCUsHTdGhhcNVlGUouvTw8q6jKUadakpS5vmOIfEbifi TDSwWLxNDC4Gpb22Ey6g8NDEJNNRxFWVWtiK1O6T9lKrCk2k5wqWSXvH7LPjrw38L/2mv2d/iV4x u5dP8I/D744/Cnxt4ov4LS5v57Lw74V8daFrmtXcNjZxzXl7Lb6dY3Msdrawy3Fw6CKGN5HVT/ZS f+C4P/BOodfix4q/8NT8Rf8A5nq/hepj9B9f6GtePPCnhrxDxmXY7PcRm9GtlmEr4LDrLcXQw9OV Kvili5urGtg8U5TVWKUZRlBKGji37xHCnHeccI4fF4TLaGX1qeNxFPE1XjKNerONSlQeHiqbpYmg lFwd2pRk3LVNLQ9N+OPijR/G/wAa/jB408O3El14f8XfFL4geKNCupYJrSW50fX/ABZq+raZcS2t wkdxbSTWV3BI8E8aTQsxjlRXVlH7p/sO/wDBeLxR8H/Ceg/Cz9qjwl4g+Knhnw7aWmk6D8TvCd1Y v8R7DR7OIW9pYeJtI1u70/S/Gj2sKwQQa2dc0LWRbW5bVD4hv5mux/O1X9aPwY/4IF/srfEj4PfC f4iax8Vv2grPV/Hvw18C+NNVs9M1v4cx6baal4p8L6Vrl9bafHdfDa7uksoLq+litEubq5nWBI1m uJpA0jeT4rVvDXLeH8myzxCwuLxGX1ZPB5PXweExOIzDC18BgMLCdWji8FUoVsJOWFp0VVdqlDEt OFXDTUYez9XgaHGWNzXM8fwpWwtLExaxGY0cTXpUsHXhjMViakKc6GIhVhWjCtOt7NpwrUFZwrLm mp/Yml/8F0/+CeGoWkdzefEHx5oUzqC+n6r8LfF813Ce6SvollrFgWHQmG9lXI4YjBP0D+zz/wAF PP2PP2pPiXYfCP4M+Pte8Q+OdS0vV9YtNNvvAPjPQbZ7DQ7U3moyvqWs6NZ2ERigG5ElnRpmIjiD SMqn4BP/AAbq/shkk/8AC4P2kOf+o98Mf/nXV9nfsW/8Ep/2bv2HvHet/E34dav8SPGfjnWPD1z4 Wg1n4jax4c1GPQdGvryzvdRi0Gx8OeFPDNvbXepSafZxXmoXv2+6FpE9pZvZ293fx3f8p8QYbwEp 5PmVXhzMuO8Tnn1ap/ZWGxmGVLAvGScFS+tVq2Gi1hqadSdT3vaTjCMINTndfuOVV/E6eYYOGcYH hajlntV9erYXEVamKVBRm5ewpwqtOtOSpxjdckeaUpLlST+uP2qWVP2YP2j3dgqJ8BfjAzMxwqqv w98RFmJPAAAJJPQCv46f+CNn7XvwK/Y9+MfxZ8YfHjxLqXhnQfFfwztfDWiXOm+G9d8Sy3OrxeKd K1R4JLbQbG/nt4xZ2s0nnzxpCWURhy7BT/Rv/wAFh/2p/DH7O/7HHxF8JNq1svxI+PXh/WfhV4H8 PpNEdRuNK8SWv9leO/EL24f7Rb6XofhO+1GH+0kjZItf1LQbIMkl6skf8IFfq/gLwXHiDw64zwOc wxeGyfirMsJhaNbDyVDEVqGWYamsRXw1SrRqw5I4xU8OqnsqkJSp4iMW3CTh8J4pcSyybizhrE5c 8NXzDJMHi8RUpVlKpRpyzCbp0qdeFOpTmpSw6qVlFVISUZUpNcso839cX/BQL/grH+xH8fP2Ovjn 8IPhl8RvEOseO/HHhvStO8O6ZefDvxvo9td3dr4r0DVZo5dS1PRLawtFWysLmQPczxozIsYJd1B/ kdoor+guBuA8l8PstxeVZHVzCthsZjnmFWWY16WIrKu8PSwrUJ0cNhoxp+zowfK4SfO5Pms0l+Sc U8V5jxdjMNjcypYOjVwuGeFpxwdOrSpum60q7c1Vr15OfPJq6lFctly31P6Uv+CbP/Ba74e/Az4L +GP2fv2n9E8YyWHw9tW0bwB8SfCVhB4iB8JpM0mm+G/FmiS39lqNu/huGRtN0XVNEXU0uNEh07Tr nS7OfTH1HVP1RT/guR/wToZFZvit4tjYgExv8KfiGXQnqrGPQJIyR0O12XI4YjBr+FiTt+P9Kjr4 fPvo/eH/ABBm2MzerHOcuxGYYipisVRyzMadHCTxNebqV61PD4jA4lUHWqznVqQpVFS9rUqThCnz ygvqsq8WOKcry/DYFLLcbTwlGFCjVxuFqyxCo0YqnSp1KlDFUVV9nThCnGc4e0cIQUpScVJ/s3/w V8/bW+D/AO1D8fvgj8Uv2avGuuagnw48Bw2La9JoPiDwjqeh+LNP8aal4i0y508a1Zafdme0Etle W97aqyw3CKBIsseB+q37Lf8AwcD/AAT1rwRoeiftVeG/F3gn4kaZZW1lrXjLwboEXiXwN4pmt4lj k10aZp93D4g8N39+y+dd6JbaPq+mQTNJJZanHBJHYWv8h1FfQZj4NcE5twvkfCuPw+PrYXhylWo5 RmMcYqOb4eniK1avXpyxdLDKlXpValZyqUKuFlRcqdKpGNOrF1Knl4TxH4kwWd5nnmGng6dXN5UZ 4/Ayw86mX1Z4ejToUZxozr+2pVIU6dlVp4hTalOEuem4xh/db/w/G/4Jz/8ARWPFf/hqPiL/APM9 R/w/G/4Jz/8ARWPFf/hqPiL/APM9X8KVFfF/8Sx+Hn/QbxT/AOHTBf8AzpPof+I1cVf9AWRf+EmM /wDngf2T/tb/APBYb9g/4sfsuftDfDDwT8S/Euo+MPiD8GviL4O8L2Fx8NfHenQXuveIvCuqaVpV tNf32hwWdnFNeXUMb3N1NFBCrGSV1RSR+TX/AARa/bZ/Z5/Y01v9oW9+PvirVfDFv8QNK+Gdr4Xf TPC3iHxObybw1d+OJdXWZNA0+/azECa3pxja6ESzmVxCXMUgX8PaK+ty3wX4SyrhPiDg3DYnO5ZV xJisFi8wqVcbh542FXAew9isLWjgIU6UH7CHtFOhVcrytKN1bwcZ4kZ7jc+yniGrhsrjjcmw+Lw2 Fp06GIWGnDGKoqrrwli5VJyXtJcjhVppWV1LW/8AVt/wU3/4KofsYftK/sU/F74MfCP4g+INd8f+ Lbn4dS6Hpd98P/GehWtynh74n+DvE2qGTVNX0e00+28nSNHv50E86GaSJYIt00saN/KDUz/dP4fz FQ19TwNwLk3h/lFfJcjq4+thMRmFbMqksxr0sRXWIrUMNh5xjOlh8NFUlDC03GLptqTm3NppLwuJ +KMw4sx9HMcypYSlXo4SGDhHB06tOk6VOrWrRlKNWtXk5uVeabU0uVRSimm2UUUV9mfOEcnb8f6V HUknb8f6VHQbQ+FfP8wooooCXwv0/wAgooorOp0+f6E0+vy/UKKKKzNAooro/Del/wBoXollXNra FZJcj5ZJOTFF7gsN7jkbFKtjeKtSUISk9ld+uisvVuyKc406c5y2jd+uisl5t2S9fI7Hwzpf2Cy8 6VcXV2FkfOd0cWMxRHPQ4JdxwdzbTnYDXSUUV50pOcnJ7t3/AMl8loeBUnKpOU5byd/Tsl5JWS9P MKKKKkggbqfqf50lK3U/U/zpKACiiigAooooAKgbqfqf51PUDdT9T/Ogunu/T9RKKKK3j8K9P8zU KKKKYBRRRQAUUUUAMfoPr/Q1FUr9B9f6GoqACiiigAooopPZ+j/IAooorAAooorWns/X9DKpuvT9 QoooqzRbL0X5IKKKjc9vXk/T/P8AKgYwnJJ/L6UlFFBrD4fmwqBup+p/nU9QN1P1P86BVNl6/oJR RRQFPr8v1DpVKRt7E9hwPp/9fr+manmfA2g8nr7D/Hp/nFVaxq3l7qe2r83/AMD8zoguvyX6/wCQ UUUVzNNbmgUVIwGwHuAOajos2rrUTkr2b1tpcKKKKRSbWwhGSD6Z/Pj/AOvS09hgKPrn68Uyq5Xa 61v95sndJ/1uFFFFSMKaVB9j606igmLalJruiAqR1/OkqxTCgPTj+X/1v88UGyn3+8ipQxHSggjq KSg0H/K3T5T+h/z+H400gjqPx7UlODEe49D/AJ/+tRvuS4J+T/roVaKkKen5VGQR1oMVuvVfmgoo ooOgKqzPk7R0U8+5/LtnHU5Pbip5H2LnjJ4APr9MjIHU4OapVhXlpyfzb27dF8/yRpTWvN229f8A gCEA9ajZccjpnp6VLSEA8GuD4XZ6r8/Tz9DpbvHm2dr/ANd16kFFPKEdOR+v/wBemU+VPWLv5dRK ff7xCAeDUZQjpyP1/wDr1LRUGhXoqYqD1/PvUZUj3HrQAigsQo6k4H+R+taaRqiBcdByehJPU/iS TUFtHgGQ9+F+mcE/mMdOnfmrdd+Gp8sedrWW3lH/AIL19LHNWldWWydvn1+7b7yIoR05H6/5+lMq xTSoPsfX/H/OfeukwIaKcVI+nr/npTaUoqX6DjJx/UKKKKycWvNd/wCtjVST8n2/rchf7x/D+Qpt Of7x/D+QptarZei/Iye79X+Z1FFFFeieO936v8wooooHD4l8/wAgooooNgqF/vH8P5Cpqhf7x/D+ QoAbRRRQAUUUUDW69V+YUUUUG4jdD9D/ACqCp26H6H+VQVrT2fr+hlU3Xp+oUUUVZAUUUUAFFFFZ T+L5I1h8PzZHJ2/H+lR1JJ2/H+lR1cPhXz/MifxP5fkFFFFUSFFFFABUcnb8f6VJUcnb8f6UFL4J eqI6KKKCQooooLhu/T9UFFFFBqFRD7/4t/WpaiH3/wAW/rQZ1Nl6/oS0UUUGYUx+g+v9DT6Y/QfX +hoHH4l6/wCZFX7KeBf+C6H7a/w98E+DvAOgad8E20LwP4V8PeD9Fa/8Ca5c3zaT4Z0mz0XTmvbi PxpBHPdmzsoTczJBCks291ijVgg/GuivCz3hjh7ianhqPEOTZfnNLB1KlXC08fRdaNCpWpxpVZ0k q1HllUpwjCTvK8YpWW57mV55m+SSrTyjMcVl8sRGEK8sLOMHVjTlKdOM+alVuoSlKUbKNm3q9j9u T/wcBft3Akf2Z8B+Cf8Amn2v/wDzc1i67/wXv/b81fT5rLT9Q+EHhe5lUqmr6F8NxcahbEjAeGLx NrniLSmZTyBcaZOmR8ykZB/Flup+p/nSV4kPCnw1g4zjwPw3zRakr5fzq6s1eM8XOElfdShKL2cW tD0JcecZyUovibN7O6dsRTi7O60ccJGS06qSa3TTsz1T4t/GX4p/HjxpqHxE+MPjvxF8QvGWpqkV xrniO+e7mhtYnkeDTtNtlEVho+k2rSymz0fSbWy0uz8yQWtpCHYHzOiivs8Ph6GEoUsNhaFHDYah TjSoYfD0qdChRpQXLCnSo0YUqVKnBaRhTpxilsrtt/LVq1bEValfEVatevWnKpVrVqk6tWrOTvKd SpUlOc5N7ylJt6bJJIooorUzI5O34/0qOpJO34/0qOmt16r8zVfB8n+oUUUVuZBRRRQAUUUUANf7 p/D+YqGpn+6fw/mKhoAKKKKAI5O34/0qOpJO34/0qOg2h8K+f5hRRRQEvhfp/kFFFFZ1Onz/AEJp 9fl+oUUUVmaD443lkSKNS8kjqiIOrOxCqo9ySBzx617HpOnJpllFbLgvjfO4/wCWkzAb29SBgIme QiqDzXJeEdL3O2pzL8qborUEcF/uyyjj+EZjU5+8ZOMqDXf1z1p39xPRO7830XyX4vyPNxlbmaox fuwd5ecrbekV+LfYKKKK5zhCiiigCBup+p/nSUrdT9T/ADpKACiiigAooooAKgbqfqf51PUDdT9T /Ogunu/T9RKKKK3j8K9P8zUKKKKYBRRRQAUUUUAMfoPr/Q1FUr9B9f6GoqACiiigAooopPZ+j/IA ooorAAooorWns/X9DKpuvT9QoooqzRbL0X5IDxULBskn8x0/z25qXv8AT+Z/wH4c+1LQMr0VI6gD I9fw71HQNXWq2/D5hUDdT9T/ADqeoG6n6n+dA5S5ktNUJSEgDJ4AparzP/APqf8AClJ2V/uLpK7a 9Pu6kDMWJJ7/AKD0/CkoorA69tAoooo33AlP3PwX+lRVKfufgv8ASoqmCsn6synuvT9WFHSiijlT d7f8H1/McL/L+th5y/Ycfrn/APV60ypI+/4f1p5APUfj3pX5enu9GuhvGdtHsQUU8oR05H6/5+lM ptRlr+K3+f8AwTRNPZhRRRWbi15ruTH4peqCiiipLAjPBqFlAxjvmpqY4JxgZxn+lBUG7pdH/kRU UUUGwUhAPWlooOciKHtz7Hr/AJ/KmVYqGYgLjueB6gd/88ik2opt7JXNoy5mlbV/d/wCjI+9uD8o 4Hp9eg6/j7HFR08oR05H6/5+lMrhk3Jtvdv+l8jdSto1bz6MKKKaxwM4zzzSaT31Nef3WntbRr+v yHU0qD1/PvQGB6fketOrNwa1i/l/X6kpp7akLKR7j1ptTP8AdP4fzFQ0rSkr9VpbYuMktH94U5VL MAPx9h602rcKFV3Efexjp0+vv3HsOKqlTc5qLVktZei6fPb7+xU58sG1q3ovV9fl+diQDAAHQAD8 qMjJHcUtQt94/h/IV6Zwyk0l1V/8+pNRUQcjryP1/wDr1ICD0NAKSe33dRar1YqvQMKKKKAGMmeR 1/SmbG9P1H+NTUUGTm0311e/qdBRRRXoHmvd+r/MKKKKBw+JfP8AIKKKKDYKhf7x/D+QqaoX+8fw /kKAG0UUUAFFFFA1uvVfmFFFFBuI3Q/Q/wAqgqduh+h/lUFa09n6/oZVN16fqFFFFWQFFFFABRRR WU/i+SNYfD82Rydvx/pUdSSdvx/pUdXD4V8/zIn8T+X5BRRRVEhRRRQAVHJ2/H+lSVHJ2/H+lBS+ CXqiOiiigkKKKKC4bv0/VBRRRQahUQ+/+Lf1qWoh9/8AFv60GdTZev6EtFFFBmFMfoPr/Q0+mP0H 1/oaBx+Jev8AmRUUUUG5A3U/U/zpKVup+p/nSV0LZei/JHO936v82WKKKK5wCiiigCOTt+P9KjqS Tt+P9Kjprdeq/M1XwfJ/qFFFFbmQUUUUAFFFFADX+6fw/mKhqZ/un8P5ioaACiiigCOTt+P9KjqS Tt+P9KjoNofCvn+YUUUUBL4X6f5BRRRWdTp8/wBCafX5fqFXdOspNRvIbWPIMjDe+MiOJeZJD/ur nGcbmKrnLCqVeneFtK+x2n2uZcXN4qsMj5orfqic8gycSP0yPLUjKZOE5ckW+uyXn/wN3/wSa9VU qbl9p6QXm+vpFav0S6nSW8EdtBFbwrtihRY0X0VRgZJ5JPVicliSSSSamooriPFbbd3q3q2+rYUU UUAFFFFAEDdT9T/OkpW6n6n+dJQAUUUUAFFFFABUDdT9T/Op6gbqfqf50F0936fqJRRRW8fhXp/m ahRRRTAKKKKACiiigBj9B9f6GoqlfoPr/Q1FQAUUUUAFFFFJ7P0f5AFFFFYAFFFFa09n6/oZVN16 fqFIf17fX/PJ9qWk6/hwP6n+n59jVmi2XovyQtFFFAxj9B9f6GoqlfoPr/Q1FQaw+H5sKgbqfqan pCAeooJnFKzXUrswUFj0H+QPxNVGUkk9c8+//wBf+dXCPm45A6dOpHJ/DoCPU8Y5qvWU3d26Iune N336eX/BK9FTlQev51EVI9x/nrUHQpJ+TG0UUUFEp+5+C/0qKpT9z8F/pUVBlPWSXl+rCiiig0Ss rEkff8P61JUcff8AD+tSUDCmlQfY+tOoqXHrF2f4Am1toQEYOKSnv1H0/qaZTV7K+/UqE/elfutQ ooopOCe2j/D7jbcKKKKycWt/v6FQ+JfP8hpUH2PrUZUj6ev+elTUUjYr0UUVTi16dznDpVJ23sT2 6Ae3/wBeppnwNo6nr7D/AOvVauStO75F01fr0Xy39TpowsuZrV7enf5/kgppUH2PrTqKwNmk99SE qR9PX/PSm1YqN1A5HHOPbvQNJJaPbo/0fX8yAoDyOD/n8vwpNxXhuR6/56/jzzUlFBLj1Wj/AAfq hjEFTg+n86iqXYM57dx+HakKen5H/H/H86Bq9tV1tdbCwx+Y4H8I5b6en49K08Dpjj0qGCPYgyPm bk+vsPw/nU1dUKdop7Ser/RfL82MiZQOR64xVZ/vH8P5VbfoPr/Q1CQDwa1je2u+pjVgmtNHf5bP 7iCgEjpTymOnPt3/APr0ymczTW+n9dyQP6/n/wDW/wA/So6KnIB60GkG3e/SxBRTyhHTn+f/ANf/ ADxTKCwooooMHu/V/mdBRW5/wjHiX/oXtc/8FN//API9H/CMeJf+he1z/wAFN/8A/I9Y/wCsGQf9 D/Iv/D5kn/z5B5Rm93/wk5tu/wDmVZn3/wCxaYdFbn/CMeJf+he1z/wU3/8A8j0f8Ix4l/6F7XP/ AAU3/wD8j0f6wZB/0P8AIv8Aw+ZJ/wDPkccozfmX/CTmvX/mV5n2/wCxaYdFbn/CMeJf+he1z/wU 3/8A8j0f8Ix4l/6F7XP/AAU3/wD8j0f6wZB/0P8AIv8Aw+ZJ/wDPk2/sjNv+hTmv/hrzP/52mHUL /eP4fyFdF/wjHiX/AKF7XP8AwU3/AP8AI9RN4X8Tbj/xTuu/+CjUPT/r3o/1gyD/AKH+Rf8Ah8yT /wCfIf2Rm3/QpzX/AMNeZ/8AztMCit3/AIRfxN/0Luu/+CjUP/kej/hF/E3/AELuu/8Ago1D/wCR 6P8AWDIP+h/kX/h8yT/58h/ZGbf9CnNf/DXmf/ztMKit3/hF/E3/AELuu/8Ago1D/wCR6P8AhF/E 3/Qu67/4KNQ/+R6P9YMg/wCh/kX/AIfMk/8AnyNZTm11/wAJOa7r/mV5n3/7FxhUVu/8Iv4m/wCh d13/AMFGof8AyPR/wi/ib/oXdd/8FGof/I9H+sGQf9D/ACL/AMPmSf8Az5Nv7Jzb/oVZp/4bMy/+ dxgt0P0P8qgrpD4X8TYP/FO670P/ADCNQ/8Akeof+EV8T/8AQua9/wCCfUP/AJHrSHEHD9n/AML+ Q7/9DzJO3/Y5M55Tm11/wlZrt/0K8z7/APYuMGit7/hFfE//AELmvf8Agn1D/wCR6P8AhFfE/wD0 Lmvf+CfUP/ker/1g4f8A+h/kP/h9yT/58kf2Rm3/AEKc1/8ADXmf/wA7TBore/4RXxP/ANC5r3/g n1D/AOR6P+EV8T/9C5r3/gn1D/5Ho/1g4f8A+h/kP/h9yT/58h/ZGbf9CnNf/DXmf/ztMGit7/hF fE//AELmvf8Agn1D/wCR6P8AhFfE/wD0Lmvf+CfUP/kesp8QZBzf8j/Idl/zPMk/+fJrDKc25f8A kVZru/8AmV5l/wDO452Tt+P9Kjron8K+KDjHhvXz1/5g+o+3/TvTP+EU8U/9C1r/AP4J9R/+RquP EHD/ACr/AIX8h6/8z3JO/wD2OSJZTm3M/wDhJzXp/wAyvM+3/YuMCit//hFPFP8A0LWv/wDgn1H/ AORqP+EU8U/9C1r/AP4J9R/+Rqr/AFg4f/6H+Q/+H3JP/nyT/ZGbf9CnNf8Aw15n/wDO0wKK3/8A hFPFP/Qta/8A+CfUf/kaj/hFPFP/AELWv/8Agn1H/wCRqP8AWDh//of5D/4fck/+fIf2Rm3/AEKc 1/8ADXmf/wA7TAqOTt+P9K6P/hFPFP8A0LWv/wDgn1H/AORqjfwn4pOMeGvEB6/8wbUfb/p2o/1g 4f8A+h/kP/h9yT/58lLKc25Zf8JOa7r/AJleZ/8AzuOcoroP+ET8Vf8AQs+IP/BNqP8A8jUf8In4 q/6FnxB/4JtR/wDkaj/WDh//AKH+Q/8Ah9yT/wCfJP8AZGbf9CnNf/DXmf8A87Tn6K6D/hE/FX/Q s+IP/BNqP/yNR/wifir/AKFnxB/4JtR/+RqP9YOH/wDof5D/AOH3JP8A58lwynNrv/hKzXb/AKFe Z91/1Ljn6K6D/hE/FX/Qs+IP/BNqP/yNR/wifir/AKFnxB/4JtR/+RqP9YOH/wDof5D/AOH3JP8A 58mn9k5t/wBCrNP/AA2Zl/8AO45+oh9/8W/rXS/8In4q/wChZ8Qf+CbUf/kaox4S8V78/wDCM+Ic ZPP9i6l7/wDTtR/rBw//AND/ACH/AMPuSf8Az5InlObWX/CVmu//AEK8z7f9i4w6K6D/AIRPxV/0 LPiD/wAE2o//ACNR/wAIn4q/6FnxB/4JtR/+RqP9YOH/APof5D/4fck/+fJn/ZGbf9CnNf8Aw15n /wDO05+mP0H1/oa6P/hE/FX/AELPiD/wTaj/API1Mfwl4qI48M+IDz/0BdS9/wDp2o/1g4f/AOh/ kP8A4fck/wDnyOOU5tzL/hJzXf8A6FeZ+f8A1LjmqK6H/hEfFf8A0LHiH/wS6l/8jUf8Ij4r/wCh Y8Q/+CXUv/kaj/WDh/8A6H+Q/wDh9yT/AOfJt/ZObf8AQqzT/wANmZf/ADuOXbqfqf50ldGfCHiz J/4pfxF1P/ME1L1/69qT/hEPFn/Qr+Iv/BJqX/yNW64h4esv+MgyDZf8z3I+y/6nRg8oza7/AOEn Nd3/AMyvM+7/AOpaYtFdD/wiPiv/AKFjxD/4JdS/+RqP+ER8V/8AQseIf/BLqX/yNWH+sHD/AP0P 8h/8PuSf/PkP7Izb/oU5r/4a8z/+dpz1FdD/AMIj4r/6FjxD/wCCXUv/AJGo/wCER8V/9Cx4h/8A BLqX/wAjUf6wcP8A/Q/yH/w+5J/8+Q/sjNv+hTmv/hrzP/52nNSdvx/pUddK/hDxYcY8MeIj1/5g upe3/TtTP+EQ8Wf9Cv4i/wDBJqX/AMjU1xDw/df8L+Q7r/me5J3/AOxyarKc25P+RVmuz/5leZ+f /UuOdorov+EQ8Wf9Cv4i/wDBJqX/AMjUf8Ih4s/6FfxF/wCCTUv/AJGrf/WHh7/ooMg/8PuR/wDz 6Mv7Izb/AKFOa/8AhrzP/wCdpztFdF/wiHiz/oV/EX/gk1L/AORqP+EQ8Wf9Cv4i/wDBJqX/AMjU f6w8Pf8ARQZB/wCH3I//AJ9B/ZGbf9CnNf8Aw15n/wDO052iui/4RDxZ/wBCv4i/8Empf/I1H/CI eLP+hX8Rf+CTUv8A5Go/1h4e/wCigyD/AMPuR/8Az6D+yM2/6FOa/wDhrzP/AOdpzb/dP4fzFQ11 DeD/ABbtP/FL+Iv/AASan6/9etRf8Id4u/6FbxH/AOCPU/8A5Fo/1h4e/wCigyD/AMPuR/8Az6D+ yM2/6FOa/wDhrzP/AOdpzlFdH/wh3i7/AKFbxH/4I9T/APkWj/hDvF3/AEK3iP8A8Eep/wDyLR/r Dw9/0UGQf+H3I/8A59B/ZGbf9CnNf/DXmf8A87TmJO34/wBKjrp38HeLjjHhXxIev/MD1P2/6daZ /wAIb4v/AOhV8Sf+CPVP/kWj/WHh7/ooMg/8PuR//Po2jlObcq/4Ss06/wDMrzLv/wBi45uiuk/4 Q3xf/wBCr4k/8Eeqf/ItH/CG+L/+hV8Sf+CPVP8A5Fo/1h4e/wCigyD/AMPuR/8Az6CWU5tyv/hK zTb/AKFeZeX/AFLjm6K918E/suftNfErSp9c+HP7Ovx28f6Ja30mmXOseCfhH8QPFWlW+pQw29zN p8+oaF4fv7SK+it7u1uJLSSZbhIbm3laMRzRs3Y/8MMfts/9GeftTf8AiPvxaH8/CNZVOIeHtP8A jIMg6/8AM+yPy/6nRMMpzbX/AISs16f8yvM/P/qXHzv4e0s6lfL5i5tbfEtwSPlbn93D7+aw+Yf8 81fvjPrXTpX0Do37Dn7YemWMcH/DJv7Sxmb97cMPgR8UvmlYDIB/4RXlYxiNemQucZJrW/4Yt/bF /wCjTf2l/wDwxHxS/wDmVrhqcRZBOWmf5FyrRf8AC5kvzf8AyOev5WPMxGWZxVqNrKM35I+7H/hJ zXVX1l/yLPtP8LHzRRX0v/wxb+2L/wBGm/tL/wDhiPil/wDMrR/wxb+2L/0ab+0v/wCGI+KX/wAy tZ/6wZB/0P8AIv8Aw+ZJ/wDPk5/7Gzj/AKE+b/8AhpzX/wCdh80UV9L/APDFv7Yv/Rpv7S//AIYj 4pf/ADK0f8MW/ti/9Gm/tL/+GI+KX/zK0f6wZB/0P8i/8PmSf/PkP7Gzj/oT5v8A+GnNf/nYfNFF fS//AAxb+2L/ANGm/tL/APhiPil/8ytH/DFv7Yv/AEab+0v/AOGI+KX/AMytH+sGQf8AQ/yL/wAP mSf/AD5D+xs4/wChPm//AIac1/8AnYfMLdT9T/Okr6ZP7Fn7Y2T/AMYmftMdT/zQj4pev/Yq0n/D Fn7Y/wD0aZ+0x/4Yj4pf/MrR/rBkH/Q/yL/w+ZJ/8+Q/sbOP+hPm/wD4ac1/+dh8z0V9Mf8ADFn7 Y/8A0aZ+0x/4Yj4pf/MrR/wxZ+2P/wBGmftMf+GI+KX/AMytH+sGQf8AQ/yL/wAPmSf/AD5D+xs4 /wChPm//AIac1/8AnYfM9FfTH/DFn7Y//Rpn7TH/AIYj4pf/ADK0f8MWftj/APRpn7TH/hiPil/8 ytH+sGQf9D/Iv/D5kn/z5D+xs4/6E+b/APhpzX/52HzPUDdT9T/Ovp//AIYs/bH/AOjTP2mP/DEf FL/5lahP7Ff7ZGT/AMYl/tM9T/zQf4p+v/Yq0f6wZB/0P8i/8PmSf/Pk0hk+cXf/AAkZvt/0Kc07 /wDYsPmWivpn/hiv9sj/AKNL/aZ/8MP8U/8A5laP+GK/2yP+jS/2mf8Aww/xT/8AmVraPEHD/Kv+ F/Idv+h7knn/ANTk0/sfOP8AoUZt/wCGrNP/AJ2HzNRX0z/wxX+2R/0aX+0z/wCGH+Kf/wAytH/D Ff7ZH/Rpf7TP/hh/in/8ytP/AFg4f/6H+Q/+H3JP/nyH9j5x/wBCjNv/AA1Zp/8AOw+ZqK+mf+GK /wBsj/o0v9pn/wAMP8U//mVo/wCGK/2yP+jS/wBpn/ww/wAU/wD5laP9YOH/APof5D/4fck/+fIf 2PnH/Qozb/w1Zp/87D5mor6Z/wCGK/2yP+jS/wBpn/ww/wAU/wD5laP+GK/2yP8Ao0v9pn/ww/xT /wDmVo/1g4f/AOh/kP8A4fck/wDnyH9j5x/0KM2/8NWaf/Ow+Y36D6/0NRV9PP8AsVftkEcfsl/t Mnn/AKIN8U/f/qVaj/4Yp/bJ/wCjSv2mv/DDfFP/AOZSj/WDh/8A6H+Q/wDh9yT/AOfIf2PnH/Qo zb/w1Zp/87D5lor6a/4Yp/bJ/wCjSv2mv/DDfFP/AOZSj/hin9sn/o0r9pr/AMMN8U//AJlKP9YO H/8Aof5D/wCH3JP/AJ8h/Y+cf9CjNv8Aw1Zp/wDOw+ZaK+mv+GKf2yf+jSv2mv8Aww3xT/8AmUo/ 4Yp/bJ/6NK/aa/8ADDfFP/5lKT4g4fs/+F/Idn/zPck7f9jkP7Hzj/oUZt/4as0/+dh8y0V9Nf8A DFP7ZP8A0aV+01/4Yb4p/wDzKUf8MU/tk/8ARpX7TX/hhvin/wDMpWP+sGQf9D/Iv/D5kn/z5D+x 84/6FGbf+GrNP/nYfMtFfTX/AAxT+2T/ANGlftNf+GG+Kf8A8ylH/DFP7ZP/AEaV+01/4Yb4p/8A zKVpDiDh+z/4X8h3/wCh5knb/scmc8nzi6/4SM32/wChTmnf/sWHzIfT1/T3/wA98etLX0z/AMMU /tk9f+GSv2mv/DDfFTp/4Svf8O2elL/wxT+2T/0aV+01/wCGG+Kf/wAylX/rBw//AND/ACH/AMPu Sf8Az5NFk+cWX/CRm2y/5lWadv8AsWHzLRX01/wxT+2T/wBGlftNf+GG+Kf/AMylH/DFP7ZP/RpX 7TX/AIYb4p//ADKUf6wcP/8AQ/yH/wAPuSf/AD5D+x84/wChRm3/AIas0/8AnYfMT9B9f6Goq+n3 /Yp/bKI4/ZJ/aaPP/RBvip7/APUqVH/wxR+2X/0aT+03/wCGF+Kn/wAylH+sHD//AEP8h/8AD7kn /wA+TWGT5vy/8ijNt3/zKs0/+dp8yU1jgcdTwP6n8B+uK+nf+GKP2y/+jSf2m/8AwwvxU/8AmUqq 37F37YpJ/wCMTf2l/Qf8WI+KX/zK1MuIeH0tM/yG7/6nmSf/AD5HLJs3dv8AhJzayd3/AMJWZ/8A ztPmakIB6j8e9fTH/DFv7Yv/AEab+0v/AOGI+KX/AMytH/DFv7Yv/Rpv7S//AIYj4pf/ADK1l/rB kH/Q/wAi/wDD5kn/AM+R/wBkZv8A9CnNv/DVmf8A87T5iKEe4/z2ptfT/wDwxb+2L/0ab+0v/wCG I+KX/wAytNP7Ff7Yh/5tN/aXB9f+FEfFL9f+KV/+v70f6wZB/wBD/Iv/AA+ZJ/8APkP7Izf/AKFO bf8AhqzP/wCdp8wFQfY+tRFSOv519Pn9iz9sYdf2Tf2l/r/woj4pf/MrSf8ADFv7Yv8A0ab+0v8A +GI+KX/zK0f6wZB/0P8AIv8Aw+ZJ/wDPktZVnC/5lObNf9ivNP8A52nzIr9AfoKa2M8fj9a+l/8A hiz9sbJx+yZ+0v3x/wAWI+KWPQf8yr2pP+GLP2x/+jTP2mP/AAxHxS/+ZWl/rBkH/Q/yL/w+ZJ/8 +TT+yM2dn/ZOa/8AhrzPT/zGnzPRX0x/wxZ+2P8A9GmftMf+GI+KX/zK0f8ADFn7Y/8A0aZ+0x/4 Yj4pf/MrR/rBw/8A9D/If/D5kn/z5H/ZGbf9CnNf/DXmf/ztPmgEjp/n61IHB68H9P8A63+ea+kv +GLf2xh1/ZN/aXH/AHQj4pf/ADK0f8MW/ti/9Gm/tL/+GI+KX/zK0f6wZB/0P8h/8PmSf/PkP7Iz b/oU5r/4a8z/APnafOFFfSI/Yv8A2xh/zad+0vj0/wCFEfFL/wCZXipB+xh+2Iev7J37S4+vwJ+K X8/+EVp/6wZB/wBD/Iv/AA+ZJ/8APkP7Izb/AKFOa/8AhrzP/wCdp8yv1H0/qaZX0y/7F/7YhPH7 J/7Sx4/6IT8UfU/9StTP+GL/ANsT/o0/9pb/AMMT8Uf/AJlqP9YMg/6H+Rf+HzJP/nyTHKM25pf8 JOa7r/mV5n/87T5por6W/wCGL/2xP+jT/wBpb/wxPxR/+Zak/wCGMP2wx1/ZP/aVH/dCvij/APMt R/rBkH/Q/wAi/wDD5kn/AM+S1lWbrbKs1/8ADXmdv/VcfNVMckYI9/6V9Mf8MYfth/8ARqH7Sv8A 4Yr4o/8AzLUx/wBi/wDbEOMfsn/tK8Z/5oV8Uf8A5lqmWf5Byv8A4Xsi/wDD5kvf/scmkcrzZ/8A MpzVP/sV5n+f9nHzUHz149+3/wBan19Hf8MX/tif9Gn/ALS3/hifij/8y1A/Yy/bEHT9lD9pX6f8 KK+KOP8A1Fqx/t/IP+h9kX/h8yX/AOfBssszZfFlWa+v9l5lf/1XanzTSEgAk9BX0t/wxh+2H/0a h+0r/wCGK+KP/wAy1U5/2Of2u0Zo3/ZX/aPRlHKN8DvicrAlcjKnwwCPlORkc5B9DWs+IcgjFv8A t7Im9kv7cyV3b9M4ZMcozaTS/srNLXV/+EzMtr/9i4+Z2YsST3/T2/Ckr6N/4Y7/AGuR1/ZZ/aNH /dEPib/8zFJ/wx7+1v8A9GtftGf+GR+Jn/zMVwSzzIZNtZ7kd3q/+FvJn/71ztWVZotFleZ6aW/s zMtP/MefOdFfRn/DHv7W/wD0a1+0Z/4ZH4mf/MxR/wAMe/tb/wDRrX7Rn/hkfiZ/8zFZvPciWjzz I/8Aw95N/wDPcf8AZWa/9CvNP/DZmX/zvPnOmP0H1/oa+jv+GPv2tv8Ao1v9ov8A8Ml8S/8A5maP +GPv2tf+jW/2i/8AwyXxL/8AmZoWe5E2l/buRq//AFOsm/8AnuKWVZryv/hLzTb/AKFmZeX/AFLj 5sor6OP7Hn7Wnb9l39or6f8ACk/iX/P/AIRn/PrTP+GPv2tv+jXP2i//AAyXxL/+Zmh57kS/5nuR /LO8m/8AnuZrLM3X/MqzRr/sWZl/87j50qWJNzZPRefx7D/EV9Dp+x7+1vIyon7Lf7Rju5Cqq/BH 4mMzMTgBQPDBJJPAAGSa1k/Yu/bCRQP+GUP2lc9z/wAKK+KPJ/8ACW/KrpZ5kLld57kaUddc7yZX fRa5wvVlvLc25WllWae9p/yK8y02v/zLvkfNtFfSn/DGX7YP/RqP7Sn/AIYv4of/ADLUf8MZftg/ 9Go/tKf+GL+KH/zLV1/2/kH/AEPsi/8AD5kv/wA+DJZZmy2yvNPT+zMy/wDnefND9B9f6Goq+mz+ xh+2CRg/so/tKf8Ahi/ih/8AMtUR/Yv/AGwx/wA2o/tKH6fAr4ofy/4Raj+38g/6H2Rf+HzJf/nw XLK81cU/7LzTfb+zMx/+d5800hAPUfj3r6W/4Yw/bD/6NQ/aV/8ADFfFH/5lqT/hjL9sH/o1H9pT /wAMX8UP/mWo/t/IP+h9kX/h8yX/AOfBn/ZOavfKs0/8NeZf/O4+ZShHTn+f5f8A66mr6U/4Yy/b B/6NR/aU/wDDF/FD/wCZaj/hjL9sH/o1H9pT/wAMX8UP/mWo/t/IP+h9kX/h8yX/AOfARybNdbZX mi20eWZl57f8Jx8100qD1/PvX0t/wxl+2D/0aj+0p/4Yv4of/MtR/wAMZftg/wDRqP7Sn/hi/ih/ 8y1H9v5B/wBD7Iv/AA+ZL/8APgf9k5t/0Ks0/wDDZmX/AM7j5kIwSPSkr6Wb9jL9sHcf+MUf2lP/ AAxfxQ9P+xWpv/DGX7YP/RqP7Sn/AIYv4of/ADLVf9u5A0ms/wAiWmt88yX/AOfJg8pza7/4Sc13 f/MrzPv/ANi49sooor/Lo/ucKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACu5+Gfw68U/Fzx/4R+GngmwOpeKfGmt2eh6RbZZ YVmun/fXl5KqubfTtNtUn1HU7tlKWen2tzdSDy4WNcNX9H3/AARz/ZQ/4RrwzqP7UXjTTdmueL7a 88PfC22u4cS6d4UScwa94pjjlXdFceJL23OlaZOqxzLoljfTQyTWHiFSVJ2V/uA/W/4AfBXwt+z1 8IvBXwk8IxhtN8KaVHb3motCkN1r+uXJN1rviG+VS3+l6xqktzeNHvdLWKSGxgItbWBE9joorAAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKQkAEk4ABJPoByTQBVvJdkewH5pOOOoUfePXv90fUkdKySoPX8 +9SyyGV2c9/ug9lHQdB9T7k1HQBCUI9x/ntTasU0qD7H1oAhopxUjr+dNoAKYUB6cfy/+t/nin0U AQEEdaSrFRlPT8v/AK/+frQBHRQRjg0Umk99QEIB6ioyhHTn+f8A9epaKnlcfhd12f8AX+QFeipy oPX8+9RFSPcf5601JPR6PswIygPTj/Pp/wDqqIgjqPx7VPRVAV6QgHqKmKZ6ce3b/wCtUZBHWgCE oR05/n/9emVYpCoPX8+9AEFNKA9OP8+n/wCqpCpHuP8APWm0DT6PVdn+nVFG6mW0hkmk6IOB/fY8 Ko92OPoMkjANcBLI80jyyHLyMWY+5OePQDoB0AAA4FdBrdz58ot0P7uAksQfvSngn3CLlR3BL57V zxUj3H+etBrFJK6666/kMIB6iomjB6c/zH+P0/Q1NRRtsNpPyfdb/wDB+ZSZCOnP8/xFMq+VB6/n 3qB4u/6j+o/z061V0/iXzW/zXUV2t9V3X6r/ACKpQHpx/n0//VURBHUfj2qyVI9x6/4+lNocWtVq u6/XsVvsVioPX8+9RFSPcev+P+ce9WymenHt2/8ArU+2tpLm4itox88rhR3Cjqzn/ZRQWPPQHvUg bfhrTw8jahKvyxEx2+QRukIw8g9QinYDyNzMOCldrSQWsVtBHBENqRIFHuR1Zv8AaY5Zj3Yk04qR 1/PtQQ3JO+6/r7hhUH2Pr/j/AJz71GVI+nr/AJ6VNRQL3ZbaP+vvK9FSlAenB/T/AOt/nioyCOtB Li16dxKaUB6cf59P/wBVOooBTa80QEEdR+PakqxTCmenHt2/+tQaqSe33dSKilII4NJQMYUB6cfy /wDrf54pmxvT9R/jU1FAH8K9FFFdBzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSgEkAAkkgAAZJJ4AAHJJPAA60AfVH7Gv7Ne r/tTfHbwt8N7dbq38LwSDxF8QtZtwR/Y/grSp4G1Ro5sEQ6hq8ktvoOjsVk2anqdtcyxPa21yyf2 paFoekeGdE0jw5oGn2uk6FoGmWGi6NpdlGIbPTdK0y1istPsbWJeI7e0tIIoIUH3Y41HOK/P/wD4 Jq/sor+zR8CbPUvEumi1+K3xTSw8U+NzPEFvdEsPId/DPgxyQHjOh2V1Nd6nCw3J4g1TVoDJNBbW hT9Faxk7vyW3+YBRRRUgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVK8c4ESnk4Z+ccdl6jqeSDwQPerbsE VmPRRn6+g/E8VlMxYlm5LHJ/w+gGAPYCgCtRU5APUfj3qMoR05H6/wD16AGUUUUAFMKA9OP5f/W/ zxT6KAICCOopKsVGU9PyP+P+P50AR0UEY4NFACEA9RUZQjpyP1/+vUtFAFeipyoPX86iKke4/wA9 aAG0UUUmk9wGlQfY+tRlSOv51NRU+9Hb3l+KAr0EA9alKA9OP5f/AFv88VGQR1FUpJ7b9uoERT0/ Ko6sUhAPUfj3pgQVR1C4W2t2cY8xvkiHq5zyR3Cj5j64AzzWiykc9R/L/PrXH6lP9qnJUjy4spH3 Dc/M+f8AaPTrlQvQ5oKirvyW/wDkYzBsknJJOSeuSepJ65J9epqMqD7H1/x/zn3q0RjgimFAenH8 v/rf54oNii0ftj3HT8fz74qEqR1/OtAgjgioygPTj27f5/zigClRUzR+2D+n+fpURBHUUAMKg+x9 agaL2x7jp/8AW/z1qzRTTa2FbqtH+D9V/TKBBHWux8O2PlxG9kX55QUhz/DED8zY9ZGGAf7igg4c 1i2dl9suY4QCEzvlI6CNSCx9ichVPQMy8V3yqqKqIoVEUKqgYCqowAB2AAwKG0+ln1tt9xLk1o19 z6d1/kx1FFFIpNPb7hhTPTj27f8A1qjII4NT0EA9aCXBPbR/h/XoV6KkKen5f4f/AF6joFzSjpJX Xf8A4PX5kZT0/L/6/wDn60wgjrU9IQD1FAcsZaxdn2/4HQgop5Qjpz/P/wCvTKCGmnrp/XcCAetR lPT8qkooKU2t9fPr/wAEr0VOQD1H496bsHqf0/woNE09j+FKiiiugwCiiigAooooAKKKKACiiigA ooooAKKK+4f2O/CvhP4r+G/2lfgpq3hjw/qfjjxZ8GtS8cfCTxBeaNp134o0rxz8KLj/AISs+HvD GtS276rpK+MdE/tKz1iGwuYbfULPTlhvY5YgABu2oHw9RX6xfsV/B34Rat8HLzTvi14a0HUPGH7X fjLxX8Efgdr+v6fp9zd+A7vwX4A1vVW8e+Hbm7tbm6s5r/4ka34O8HSyWDQXElwixyyC0WeC78I+ DHgXQvAP7OH7XHxc+I/g/Q9T1+wGg/s7fDjT/Fmi6dq39kfEfxdqU15401XSo9Tt7qLS/Fngrwpo 0l9pmrWKrqlhLczi0ubUSySsr7+TS9b6fgB8KUV95fG/4f6J8QfgD+x78W/hn4O0PStb8SWGq/s9 fEDS/Cei6boyap8UPBOsRL4Z1fVYdMt7W31DxV488PazDqN9qlwrX98bWE3s0jRow9t/bZ+EPwgs Pg/pzfBzw3oOm6/+yf8AEDS/2dvjVrehadp9pfeO9T1XwJoGpR/ETxHLZWsE1zPH8QtG8ceEvtV/ LcXj3QCEx2xt7e1L7eba9Lafn+YH5QUV+sGvR/B79n/48/sOfCXxd8NfhzrFp4L8DeFLr9ot/EHg 3w3qk+teJ/jwXv8AXLbxnLqOmzXGvD4b6Drej6j4XfVpJpNF2KNKjsQi7+Q+EfwL8I/BL9qH9pDV /i74TsfGXwt/ZE0vx54iv/DPiOystQ0bxvdX98PCnwg8P6jbarBdWczeK7nxFpOtWQvLeaLdY75o 5ghhlOb8rrz1t/l94H5nUV+rHh/9mvwFpn/BRHU9H1LTNMvf2d/DVtq37TzLcafb3Xhm5+B8XhZv idolo+mzx/Yr3w6txe6X4Nu7K7jFncQx3NrcJNCWSX8yfF+uweKPFnifxLbaPpfh628Q+Ida1y30 DQ7K103RdDg1XUbm+h0fSNOsYLaysdM02OdbKxtLS3gtre1hihhhjjRUAnf7k/v6Ac7Wlo39kf2v pX/CQf2l/YH9pWP9t/2MLU6v/ZH2qL+0v7KF6RZHUvsXn/YRdkWv2ryvtB8rfX6ceKr34MfsO+DP hT4ZPwI+HHx3+P8A8Q/hv4a+KnjrxJ8adPvPFPgTwXp/jKGa70HwX4f8Ew3lhZ3l9Y2cbPqmsS3U UzT7Jkuby3vIbDRfnHxf8SPg98ZPiL8FdU8JfArQfhF4oufFuj2HxO0jwnqEk3wu8Ti48R6THps/ h3wVqUF1J4bD2bXdvq+nrqdzplwjQKlq0n2i4mL+Wmut10v/AEgPnT4g/wDCv/8AhM/EH/Cqz4xP w9+3f8UqfiCNEXxmdN8mL/kYB4cLaIL77R5//IOJg8nyv+Wm+uOr9Rdc/Zm8PfG3/gpr8QvgXpOn 23hLwJF8QPE2oalpfhCx0rRV0/wp4Y0T+2r3SPDdikdrpGm3eqtbR6Np0jRR2Nhd6lHfXEbW8Eqt 9oN+z/8AHy0vP+EX0z/gk5+ztJ8I45TZLa6v8QvhxefGK50ZWEXnSfFz/hap1O21ya3Bla7j0648 i5fak0qx+c65lp6J6tL892B/PVRX6n237MHgz4R/8FNPAPwK1PRIvEnw21jxf4c1Oy8M+MY7DWn/ AOEa8W+GpNXTw74gWNrrTtSudAvJ7jSHu4pbiG+OmQ6gkrGcERXn7Sn7M3wv+LGp/CDQv2Qfgr4u +Cmi+M7zwj4j8ZeO9Jvtd+MfiK0tdZk0rXPF2j+Lpb+G18Ki4KXWo6LoOmaTDb2NqLW0jnsGybd3 7JvS/wDXmB+WtFfpRcfsYeErv/gob4t/Zii1rUNG+F3hjXdU8T6vqvnG51fSfhvYeD4PiJNp0F1N HO8+pR6Xd23hy21GaC5dbiRNTube58uWKSpf/tjfs7WWsyeEPDv7DHwHufghHdHTs69Z63c/G/Ud CjfyP7TX4qDV2v8AR9du7YfbPLS21BbO5k+zf2ldLH9scv2V9L9Fv6gfEvgz/hU/9geP/wDhYR+I Y8Uf2BF/wq0eDF8NnQD4p+0N5w8fnW2GoroH2XZ5R8OhtR+0bt48vFeeV9+/AHQPht4p+H37fGu6 V4LthomhfCRNb+G8Hi+LSvFHiPwZb3Hj+wh097XXpNMtjBrcOlyrZXeq6Zb2E1wpkQko7bs/9i/w 7retHxnP4I/Y8g/ai+INvPo8Wg6l4zkvbz4T+BrKSO+bUB4m8PhtH0PVdY1SVbP+zV1zxPaoLWC8 ks7eJ7eeS6L7+Vt2uq/D8QPhKiv2T/a5/Z28Q/8ADL2q/Gr4q/stfD79lz4s+CvH/hfRIIfhLfeH 7fwR8Q/B3iiK6s7gy+EPD3ibxNbaBrGg6tHZyi9nu457y3uHiH2hGYWXnHivUPgz+w74L+FPhYfA X4bfHb4+/EP4beGvip488T/GrTbvxX4H8G2HjKKa70HwV4d8FxXlhaXF7YWUbPqesNdQTvOyTLc3 sF3DYaKc19tXta66ee1gPCv2b/B/hTxB+zr+25r+u+G9E1jXPBvw4+G2oeE9X1LTLO91Hw1faj8Q oLC/vNDvLiKSfTLm8sibS5ns3hkmtyYZGaMla+a9N/4VP/wrXxH/AGufiH/wuH+39K/4REaavhv/ AIVqfC2xf7bPiNrph4oGv+Zv/soaYp04pt+1kNmv1D8E/FP4OfFf9k79t3xB4U+Eeg/BX4oL8Ofh 7B4x8P8AgGe9i+GnifRV+JGlPp/iHw74e1CW8n8Janp97LNpuraTb382m3Ntc6Xe2xa5a/EPyv4E 8MeGrr9gb49+LLrw9odz4p0n45/CfS9L8S3Gk2E3iDTdMv8ASdYkv9O0/WZLdtRs7C9kjje7s7e5 jt7l40aaN2VSFfff4kvwX4AfENFfpV4T0/4N/so/s7/Cj4xeOPhD4X+O3xs/aA/4SjWvBegfEYXV 98Nfh54C8L6qNFj1DVvDVtLDF4o1vxHe7bqCK5mRLexcJFcaZNY3Met+pfAHxx+zX+0/dfFuLxr+ zR8L/hv8VvDHwF+LvibwvN8MtKudK+GfiQ6R4Wnul+1eA9Ru9Ug8P+LvDM8cGtaBr+lXu28t01e2 1BI5ItOErv5O219O9tu1+oH5jab/AMKn/wCFa+I/7XPxD/4XD/b+lf8ACIjTV8N/8K1PhbYv9tnx G10w8UDX/M3/ANlDTFOnFNv2shs1o3Xwe8X2nwY0v47ynSv+EG1j4h6h8MbMLeyNrX/CS6boMPiO 5Mun/ZhEmnf2dOgjuhds73G6IwKo3n6K8CeGPDV1+wN8e/Fl14e0O58U6T8c/hPpel+JbjSbCbxB pumX+k6xJf6dp+syW7ajZ2F7JHG93Z29zHb3Lxo00bsqkfbuo/teCz/YS8G/Ef8A4Ze/Y/uvtf7S niHwX/wgd58FWm+G9t9h+HVjqn/CW2nhf/hJ0MPjW83/ANnX2u/b2FxpaJafZE2+YVd9F9q26/AD 8RKK++/2QtK1vxbqnxD1nwR+xjpX7SXxBuNVsrjQX8QJen4K/Dmyv5NSutQstV8K+bpeiXl1dytZ waFa654qgSDTbW4+xwo9rPLd/TH7XP7O3iH/AIZe1X41fFX9lr4ffsufFnwV4/8AC+iQQ/CW+8P2 /gj4h+DvFEV1Z3Bl8IeHvE3ia20DWNB1aOzlF7Pdxz3lvcPEPtCMwsnfW36r8t/62A+TPHHhvw7b fsA/AvxTbaBotv4n1P4+fFTS9S8RwaVYxa9qGmWWhaPJZ6dfavHAuoXdjaSO8ltaT3ElvA7s0UaM xJ+H6++vH3/KOP8AZ9/7OK+Lv/qP6LXwnpem3es6np2kWEYlv9Vv7TTbKIsEEt3fXEdrbRl2wqh5 pUUsxAXOTwKI9f8AE/zAo0V+rXxh8efAv9iTxdN+z/8AD/8AZx+Dvxu8ceCrDR7X4q/Fb49+H7/x xBr/AIv1DSbLVNUsfB3hf+0tMs/DWj6Ut7HZ2s8U3nvKskVxb3U9q+r6p5h8bfCHwc+M/wCzfF+1 Z8IPh7Z/BrxN4U+Itl8NfjL8MtDv7u98FT3GuaW+peHvG/guO9Ly6LaXciLpl5oMbJbwzO/lRA2L 6lrZfbTR7P8ALTpcD89KK/Wzxx4m+A37OXwG/ZK8faf+zt8LfiZ8ZPiT8IXudRPxI0WXVPh/Zafo /iDUILjxJrPhLTbrSU8W+MPEk95Hp66lq9866Vp/h5fITzL2QyctbXHwa/Zy+DHgX9oHxv8AA34f /Fr42ftOa1488ZeC/A3iaxni+C/wk8BaV4jmso44fBFlPHbaxJqd7Oo0bTJrgQ6boqQWsF1psmm3 Ca4X8vJbavX7ttwPy8or9fPgD44/Zr/afuvi3F41/Zo+F/w3+K3hj4C/F3xN4Xm+GWlXOlfDPxId I8LT3S/avAeo3eqQeH/F3hmeODWtA1/Sr3beW6avbagkckWnCX8g6E730tYAooopgFFFFABRRRQA UUUUAFFFFABRRRQAV+qf/BKj9lD/AIXt8aB8T/Fum/aPhj8Gryx1eaO5i3WfiTx4SLrwzoJWRfLu bXSmjHiPWowZUWO10nT72BrbXA1fmp4J8G+I/iJ4v8NeBPCGmzav4n8Xa3p3h/Q9OgB33Wpapcx2 tsrvgrBbo8nm3V1KVgtLZJrmd0hikdf7av2YvgF4c/Zo+Cvg34S+HhDcSaLYi78S6zHF5cniTxfq KpceIddm3Dzdl1e5g06KZpJLHR7XTdNEjx2UZqZuyt1f5dQPfqKKKxAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiimO21cjqThRz1P0B4AyT7A0AVLmTLeWDwvLY7t6HnsMHBHU+oqrVhk/vDJ9e5Jzzn1Jyef rioihHTkfr/n6UAMooooAaVB9j61GVI9x6/4+lTUUAV6KlKA9OD+n/1qjII6j8e1ACUUUUAIQD1F RlCOnP8AP/6/+eKlooAr0VOVB6/n3qIqR7j1oAbRRRQA0qD7H/PWoipHX86nooAr0VKUB6cH9P8A 61RkEdRQAlFFFS4p+T7oCMp6fkf8f8fzqOrFNcqFLPgKoJJPYDknP4Uryjurrut/6/q4GNqlyYYD GhxJNlQckFU/jbIIIJHyrjoTntXJkEdRWldyNcTvL/CThB3VF4UdByfvHvuYgcYqoR1B/GrNoqy8 92VyAetRlPT8qsFPT8v/AK/+frUdBRXI7EfgajKen5H/AB/x/OrZAPUfj3qMoR05H6/5+lAFQjsR +BqNo85x+R/of8/WrZAPUVGUI6c/z/8Ar/54oAoNHjOPyP8AQ/5+tR1fIB4Iq7p1iLq5G8Zhiw8m e5z8qdOjkc+qhh1xQBraRZ/ZrcSOMTTgO2eqp1RPY4O5hwdzbT90VrU8oR05/n/9f/PFMoMZXvr1 /LyCiiigkKKKKDRT76+fUKQgHrS0UF6Nd0RFCOnI/X/6/wDnimVYppUH2Pr/AI+tBLh1i7Pt/wAE hpCoPX8+9PKke49abQLm6SX9f11RCUI9x/ntTasU0qD7H1oBwT1i/l/X6kNFOKkdfzptBm01vofw n0UUV0AFFFFABRRRQAUUUUAFFFFABRRRQAV7V+zl8VZ/gh8dfhX8VonkW38GeMtJ1HV0hV2lufDc 8x07xTYxqmXLah4bvdVsQAr5NxykgyjeK0UAfe37XXx2+HVx8WvhRY/su61NJ8J/2e9J02b4Y6n/ AGXq+jJJ4v1DxZefEfxJr8Wma3p2i6tbSjxFf2emyfadPszN/wAI/FNb+ZbyRXU3a/t5/tEfBT4o 6F4C8Kfs/Xc58PeIfFXjT4//ABbs30rWNKS2+MnxHi0u1v8AR3Gr6VpQv5vDVpYahANS0xL7SrmP WNtpqNyInEf5qUUrLTy/H1/MD9MP2E/2kPgx8K/B/wAQfCvx4uZW07wl4v8AC37Q3wU01dJ1nVIr /wCNHgXSta0200gtpOm6kmnS+IIbnQok1LUm0vTLZdKf7ZqkCvGRxX7Gnxz+GWmfEb4s6B+1Hrlx H8JPj1pMd/8AEHVX0rWNbY+OPDPjKx+IPhfWrnTtB0zWdSuGm1WDWdNc22mT+W2vNLK8Fsk8g+BK KLLXfX8PT8wPX/2gPijd/Gr41/FD4qXbS48b+M9b1nT4ps+ZZ6G909v4e047vmxpmgwabpybudlq uea+5f2o/wBqr4V/Ev8AZx8Jaf4I1O5ufjl8Yx8MLv8AajLaVrFl/pXwR8HP4V8NW82o3+mWum6t D4i1S7HiaE6PqOr/AGM6ZFDfy2kxSKb8u6KLLTy/r+vMD9Rp/wBqr4VSfsRDQl1S4/4apm+HNl+y 9cRjStZAHwGsPHcvjSC/GtHTP7BMDaIIfBMmm/222qEKLhdMW0VZk+Ude/4Zl/4ZW8D/ANg/8JF/ w1R/wsrWP+E38/8Atv8AsD/hXf2TV/7N+z+b/wAU3t8z/hHvsv2H/iffb/7f/tP/AIl39l18z0UW t33v/wAD08gP0rl+JP7LH7VfgD4Z6d+0P8QfF3wB+Nfwo8E6R8NE+JuleBtQ+JPgr4geCfDnnR+G n1zw5oM8PiG08U6XbyyW1zeRPDb3XmSXM13eJNa2Gi+G+PD+yx4D8a/B6z+CPivx947HhbxTp+s/ Er4r+KtIbwxoOvQx65pN1aweFPAH2S78Q6ZZ6LZWl3LPPqF7Nf301y8CWlyI7eVfkaii3m7a6ev/ AA4H6A+LP2qtF8E/t9+N/wBpb4bGDx54I1Dx3rtz9iu7TUdHtfGfgbxLo7aDr+mS2mtafa6hYPf6 XeXi2bajpYaz1CK0u5bOZIfKk2r34e/8E1NR1V/H1n+0R8ZPD/hSWb+1JfgI/wAI77UPiFAjt9om 8N6d8ShfN4IjijYtZWd5f/bZY7cRtdajdzq93J+clFFuza0t8gPsf4D/ABX+EHg79tXwH8W4NHk+ E3wZ0X4lf27baPNc+IPGU/hLwwlvdQ28VxcQW+reINYuF3pJOLe2vJVmneOBWt4kI+Z/GmqWOreP fFmtafP9o0zU/F+vapY3PlTRefY3us3V3bT+TPHHcR+ZbyJJ5U0UcybtkkaOCo5Cii2t/KwH6V/F j9r7w14Z/wCCifir9qL4S3EHxC8B3OqaJCba6sNW0O28YeFLz4aaF4M8XaRLZeINLsdTsJJUTVbe zm1DSdkOoWtpqAtru1WMT07/AOHn/BNTWtYk8fWP7Rvxd8IeFLi5OrXHwHn+D2qav48toZHNzN4Z 0j4jQ30vguCOMlrDT73UjqLxQCJrzULyZZLt/wA4KKLbWbWlvl9wH2/8Ifiz8HPB/hP9trRbO41b wdpPxX+HH/COfB/w1ro1LxNrNyU8b2erWOianrmi6KNNhvLXRod8+oaoNNsZHjMS3dxOQ83o/wAA /jL8FfEH7L17+zP8TPjR4/8A2adQsfidqPxEt/iB4O8La34w8N+OLHVdFstKfw/400Hwnd2PiK8u NNlsklsQ066WYorGSR2uLRET82aKLLz3T+aVv6uB+lfjD4jfspeDv2VPjj8BfhL478ZeNvGPiDxl 8JfFY8feMPDGreHo/idc6TqmsprNj4Y8Pw2+px+E9C8FaYLS+SXxlrNrrOv6h4i1SO0SeHTrSIk3 xH/ZX/as8AfDKw/aG+Ivi39n/wCNfwo8EaR8NB8SdM8Caj8S/BXxC8FeHPNj8My6z4e0CaDxDZ+K dMtpZLa7u0khtrvzJLmS6vFmtbDRfzUoot5u97367WA/VSD4ifsUfCP9m39pn4NfCjx34v8AHfxB +JHhHwhDF8TPFXg3WfDVh4zv9J8Zaffx+EvB3hyGy1GfwvpOlafDfazqd/4v1DT5dTvp7a2gub8W lpBZ/M/g34oeBdK/Ys+NHwlv9c+z/EHxZ8Yvhr4q8P8Ah/8AszWJf7Q0Hw/puqW+r3/9qw6fJolr 9kmuYU+y3upW17Pv3WtvMquy/IdFFvN7p/NAfof8Pviz+zl8a/gL4E+AP7TniHxb8LPEPwbvPEZ+ Evxq8L+G5fGmnReGfFV+uqat4R8b+FrFl1m/htdS2z6TcaWN628NvALvTBb3ceufT/7Kmg/sk+Ab v4+aD8H/AB94y+PPxAvP2X/jjqGpfE7VvBF18NPA3g7wrp/hf/TLXRfDOt3F94iutc1m9ubC2vdV 1GWGzs9Phe3spFa+uobj4b+EHxg/Zkl+G9l8Jv2jfgZq2qWmi6tqur+H/i/8GdR03w98WbU6zJHJ e6b4hg14t4f8Y2aGGCLS31aWJdHtLeO2tbN3eW4bs/FX7R/7Pnwz+GHj74YfsifDn4jaLe/FrRv+ EV+Inxd+M+taBqHj258DvPHcX/gvw/o3hJT4c0jTtdeNYtavonWa8swbae0nnTTr7S010V9/K26d 7/p3A8+8G/FDwLpX7Fnxo+Et/rn2f4g+LPjF8NfFXh/w/wD2ZrEv9oaD4f03VLfV7/8AtWHT5NEt fsk1zCn2W91K2vZ9+61t5lV2X1D4NeNP2cPiH+yhd/s4/G/4ta58DNd8MfGy8+L3hXxna/DrXfiV o2uWWq+DrTwxd+HrjRvDlxbX9vqEUttNci5ubqxs1R7Ixzzn7XCn550U7b76u/zA/TD4JfF/4Faz +zZrX7MHj345/ED9nh9L+LOteP8AS/if4Q8Ha94l8O/EXRtR0u10eHS/G3hbwvfW3iVrq2FjDd2V rLdtp0Ma2PnTS3VkirF4w+I37KXg79lT44/AX4S+O/GXjbxj4g8ZfCXxWPH3jDwxq3h6P4nXOk6p rKazY+GPD8NvqcfhPQvBWmC0vkl8Zaza6zr+oeItUjtEnh060iP5qUUW83ve3mB9eeL/AIoeBdU/ Yq+D3wksdc8/4heFfjR8RvFmveH/AOzNYi+weH9e0fTLXSdQ/tWbT49Euvtc9vNH9ls9SuL2DZuu baFGRmw/2mrr9m6x8e+B739k6bxNbeF7P4eeD7rxHca82tpfwfE23mvptamtm13/AEtZooU0iS9a w/4kQ1hb46B/xLBb18v0UJW77t/f/WgH6g+PvF/7GX7Ymp2vxZ+Kvxa8Wfsv/G3UdK0iz+KFvD8L 9Z+KPgDxxrejaba6WPE/haDwrdW2qaDc6rZ2luLy01J47aCaJEWC7mS51jVPKPjt8afgroHwT0j9 lv8AZn/4SrW/Aw8ar8RviX8U/GthBo2t/Ejxdbaa2laTa6ToMRabRPCOjWj+ZbWl95V7LeRQPJAJ YbzUdZ+FaKLetlsui/rpcD68/aR+KHgXx98Lf2SfDnhLXP7W1n4Y/Be68J+OLP8AszWLD+xPEEni rU9STT/tGp6fZ2upbrK4hm+1aRPf2Q3+WbkSq0a+p/D74s/s5fGv4C+BPgD+054h8W/CzxD8G7zx GfhL8avC/huXxpp0XhnxVfrqmreEfG/haxZdZv4bXUts+k3GljetvDbwC70wW93Hrn54V9lfCD4w fsyS/Dey+E37RvwM1bVLTRdW1XV/D/xf+DOo6b4e+LNqdZkjkvdN8Qwa8W8P+MbNDDBFpb6tLEuj 2lvHbWtm7vLcMWsuujvpur3+/fbsB9yfsqaD+yT4Bu/j5oPwf8feMvjz8QLz9l/446hqXxO1bwRd fDTwN4O8K6f4X/0y10XwzrdxfeIrrXNZvbmwtr3VdRlhs7PT4Xt7KRWvrqG4/FGvv3xV+0f+z58M /hh4++GH7Inw5+I2i3vxa0b/AIRX4ifF34z61oGoePbnwO88dxf+C/D+jeElPhzSNO1141i1q+id ZryzBtp7SedNOvtL+AqEt99bb77fgAUUUUwCiiigAooooAKKKKACiiigAoor6K/ZV/Z78QftO/G7 wh8KNE+0WtjqNydT8X63BGHHhvwZpkkUmv6yxZWiE6wyR6fpSTAQ3Ot3+mWcjItyXU21A/Yf/gjd +yf5EGpftV+NdMxNcDUfC/wht7uHBjtx5lh4s8awbwebhvtHhTSJ1KssUfibfG0dxZTV+/8AXPeE vCnh/wAC+F/D3gzwpplvo3hrwro2naBoWl2q7YLHS9LtYrOyt0zlnKQRIHlkLSzSb5ZXeV3Y9DWD d3cAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVctvbPZSQv8mYc9yMD2HHDGpZGwMAkFuAR2Hc+x7D 3IqIAAADoBgfQUEzvbRevoFRlPT8v8P/AK9SUUGam15orMmeowf8/n/nmoipH09f89KukA8GoymO nPt3/wDr0Gqknt93UqUVKyA9OD6dv/rf54qMgjrQMSiiigCMp6flTCCOtT0hAPBoAgop5THTn27/ AP16ZQAUUUUANKg+x/z1qIqR1/PtU9FAFeipSgPTj+X/ANaoyCOooASgjPBoooAjKen5H/H/AB/O o6sUhAPWgCCsbVrnaq26Hl/mkI7ID8q8HqxGTkH5R7itmYrCjSMflUZPr7AepJwB6k9K5KdXlkeU nLOxYj0yeAPZRgDvgDPc0FwV3fovzKlIVB6/n3pxBHUUlBqQlSPcetMIB61ZppQH2P8AntQBUKEd Of5//X/zxTKslSOv59qaVB6/n3oArFQfY+tRlSPcev8Aj6VYKke49f8AH/OPem0AVioY4xkngY6k +nv6V1tjai1gVD/rG+eQ/wC0QPl6nhR8o9cE96zdMsxNKZmHyRY29MGXqvGP4R8xxjB2+tdAVI9x 6/4+lBnN9PmxtIVB6/n3paKCVJrTddn/AFoQlSPcev8Aj/nHvTasU0oD7H/PagLJ/C9ez/R9SGil Kkdfz7UlBO24UUUUDTa2CiiigtT7/eFMKA9OD+n+fpT6KC2k13ICCOo/HtSVYphQduPY/wCf8aCH FrWL+X9bkVJgeg/IU4gjrSUBzr7S19F+ux/CPRRRXQZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFf1of8Etf2UP8Ahn/4IxePfFmm/Zvi j8YrXT9f1aO5i23vhzweEa48K+GSsiiW1uZre4bXddgKwyrqF/b6ZexvJocDj8V/+CY/7KB/aO+O dt4l8U6b9p+FXwkm07xN4qW5iLWXiDXvOeXwr4QO4GO4ivb21k1TWoGWSGTQ9MurC48p9Vs3b+uj p0rOb6ff+gBRRRWYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdOtFNYbhtzjPU+3p+PT6ZoE2krshzuO71 6ey9vz6n647CilII6j8e1JQPfYKKKKCXFPyfdBRRRQZuLj/mv60EIB6j8e9RFD9R/nt/+upqKBqb W+vn1/4JTKen5f4f/XphBHWrpUH2Pr/j/nPvUTIe4yP8/lQaJp7FainlCOnP8/8A69MoGFIQD1H4 96WigCIoR05/n+X/AOumVYppUH2Pr/j/AJz70AQ0U4qR1/Om0AFBAPWiigCMp6fl/wDX/wA/Wo6s UhAPWgCCinlCOnI/X/6/+eKrXEohiZ+p6KPVjwOx4HU8dAaA3MrU7jc4gU/KnzPju56L1/hHJyOp 9RWVU7DeSzcsSSW4BJPJJxxz9PpioipHuPX/AB/zj3pNJ+T7rf8Ar1NLSjtqv66dCNkVhyPx/wA/ 59KrvERyOR/n/P8AWrVFK7W+q7r9V/kUpp+TM+irrRqw6YPb/Pb8PxzVZo2X3H+f8+vtVb7FEdMK A9OP5f8A1qfRQBAQR1FNERkZVUfMxAAHck4/yePU1ZIB61p6baZJuD0GVjB9ejN68D5QfXd+AJuy bL9vCtvCkS87Ryf7zHlj+J6DsMDtU1KQR1FJQYPXUYUB6cH9P/rVGQR1qeigCvRUhT0/L/D/AOvT CCOtACUwoD04/l/9an0UFKXSSuvxXoyAgjg0lWCAetRlPT8v8P8A69Act9Yu/l1Xy/yI6KKKCQoo ooGm1sFFFFBopp76P8P69QIB603Yvp+p/wAadRQVZPdJn8uP/Do79tf/AKErwj/4cLwx/wDJlH/D o79tf/oSvCP/AIcLwx/8mV/W9RV877L8f8zA/kh/4dHftr/9CV4R/wDDheGP/kyj/h0d+2v/ANCV 4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6Erwj/wCHC8Mf/JlH/Do79tf/AKErwj/4cLwx /wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8ADheGP/kyj/h0d+2v/wBCV4R/8OF4Y/8Akyv6 3qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/JlH/Do79tf/oSvCP8A4cLwx/8AJlf1vUUc77L8 f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a//QleEf8Aw4Xhj/5Mr+t6ijnfZfj/AJgfyQ/8 Ojv21/8AoSvCP/hwvDH/AMmUf8Ojv21/+hK8I/8AhwvDH/yZX9b1FHO+y/H/ADA/kh/4dHftr/8A QleEf/DheGP/AJMo/wCHR37a/wD0JXhH/wAOF4Y/+TK/reoo532X4/5gfyQ/8Ojv21/+hK8I/wDh wvDH/wAmUf8ADo79tf8A6Erwj/4cLwx/8mV/W9RRzvsvx/zA/kh/4dHftr/9CV4R/wDDheGP/kyj /h0d+2v/ANCV4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6Erwj/wCHC8Mf/JlH/Do79tf/ AKErwj/4cLwx/wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8ADheGP/kyj/h0d+2v/wBCV4R/ 8OF4Y/8Akyv63qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/JlH/Do79tf/oSvCP8A4cLwx/8A Jlf1vUUc77L8f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a//QleEf8Aw4Xhj/5Mr+t6ijnf Zfj/AJgfyQ/8Ojv21/8AoSvCP/hwvDH/AMmUf8Ojv21/+hK8I/8AhwvDH/yZX9b1FHO+y/H/ADA/ kh/4dHftr/8AQleEf/DheGP/AJMo/wCHR37a/wD0JXhH/wAOF4Y/+TK/reoo532X4/5gfyQ/8Ojv 21/+hK8I/wDhwvDH/wAmUf8ADo79tf8A6Erwj/4cLwx/8mV/W9RRzvsvx/zA/kh/4dHftr/9CV4R /wDDheGP/kyj/h0d+2v/ANCV4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6Erwj/wCHC8Mf /JlH/Do79tf/AKErwj/4cLwx/wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8ADheGP/kyj/h0 d+2v/wBCV4R/8OF4Y/8Akyv63qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/JlH/Do79tf/oSv CP8A4cLwx/8AJlf1vUUc77L8f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a//QleEf8Aw4Xh j/5Mr+t6ijnfZfj/AJgfyQ/8Ojv21/8AoSvCP/hwvDH/AMmUf8Ojv21/+hK8I/8AhwvDH/yZX9b1 FHO+y/H/ADA/kh/4dHftr/8AQleEf/DheGP/AJMo/wCHR37a/wD0JXhH/wAOF4Y/+TK/reoo532X 4/5gfyQ/8Ojv21/+hK8I/wDhwvDH/wAmUf8ADo79tf8A6Erwj/4cLwx/8mV/W9RRzvsvx/zA/kh/ 4dHftr/9CV4R/wDDheGP/kyj/h0d+2v/ANCV4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6 Erwj/wCHC8Mf/JlH/Do79tf/AKErwj/4cLwx/wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8A DheGP/kyj/h0d+2v/wBCV4R/8OF4Y/8Akyv63qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/Jl H/Do79tf/oSvCP8A4cLwx/8AJlf1vUUc77L8f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a/ /QleEf8Aw4Xhj/5Mr+t6ijnfZfj/AJgfMn7IX7OWifsufAzwn8L9OFtc64kR13x3rdumP7f8barD A2tXwcqrvZ2Yht9F0fzFWRdG0vT1mU3HnO/03RRUb6gFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUg GM+p6/0H4UtFBMo8y3sFMKZ6ce3b/wCtT6KDP3o/1oyAgjg0lWCAetRlPT8v8P8A69Bamnvo/wAP +AR0UUUFhRRRQQ4J7aP8P+AFFFFBnZxfYYUB6cfy/wDrf54qJk7Efj/gf8/nViigtT7/AHoolCPc f57U2rhT0/L/AOv/AJ+tRMg7jB/z+f8Anmg032IKKcVI6/nTaACmFAenH8v/AK3+eKfRQBAQR1pK sVGU9Py/+v8A5+tAEdFKQR1pKACuf1CbzZtq/cjyoI6M3RjwcHBG0d8A9jWtdz+TF8pw7nanqP7z dD90fqQO9YNA07bbleipSg7cex/z/jUZBHWgtT7/AHoYUB6cf59P/wBVREEdR+Pap6KBuKlqtPNb FeipSmenHt2/+tUZBHBpW6rR+Wz9V/TFeUd9V/XXoQtEG6cH/P8AnnPtiq7Iy9R/n/P4e9XaCAet K9t9PPp/wPn95aknt9xUhiaaRI16scE+g7sfYDJ/SupRFjRUUYVFCj6D+p6n3qnY2mxTNgBpBhR3 Ceo/3jz9ADzmr1NNPZmc3d26L8wIzwajKen5H/H/AB/OpKKZBXoqcgHqKjKEdOf5/wD1/wDPFADK QgHg0tFAERTHTn27/wD16ZVikIB6j8e9AEFFOKEe4/z2ptACEA9ajKEdOR+v/wBf/PFS0UFXT+Jf Nb/PuV6KmKg/X1/z1qMqR7j1oBx6rVd1+vYbRRRQSFFFFA1JrZnqFFFFAgooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKCHBPbTy6f8AQgHqPx71GUI6cj9f8A69S0UEXlHT8H t8v+AV6KmKg+x9f8fWoypHuPWg0Uk/J9htFFFBVr7hRRRQZuHb7v+D/mFIQD1FLRQQm4vt5ETIe3 I9O//wBf/PFQlB24Pp2/+t/nirdIVB6/nQaKae+n5FEgjqKSrTIR7j6fzFQlPT8j/j/j+dBZHRQR jg0UAIQD1FRsmMkdB69qlqneS7FEan5nBz7J0PY/ePHUcA0AY1y7TSFgflHyov8Asjv1Iy3X8s9K qVfKg9fzqJk9RkfqP8KV+j0f4P0f/DMbXVar8V6r/h0VaCAetPKEdOf5/wD1/wDPFMpiIyh7c+x6 /wCfyqOrFIQD1H496BptbMgoIB608oR05H6/5+lMoNFNPR6fl/XqRlPT8qfbwmaVU5AHLn0Udfz4 A+uaWta1i8uPcRh3wTxyAPug/mSfc0CkktVpfoWQAAABgAAADoAOAPwoIB6j8e9LRUOHWLs/66mZ EUI6cj9f8/SmVYppUH2PrSU2tJL5/wBfoBDRTipHuPX/AB9KbWiaewCFQev596iKke49f8f8496m ooAr0VMUB9j/AJ7VEVI6/n2oASmlQfY+v+P+c+9OooAhKkdfzptWKYUB6cfy/wDrf54oAiopSCOt JQNNrZ2GFAenB/T/AD9KjII6j8e1T0UDvF7+6+62+aK9FSlB249j/n/GmbG9P1H+NAOL7X81qj06 iiigkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooBpPcKKKKDNw7 fcMKA9OD+n+fpUZBHUfj2qeigSk46PX13K9FSFPT8qYQR1oNFJPb7uolFFFANJ7oKKKKDNwa21/P /ghTSoPsfWnUUCUmv8n/AFoQMnqMj1/zyKhKEdOR+v8A9ertMKA9OD+n/wBag0Uk/J9iizBAWbgK CT+H9f61jSlpHMh6tjj0A4Axk9PYnnJ960r2TBEQGDwzn9VXpg9ieeOOOaz6Bu/S3o+vz6Feipio PsfWoypHuPX/AB9KN9wUteqfb/J9SMqD7H1qFo/UfiP8/wA/wqxRU2a21XZ/o/0ehd099H3X6r9V qUSpHuPWm1dKA9OD+n/1qgaP1GD+h/z7U009Nn2e/wDwfkJprXdd1t/wPmQ00qD7H1p5Ujr+fakA JOAMk8ADqT6UxD7eAvJkjKJyT2Jzwp5GM9e44x3rVp0EXlRhf4jy3+8f8OlPKA9OD+n/ANb/ADxQ BFRSkEdaSgAooopNJ7q4BTCgPTg/p/8AWp9FQ4taxfy/rcCAgjrSVYqMp6fl/h/9emp9Ho/w/wCA BHRSkEdaSrAYUB6cfy/+tUZBHBqeggHrQBXoqQp6fl/h/wDXqOgAqMp6fl/9f/P1qSigCuRjg0VO QD1FRlCOnI/X/wCvQAyiiigd2tm18z0iiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFAmk90FBAPWiigzcGtVr+f9ehGUPbn2PX/P5VHVikIB6j8e 9AKbW+v5kFFPKEdOf5/l/wDrplBomns7hRRRQDinv94VHLIIo2c9hwOOWPAAyR3984zUlZd5IXfY PuIevPLkYOeg+XkDr1P4BnyO66oqMS5Zm5LElu2Sev09vSoinp+R/wAf8fzqSig1K9FTkA9RUZQj pz/P/wCv/nigTSe6ISgPTg/p/wDWqMgjqPx7VPRQK0lt7y7Pf5Pr8yvQRng1IU9PyphBHWk0nuOM uz16p/qiIp6fkf8AP8/zqS2hBk8wjAToPVj0OPbr6ZxjpSgEkAdTV1V2qF9Ov170JNdbrz3/AOD+ ZTafSz8tv+B+Q6iiimIKjKen5f4f/XqSigCAgjrSVOQDwajKY6c+3f8A+vQAyiiigAooopOKe/39 QEIB4NRlMdOfbv8A/XqWiotKO2q/rp/kBXoqcgHqPx71EUI9x/ntVKafkwG0hAPWloqgIihHTkfr /wDX/wA8UyrFNKg/X1/z1oAhopxUj3HrTaAEKg9fzpnl+/6f/XqSigD0CiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooJcU/XugppU H2Pr/j/nPvTqKDNxlHVfev1ISpH09f8APSm1YphQHpwf0/8Arf54oKU+/wB5Vmk8tCf4jwo46+uC eQOp61mY9efXPf3P481PO5d/9lcheuD6tg45J9ugHrUFBoRlPT8v8P8A69MII61PSEA8GgCCinlM dOfbv/8AXplACFQev596iKke49f8f8496mooAr0hAPBqcoD7H/PamBGLBfXvzigTSfr3W46CIcue ey57epyPy6DipihHTn+f/wBepAAAAOgGKWga9b+ZXoqcqD1/PvURQj3H+e1ADaKKKACiiigBCoPX 8+9RFCPcf57VNRQBXoqYqD7H1/x/zn3qMqR1/OgBtFFFABRRRUuKfk+4DSoPsfX/AB/zn3qMqR1/ OpqKm8o76r+vu+YFeipSgPTj+X/1v88VGQR1qlJPb7gEphQHpwf0/wA/Sn0VQEBBHUfj2pKsU3Yv p+p/xoA7qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACq1zJtTYPvOCO3C/xH8R8o9Cc9qsk4BJ6Dk1nufMYse/TrwB0H9T 7k0E8qun/wAMyvgdMcelRlPT8v8A6/8An61MUI9x/ntTaCiAgjrSVOQD1FRlCOnP8/8A69ADKQgH qPx70tFAERQjpz/P8v8A9dMqxTSoPsfX/H/OfegCGpEHf8v8/wCf1pNhzjt3I9P6enPepaACiiig AooooAaVB9j6/wCP+c+9RlSOv51NRQBXoqUoD04/l/8AW/zxUZBHUUAJRRRQAUUUUAMKA9OP5f8A 1v8APFRkEdanooAr0VIU9PyP+P8Aj+dRkY4NABRRRQAUUUVDgnqtH+H/AAPkBGU9Py/+v/n61GRj g1YpCAeopc0o6SV/P/g9QIOvSr/9mXn/ADyH/fyP/wCKqfTbTzJhMwzHEcjPeUYKjt9375x0IUEY NdFVp3V0AUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAoopGYKCTnA9Bk+wA9SaAIpDn5AfQt06dlI6/N1PHIBHeoyoPsfWlGeST kkknrjnsM9gMAfTOM0tBk5u+mxCVI9x6/wCPpUZUH2Pr/j/nPvVqmFAenB/T/wCtQWpJ+vZlQqR1 /Om1ZII6j8e1RlAenH8v/rf54oKISoPX8+9RFCPcf57VOQR1pKAK9FTFQfY+tMCHPPT+f+fw70AO QYGe5/l/nn/9VBQHpx/L/wCt/nin0UAQEEdaSrFRlPT8v/r/AOfrQBHRSkEdaSgAooooAKKKKAIy np+R/wAf8fzqMjHBqxSEA9RQBBRTyhHTkfr/APXplABRRRQAUhAPUUtFAERQjpyP1/8Ar0yrFIVB 6/nQBBRTipHuP89abQAUqqXYKoyzEKAO5JwB+dJWvpkGWNww4GVj9yeGb8B8o6g7m7ijfcDTt4Vg iSMYyBlj/eY8sfz4GeQoA7VNRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABULncwHZTk9Dlu3b+H6jn6VIzbRnv0H1PT8O59 gahHHv6n1Pc/iaA3CiiigycGttfz/wCCFFFFBAVGU9Py/wAP/r1JRQWptb6/mVyOxH51GU9Py/8A r/5+tWyAeDUZTHTn27//AF6DRNPZlQjHBoqcgHgioyhHTkfr/wDXoGMooooAKKKKAEIB6ioyhHTk fr/9epaKAK9FTlQev51EVI9x/nrQA2iiigAooooAKQqD1/OlooAhKke49abVimlQfY/560AQ0UpU jr+dJQAUUUUAFNKg+x/z1p1FADI4XkkSNRy5xnsB1JPsoyT3OOM11EaLGixoMKgAH+J9STyT3JJq jYQ7VMzDl+E9kB5P/AiPToAQcNWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpgdTx9B3PUdP54oE3ZX7ELHc2eoHA9z 3PT8Bz2yOtJTyhHTkD8//r/54plAJp7MKKKKBhRRRQJxT3+/qFFFFBk4teaCiiignbYQgHqPx71G UI6c/wA/y/8A11LRQaKff7ysVB6/nURUj3H+etXCoPsfX/H/ADn3qMqR1/Og0TT2KtFTFQfY+tRF SOv50AJRRRQAUUUUANKg+x9ajKkdfzqaigCvRUpQHpwf0/8ArVGQR1FACUUUUAFFFFABTCgPTg/p /wDWp9FAEBBHUUlWCM8Goynp+X/1/wDP1oAjqa3hM0qp26ufRR1/E9B7kds1DW5ZQ+VFuYYeTDH1 C/wj24OSOuTg9KALYAAAAwAAAB0AHAH4UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIOcn16fT/6/X8qWigmSbWn/AA4U hUHr+felooMtU+qZCVI9x6/4/wCce9NqxTSgPsf89qC1Pv8Aev8AIhopSpHX8+1JQab7BRRRQAUU UUEuKfkwooooMnFrf7+gUUUUAm1sMKA9OP5f/W/zxUZBHBH+Bqeig0U099PPp/wCoUB6cH9P/rVG QR1FWynp+X/1/wDP1qMjsR/n/Pegsr0VIU9PyP8Aj/j+dR0AFFFFABQRng0UUARlPT8j/j/j+dR1 YpCAeooAgop5Qjpz/P8A+v8A54plABRRRQAUUUdelAFi2hEsg3AFUwzZ/QfiRz7A1sVDBF5UYX+I /M31P+AwPwqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKBNJ7hRRRQZuDW2vl1/wCCFMKA9OP5f/Wp9FBK bT00/rsQEEcGkqwQD1qMp6fl/h/9eg0U099H+H/AI6KKKCwooooAKKKKCHBPbTy6f8AKKKKDNprd BSEA9RS0UApNbfd0IihHTkfr/wDXqMgHgirNIVB6/nQaqafkymUI6c/z/wDr/wCeKZVoqR7j/PWm FQev596CiCinFSPcev8Aj/nHvTaACiiigApCoPX8+9LRQBCVI9x6/wCP+ce9NqxTSgPsf89qAIau WcW9y7DKp0z3bt+Q5+uKrBGLBQMkkAY7k/55/PpW1HGI0VB2HJ9SeSfxPbtQA+iiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooE4p7/AH9QooooMnBrzQhAPWoyhHTkfr/9f/PFS0UCUmvTsV6K mKg/X1/z1qMqR7j1oNVJPyfYbRRRQUFFFFANJ76hRRRQZuHb7n/mFFFFBntuFNKg+x9adRQUpNea 8yEqR1/OoygPsf8AParVMKA9OP5f/W/zxQaqSe33FMqR1/PtSVZII4IqMoD04/l/9agZFRSkEcGk oAKKKciF2Cjv39B3J+lAFq2j6yH6L0/E/XsPxq5SKAoCjoBgUtABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQS4p+TCiiigycWt/vGFAenB/T/P0qMgjqPx7VPRQNTa81/XUr 0VKUHbj2P+f8ajII60Gqknt93USiiigYUUUUCaT3QUUUUGbg1tqvx/4IUUUUEARng1GU9PyP+P8A j+dSUUFqbW+v5/8ABK5HYj86jKen5f4f/Xq2QD1FRlCOnP8AP/6/+eKDRNPZlSr9tHtXeerdOnC/ z5/liolj3sARwOvXj+XXpV7pQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKCHBPbT8v8AgBQQD1oooM2mt9P67kZT0/Ko6sUhAPUfj3oKU2t9fPr/AMEg op5QjpyP1/z9KZQaJp7MKKKKBhRRRQS4p+vcKKKKDNxa813CiinKMn2HX/CgSvdW3HouBnuf5dqf RRQbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUA0nvqFFFFBm4dvu/4P+YU0qD7H1p1FBGqfVMhKke49f8fSm1YphQHpwf0/+tQWp9/vIqKUgjrS UGm4UUUUAFTKMD3PX/P+e9MQZOew/nUtArJO6WoUUUUDCiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigTSe4UUUUGbg1tqvx/4IVGU9 Py/w/wDr1JRQSm1t9xAQR1pOtTkA8GkCAHOfp/n/AOtQaxlfTr+AoGAB+f1paKKCgooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooJcU9/vCiiigIx5b9X+gUUUUFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfn r/wVF+NvxO/Z5/Y78cfFb4QeJn8I+O9A8TfDyDTNaXTNG1lYrbVfGekadqVtLpuv6fqml3MF7Y3M 9tKtxZSFUkLwtFKqSL+JPwN/4OB/i94fkstM/aB+EnhT4i6YmyG48TeAbq48D+KlTIL3t1pN82t+ GdYuQNwFpYp4RtnBQ+dGUYy/onDnhdxbxbkFbiDh/D4PH4ehjsRgKmC+u08NmDq4elh60p0qWJhT w9aEo4iChGOLp1XKMk4/DzfA8Q+JfCnCmeUMhz/FYnAYjEYKhjqWLeDq18B7KvWxFCMatbDOrWoT jPDzc3PCzpqMoy59JW/rAor5P/ZJ/bP+Cn7aXg3WfGXwbuvEip4Z1Cy0rxRoPizQZNE1vQNQ1C1k vLK3umguNR0W+FxBFM6T6LrOpwJ5TLPJDIVRvrCvh8wy7H5TjcRl2Z4TEYDH4Sp7LE4TFU3Sr0Kn LGajUg3K14ThOLUpRlCcZxlKMlJ/Z4HHYLM8Jh8fl2KoY3BYqmquGxeGqRq0K9NuUVOnUikpLmjO L0i4yhOMoxlGUUUVT1DULHSbC+1XVLy207TNMs7nUNR1C9mjtrOxsbKF7m7vLu4mZIre2treOSae aV1jiiR5HZVUkfxVftwf8HBn7Rfjj4ieIvC37Her6b8IfhDoepXWmaJ43n8LaH4h+Ifj63tJpIH8 QXI8YabrOkeFdG1TYtzo2kWGiQ+ILO0ZJtU1r7VcvpuncZ2JN7H9sNFf5y//AA+L/wCCl3/R2Hjb /wAJ74ef/MdX7i/8Eg/+ChH7Wnxf+En/AAUO+Inxm+Kl38WdY+AHwQ0b4hfDex8YaRosOj6drtl4 Z+MWuTx3kHhWx8NXt5p+q3XhXRYdSg+3wzta2xSzurKWRpqBuDSvp/w+h/VHRX86n/BIH/grX+0n +31+0N8QPhP8ZfCXwX0Dw54W+DOsfEPTrv4ceGvGmi6zLren+N/AfhuG2vLnxH8QvFtlJpjWHijU JZYIdPgumu4rORbxIo5oJ/6K6BNNOzCiiigQUUUUAFFFFABRX8y3/BVL/gsp+1H+xF+1hqPwM+E3 g34Ga34QtPAXgzxRHfeP/CvjnV/ELah4hhv5L6J7zQPiT4X082kbW0YtY10pZkBfzZ5iQV/pQ8Oa jPq/h7QdWuViS51TRtL1G4SBWWFJ72xguZVhV3kdYlklYRq8kjBAAzsQWINppJ99jZooooEFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4If8F6vH/jv4dfCv9njXfh9418W +BNbHxO8RqNY8G+JNZ8MaqFTwuJEUahol7Y3YVJAHUedhXAYAMM1+Y/7AX/BUL9s1f2iPgd8IfGX xVuvil4C+JHxQ8EeAda0/wCI9la+IdZs7Hxd4hsNButT0zxeEtfFq6nYxXxurNdR1rUdMM8KC506 dHkVv0L/AODhz/ki37PH/ZUPE3/qKCv57v2Ff+T0/wBk3/s4v4N/+p/oNf2d4cZDkmbeCdWpmeUZ Zj6tHB8ZVaNfFYHC1cRRq4dZnWoVKOKdFYqlKlVo0qlN08VFRlBWjZyjL+Q/ETPs8yrxowdHLc3z LA0K9bg2jXw+GxuJp4WtSxFTC0a9OrhfbSwtSNWnVqQqc2GvJSbc+ZRlD+s3/gtd/wAo9/ij/wBj V8Lf/VgaDX8Q9f28f8Frv+Ue/wAUf+xq+Fv/AKsDQa/iHr1Po4f8kFjf+ymzL/1Dys8b6RX/ACXG X/8AZM4H/wBT81P6rP8Ag3f/AOSV/tJ/9lA8Df8AqOavX9Flfzp/8G7/APySv9pP/soHgb/1HNXr +iyv5s8Zv+Tm8Wf9hmE/9VWWH9HeEf8AybfhL/sW1P8A1YZkfmr/AMFg/iNqXwu/4Jt/tVeItHuJ LbUNU8EaR4Ajkhcxymz+KPjXwx8ONZVHXDKTofinUyxBB2BgCDg1/IB/wRM/Zl8DftQ/t2+E/D/x L0Ow8VeBfhn4M8UfF/XvCmrW0d5o3iOTw1daHoHh/TtZs5leC+0mLxV4s0LU7/TbqOWy1W3099L1 CC4sLy5gk/rh/wCC0vg3UPHH/BMz9qHTdKhee90jQfBPjLYiltun+B/if4J8Wa7MygZ2W/h/SNVn ZuAgj8xjtU1/LJ/wb/8Axg8MfCj/AIKEaJpfijUrXSYPjJ8LvGnwh0e9vpo7e0PiTU9U8K+NdC0+ S4lKxpca1e+BU0TS4iwe91fUdP0+APcXcUb/AJgfpcfglbf/AIH/AA5/enZaRpWnWlvYafpmn2Fj Zwx29pZWVlbWtpa28ShIoLe2gijhghjUBY4okVEUAKoAxXkf7RvivWvhx+zv8fPH/hGa30zxR4I+ C/xR8YeHL5rK0vIrTXvDPgfXda0a7msruGazvY7bUbK3me1vIJrW4VWhnikid0b2yvnD9sb/AJNE /ao/7Nw+OH/qsfFFNbr1X5kLdeq/M/Az/giL/wAFJP2u/wBsn9pv4lfDj9oH4h6P4u8JeHvgTrnj bSdP0/wB4D8JzW/iOy+IHw50K3vHv/Cvh3SL6eJNM8QapAbOe4ktHedJmhM0ELp4/wDt+f8ABfv4 x6X8avE3wR/Yk0bwta6D4Q8R3fguf4oa14ebxt4l8d+K7C+bSbv/AIQXQJ5G0G08Pf2qs+n6TLe6 V4i1DxMI7bVLNtMtrqOym+NP+DfrUNU0j9oL9q7VdEaVNa0z9h74sahpDw585dUsvG3wxubBotvz eat3FEY9vO4DHNflT+yP49+Onwx+PXg74h/s4eBrj4hfGXwqus6p4R0W2+Hl38Ury2nfSbyzv9ct PCNpZajLc3mk6fd3V1baibSU6POE1OJ4Lq2guIj+v6Rpyrmei0S02V3c/YJf+Cjf/BfeRVkj8E/H F0dQ6On7FWnMjIwBVlYfCEhlYEFWBIIIIJFfY/8AwV0/4Kfftvfsk/HH4HeAvg/8RrHwVpvi39lL 4Y/ErxhpGq/DbwHrV7J8QNf8V/EjR/EN5K3ifwzqF/prPB4c022fSIHtrKyltZDFaQzS3Bf5p/4e c/8ABeT/AKIN8SP/ABDPxZ/8ytcZ/wAHKmT+3V8Kyev/AAyd4Dz9f+FufHTP60f1t/wBLVq8YrR7 NPt2PMb/AP4LHf8ABYrQ9CTxdrPijXdO8KiCyvf+Eh1X9mvwLYeHZLO/aH7DO2szfDq2svst/wCf AtrPHeItx58X2eVmkjJ/oa/4I8/8FTde/b28LfEDwR8Y9F8P+HvjX8JbDS9d1LV/DUMum+GfHHgr VJ57EeIotLuru8bQ9Y0PUIIbPxLbJdnSp/7V0rUNJS0inu9M0z6Q+I1tb3f/AASB8bQXUENxCf8A gnBr8hinjSWMyQ/sz3U8Mmxwy74Zo45onxujljSRCrorD+T7/gjRqmsaJY/8FJtZ8PPNHr2kf8E4 /j7qmiSW5YTprFhDpd1pjw7fm85b2KExFfm3gbeaOtvXt+iQtJRbsk00tPM+yP20v+Dhj466x8Vv EHgH9irTfCnhn4daDrdz4e0P4i614ah8a+NPiNd2t21iuu6LpOqm48PaL4e1W4Ut4f0ybQtW1y9s mtNQvbywuL19C0/5wt/+CsH/AAWykmgDS+PmjeSMHH7KfhTayMy5+YfDAHBU/eB6cg96zv8Ag3e8 HeCfFf8AwUEmvvF9jp1/qXgj4G+PvGPgBNRihn+zeNofEXgTw6l9YRzBl/tGy8KeI/FU9tKima1C SXUJjkgWRP7wKL/1p+qG2ou3Knp1P5NP+CxH/BUX9tH9k39szU/hF8DfiXovhbwJbfDjwJ4gh0q+ +HHw88TzrqutwajJqM51TxL4Z1XU2SZoIisDXZgh2kQxoGbP3/8A8Faf2lP2/Pgp4D/Zb1j9ijR/ G2vav44svGtx8U38FfBW1+LjRCx0b4e3XhuS/tn8IeKI/DqXF1q3iM2piisF1ApPGPPWwCw/z9f8 HC//ACkW1v8A7I98Lv8A0l1ev3A/4Ksf8FZvGv7CGgfBL4M/A3w/4W1b4weOfhhonjvWvEPjO0vN V0bwX4MlMugaI2n6JZX2nLqmv6/qui6+I5dRvDp+j2ejb5tL1R9Wt308Fb4LJN2fz9T8fdb/AOCm 3/Bd7wvpGo+IvE3h/wCLvh/w/otpPqOsa3rv7HOi6Ro2l6faoZbq91PU774T21nYWVvErSXF1c3E MMMYZ3kQDI/Xv/gjp/wWA8c/tp+M/EP7Pf7Q+keGbT4s6Z4Zu/GHgnxr4UsJNE03xxo+kXFrB4g0 bW9CNzdWlh4o0yO+g1azutGNrpeq6PFqayaXpl1pCz61+Vunf8FS/wDguF4x0C01XSPgt4u8U+Fv EmmJdWOo6Z+x9r+t6Brujanb7orizvLXwzdafqmmX9rLmOaGWe1ureTKtJG+T8uf8EIHmi/4KffB CMq1u0mhfGaK4gCtFjb8I/G0hgeM4KiOaJD5bDKPGuRuWj+trdPQbV07pJrazv8Akf6BtFFFIzCi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP54/8Ag4c/5It+zx/2VDxN/wCooK/n u/YV/wCT0/2Tf+zi/g3/AOp/oNf0I/8ABw5/yRb9nj/sqHib/wBRQV/Pd+wr/wAnp/sm/wDZxfwb /wDU/wBBr+5PCf8A5Mhif+wDjj/0zm5/Fvip/wAnry7/ALCuB/8A1JwJ/Wb/AMFrv+Ue/wAUf+xq +Fv/AKsDQa/iHr+3j/gtd/yj3+KP/Y1fC3/1YGg1/EPU/Rw/5ILG/wDZTZl/6h5WR9Ir/kuMv/7J nA/+p+an9Vn/AAbv/wDJK/2k/wDsoHgb/wBRzV6/osr+dP8A4N3/APklf7Sf/ZQPA3/qOavX9Flf zZ4zf8nN4s/7DMJ/6qssP6O8I/8Ak2/CX/Ytqf8AqwzI53xh4T8PePfCXijwL4t0y31rwp4z8O61 4U8TaNdgta6t4f8AEWm3OkazptyFIYwX2nXlzayhSG8uVsEHBr/P9/ba/wCCPn7W/wCyX8S9ck+H /wAOPH3xo+DX9rTX/gH4m/DXQNT8VanZ6QZ2uNOtfG2jeGLa71nwp4i0iMQW1/qNxp9v4ev7xUut F1OTzmtLX/Qkor8wP0hSa/yP84iy+Nf/AAVx020trCx+Jn/BQq1s7OFLe1tovEv7Q4it4IlCRQxK bk7IokASOMYWNFVEAVQB+1H/AAS78YftpfEr9mz/AIKgaT+0vr/7S3ja5H7M1xZ/DjTfjVd/EvXJ 21XVvAXxvttVtPBlp40a4kkv9Rkj0OC/t9Fja4unXS4p0dharX9Z9FBTlfol/wAB37H8Z3/Bup8I fih4I/bA+MOofED4X+PfCGi6h+zN4m0qK98Y+CvEOgaXe3dx8UPhPP8A2bHc61plpaXNzNaW11N9 jV3lkt4LiTy2iikK/NP7V/8AwTb/AG2/+Cdn7U0vxq/ZT8IfEbxJ8P8AQ/GWoeL/AIL/ABP+FHh6 98b6n4L0zUXvPL8I+PPD9hYa1d2T6Tpl7P4X1afxBpE/hDxnpE215ZxqmpaFY/3j0UC53e9lqrNH 8Qyf8FeP+C1KIqt8NtZkZVVWkf8AZX1gO5AALuI9FjjDMRuYIiICTtRVwBc/4L1/Df41/Ff9qD9n 3xjofwu+Ifi+W+/Yv+Ep8Q6h4V8B+JdX0+08TXPj74v6pq2mXD6Tpd1b2F9bvqMU0umSOlxaw3Nu XiVJIy39ttFAKSTuopb9X1+bPzz8daFrc/8AwSh8Y+GYNG1WbxJN/wAE8/EGhQ+H4tPu5Nbl1uT9 m680+PRo9KSE376q9+RZJp625u2uyLZYTMQlfzv/APBvN8DfHuj/ALRX7RGm/Ff4VeOvDfhPxb+z VrPha9HjPwd4j8OaZrNvq3jnwZb6ho8d1q2n2MU8t1prXe+3glM/2dZpFUKjMv8AZZRTv19fxFey a7/ofwBfH3/gnh+33/wTX/aSPxF/Z98N/FXxF4e8LeINS1T4RfHX4TeGr3xmyeH75bq1t9P8b6Xo +l6xFomqvpF3JonifQ/FOjjw5rxa+isRrOjXSl/Trf8A4Kj/APBcczQJJc/FRlMsSvu/ZH8FLuUs obcV+D64yM5K7cc4xxj+6+ikVz90n5s/h1/4L4fBz4u+N/8AgoFrOueC/hX8R/F2iN8JfhparrHh jwP4n1/S2ure11UXFsuoaVpd3aGeAugmhE3mRbl3qu4Z+qP+C7/7BPx7+J+u/A39qD4P/D3xZ8St F034I+Fvhd8RvDng3Rb/AMQ+J/Cl74av9Y13R/EM3hzTYbnW7rRtUtfFV5p2oXWn2Nxb6FPoCzas bSPUYZn/AK4qKBczVvL8bn8MPgr/AIKnf8FmfAfg/wALeCNK+Hfie70rwh4f0jwzpdxqv7Luq3Gp Ppmh2EGmaeL64t/D9pFcXKWdtDHLcC3jedkMsoaV3duc/wCCJPwc+NHhj/gpZ8GPFXjT4TfEzwvo yaT8YZNQ1zxF4C8U6Do9tPqHwo8bQwrcahqWlWtlbm5vLiO3t0kmQyzyxwxBpHVT/eDRTuHNo0op X9QooopEhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH88f/Bw5/wAkW/Z4/wCy oeJv/UUFfz3fsK/8np/sm/8AZxfwb/8AU/0Gv6Ef+Dhz/ki37PH/AGVDxN/6igr+e79hX/k9P9k3 /s4v4N/+p/oNf3J4T/8AJkMT/wBgHHH/AKZzc/i3xU/5PXl3/YVwP/6k4E/rN/4LXf8AKPf4o/8A Y1fC3/1YGg1/EPX9vH/Ba7/lHv8AFH/savhb/wCrA0Gv4h6n6OH/ACQWN/7KbMv/AFDysj6RX/Jc Zf8A9kzgf/U/NT+qz/g3f/5JX+0n/wBlA8Df+o5q9f0WV/On/wAG7/8AySv9pP8A7KB4G/8AUc1e v6LK/mzxm/5ObxZ/2GYT/wBVWWH9HeEf/Jt+Ev8AsW1P/VhmQV/AZ/wXo1bVbX/gpb8XoLXU9Qto U8IfCIrDBe3MMSlvhr4cZisccioCzEs2AMsSTyTX9+df5/n/AAXw/wCUmPxg/wCxQ+EH/qs/Ddfm Pf5fmfpUPi+TPnjw1/wTY/4KPeMPDGgeM/DH7Onxg1rwx4p0HSvE/h7WLG8sJLfVtB1vT4NV0nUr NDryzvDf6fdW91bqYVmaOVAYw521yfwb/ay/bU/YC+Lz22geMPib8OPFPgrWYrXxn8HPiE/iOPw1 qXlNDcXOg+Nvhzr80FuUvrN1WK+S0sdbsrW7XUNA1bT7iS3vR/oS/sbf8mg/sqf9m3fA3/1WHhev 5c/+Dm34Y+HtC+MP7MPxa0+xtrXxD8RvAnxD8H+I7mCNYpNTh+GOr+Er7RLq9CYFxdw2/wARruwW 7kU3DWVpZWjStb2VrHCMpSu7NK2v4XP2m+Pn7Qfxs/a9/wCCV0fx9/YUi8Z6f8Z/iXpHw71PwtpP gXUbVPF/h3WdO+J2gaP8VPDVrqFw9pbzHw+ml+L9HvbpxbjUNNtJbqKFBdRx1i/8EdLH9vmy+H3x pX9vV/im/iqTxl4Zb4fn4pahZahejw+NEvRq39kvZXNzHHa/2iYPtKuVdpdhwVANfhZ+zn8U/G+k f8G9f7Vs3hzxT4h8Ma18PP2pPDWieGtb8N6zqOh6vpeka94r/Z51u8tbHU9LuLW9tUur7xF4gF0k E6LPBfzRShkmkVvsb/ghd+1DrXgf9j39ub47fHLx3438d6J8HNS0zxdM/ijxRrHiXVf7P0XwJrOq Poehz6/fXptrvXLyCCwsrdHign1K6thL13A7/wBdiWrJ7fFbz+8/qeor/Pe1v9rj/gp//wAFQ/j/ AKh4W+EXi/4sXWq6mNU13QPg38IPG978O/AHgjwnYzwxLPq13HrnhjQza6YbuysZ/GPjzVXvb3U7 +3tEv45tRsdNrhv2ovgr/wAFR/2MtE8KeI/2jvGnxp8AaP421W/0Tw1dw/tJQ+LjqGpaZaRX17bt b+CviT4hubMQ2s0comvobaCTdsikeQFQg5O7SfY/si/4Ky2n7YV5+y7pkP7EL/EFPjKPiv4Te7Pw 1vbSx8Q/8ISuieLBrYknvJ7eE6b/AGg2ifaY/M3tN9mKqQpIzP8AgkXaftnWX7NHi2L9ud/iI/xe b41eJ5NDPxNvbO/1/wD4V6fBfw8XRxbTWVxcxLpP/CQr4qNvGziRbs3zFAroW/CH4pfF/wCLNr/w b3fs3+P7b4ofES38d6j+0rrunah41g8beJYfFt/p6eO/j3AlheeI49TXWLqzSCwsYUtZ7x4Fis7W MIEt4VTsP2JfBH7Xv7Yv/BHL4ueEfg38RvGuufG9/wBtGV9L8S+IPivrmh61a+E9D8BfCTUNT0yH xlqWri/tdPBvriVNKivFt55rq4YQlpZWZ9hW0e3xWvbX/hj4O+Duraq3/BeGS1bU9Qa2/wCHiHxU h+zNe3Jg8pfi/wCMlEXkmQx+WFAUJt2hQABgV/fVX+YJ4a+C/wAf9Z/a5b4CaDqt3H+0qPjV4g+H J1lPGctne/8AC1NK8Tano2tX/wDwnn2tJzPJr1lqEz+Ivtnm3bM155ztNub+tX9g79h//gof8Hf2 X/8AgoP8Pvjv4t1jVPid8a/g8vhf9n29uvjbe+MJ9J8YDwJ8XtHNxaa/Nq11J4Lk/t3xN4Ql/tOG a1bfbx3nmZ0xWjOn3/oVNbO62X/Dn9E1FfxD/wDDpX/gtr/0UnxN/wCJX6p/80dfMFh+05/wUm/4 JVftRab4W+L/AI/+JN7qOhyaHr3ir4VeN/iVqHxF+HfxG8CatMxM+ny3Wsa/o8R1W1tr+z07xRow ttf0DVLa5tpmguLPUdMdE8t9pJvtqfpT/wAHOWoX9j47/ZCFlfXlmJPCXxhMgtbma3EhXWfh+FLi J0DFQSFLZxk46mv3y/4JYzSz/wDBPD9kWaeWSaaT4NeHmklldpJHYyXeWd3LMzH1Yk1/PF/wco+J NM8Zap+w34v0V3l0bxV8MviV4k0mSVQkkmma5cfDXVLB5EDMEd7W6iZ1DMFYkBiBk/0M/wDBKz/l HX+yF/2Rnw7/AOjLun0fy/Ub+CPqz9AKKKKRAUUUUAFFFFABRRRQAUUUUAFFFFABRRXxV+1J+3t8 DP2SNd8M+GPiPF4x1zxF4n0u61uDRvAul6Jq19pWkQXIsrbUdaXWfEfh2O0t9Vu472DS/Jlupbh9 M1AvHCkKPKJN7AfatFfkF/w+s/ZQ/wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmVXL Ls/6+YH6+0V+QX/D6z9lD/oTPjz/AOEl4E/+eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7R X5Bf8PrP2UP+hM+PP/hJeBP/AJ5lH/D6z9lD/oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2 UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ/wChM+PP/hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez4 8/8AhJeBP/nmUf8AD6z9lD/oTPjz/wCEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP /nmUf8PrP2UP+hM+PP8A4SXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/Z Q/6Ez48/+El4E/8AnmUcsuz/AK+YH6+0V+QX/D6z9lD/AKEz48/+El4E/wDnmUf8PrP2UP8AoTPj z/4SXgT/AOeZRyy7P+vmB+vtFfkF/wAPrP2UP+hM+PP/AISXgT/55lH/AA+s/ZQ/6Ez48/8AhJeB P/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP8A4SXgT/55lH/D6z9lD/oTPjz/AOEl4E/+eZRyy7P+ vmB+vtFfkF/w+s/ZQ/6Ez48/+El4E/8AnmUf8PrP2UP+hM+PP/hJeBP/AJ5lHLLs/wCvmB+vtFfk F/w+s/ZQ/wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmUcsuz/r5gfr7RX5Bf8AD6z9 lD/oTPjz/wCEl4E/+eZR/wAPrP2UP+hM+PP/AISXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/ AOEl4E/+eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP/hJeBP/AJ5l H/D6z9lD/oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ /wChM+PP/hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez48/8AhJeBP/nmUf8AD6z9lD/oTPjz /wCEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP/nmUf8PrP2UP+hM+PP8A4SXgT/55 lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/ZQ/6Ez48/+El4E/8AnmUcsuz/AK+Y H6+0V+QX/D6z9lD/AKEz48/+El4E/wDnmUf8PrP2UP8AoTPjz/4SXgT/AOeZRyy7P+vmB+vtFfkF /wAPrP2UP+hM+PP/AISXgT/55lH/AA+s/ZQ/6Ez48/8AhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP +hM+PP8A4SXgT/55lH/D6z9lD/oTPjz/AOEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/+El4 E/8AnmUf8PrP2UP+hM+PP/hJeBP/AJ5lHLLs/wCvmB+vtFfkF/w+s/ZQ/wChM+PP/hJeBP8A55lH /D6z9lD/AKEz48/+El4E/wDnmUcsuz/r5gfr7RX5Bf8AD6z9lD/oTPjz/wCEl4E/+eZR/wAPrP2U P+hM+PP/AISXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/AOEl4E/+eZR/w+s/ZQ/6Ez48/wDh JeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP/hJeBP/AJ5lH/D6z9lD/oTPjz/4SXgT/wCeZRyy 7P8Ar5gfr7RX5Bf8PrP2UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ/wChM+PP/hJeBP8A55lHLLs/6+YH 6+0V+QX/AA+s/ZQ/6Ez48/8AhJeBP/nmUf8AD6z9lD/oTPjz/wCEl4E/+eZRyy7P+vmB+vtFfkF/ w+s/ZQ/6Ez48/wDhJeBP/nmUf8PrP2UP+hM+PP8A4SXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTP jz/4SXgT/wCeZR/w+s/ZQ/6Ez48/+El4E/8AnmUcsuz/AK+YH6+0V+QX/D6z9lD/AKEz48/+El4E /wDnmUf8PrP2UP8AoTPjz/4SXgT/AOeZRyy7P+vmB+vtFfkF/wAPrP2UP+hM+PP/AISXgT/55lH/ AA+s/ZQ/6Ez48/8AhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP8A4SXgT/55lH/D6z9lD/oT Pjz/AOEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/+El4E/8AnmUf8PrP2UP+hM+PP/hJeBP/ AJ5lHLLs/wCvmB+vtFfkF/w+s/ZQ/wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmUcs uz/r5gfr7RX5Bf8AD6z9lD/oTPjz/wCEl4E/+eZR/wAPrP2UP+hM+PP/AISXgT/55lHLLs/6+YH6 +0V+QX/D6z9lD/oTPjz/AOEl4E/+eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP 2UP+hM+PP/hJeBP/AJ5lH/D6z9lD/oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2UP8AoTPj z/4SXgT/AOeZR/w+s/ZQ/wChM+PP/hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez48/8AhJeB P/nmUf8AD6z9lD/oTPjz/wCEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP/nmUf8Pr P2UP+hM+PP8A4SXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/ZQ/6Ez48/ +El4E/8AnmUcsuz/AK+YH6+0V+QX/D6z9lD/AKEz48/+El4E/wDnmUf8PrP2UP8AoTPjz/4SXgT/ AOeZRyy7P+vmB+vtFfkF/wAPrP2UP+hM+PP/AISXgT/55lH/AA+s/ZQ/6Ez48/8AhJeBP/nmUcsu z/r5gfr7RX5Bf8PrP2UP+hM+PP8A4SXgT/55lH/D6z9lD/oTPjz/AOEl4E/+eZRyy7P+vmB+vtFf kF/w+s/ZQ/6Ez48/+El4E/8AnmUf8PrP2UP+hM+PP/hJeBP/AJ5lHLLs/wCvmB+vtFfkF/w+s/ZQ /wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmUcsuz/r5gfr7RX5Bf8AD6z9lD/oTPjz /wCEl4E/+eZR/wAPrP2UP+hM+PP/AISXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/AOEl4E/+ eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP/hJeBP/AJ5lH/D6z9lD /oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ/wChM+PP /hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez48/8AhJeBP/nmUf8AD6z9lD/oTPjz/wCEl4E/ +eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP/nmUf8PrP2UP+hM+PP8A4SXgT/55lHLLs/6+ YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/ZQ/6Ez48/+El4E/8AnmUcsuz/AK+YH6+0UUVI BRRRQAUUUUAFFFFABRRRQB/PH/wcOf8AJFv2eP8AsqHib/1FBX8937Cv/J6f7Jv/AGcX8G//AFP9 Br+hH/g4c/5It+zx/wBlQ8Tf+ooK/nu/YV/5PT/ZN/7OL+Df/qf6DX9yeE//ACZDE/8AYBxx/wCm c3P4t8VP+T15d/2FcD/+pOBP6zf+C13/ACj3+KP/AGNXwt/9WBoNfxD1/c9/wWA8F+MfiB+wl8Sv DPgPwn4m8beJLrxJ8OLm28P+EdB1TxJrdxbWHjjRbu+uINK0a1vb+aCztIpbq7ljt2jt7eKSaZkj RmH8S/ib4afEbwXu/wCEx8AeNvCewlX/AOEm8K67oO1gcFW/tSwtdpBIBBwcnFc30csTho8EYzDy xOGjiHxJmE1h5YjDxxDhLCZYozVCVeNdxk4yUZKi4ycZKMpOMktvpD4TF1OMcDiaeExdTDQ4bwUZ 4mnhcVUw8JRx2aSlGeIhhp4eEoxlGUozrxlGMoylGKkm/wCnb/g3f/5JX+0n/wBlA8Df+o5q9f0W V/FP/wAEtf8AgpL4N/Ycbx34O+I3w+1/xL4L+JWvaFrF94p8J6hZPr3hefR7G805QvhnUls7TXbK 4S8E07Jr+l3dmsDmC31J5UgT+tr4BftR/AT9p7w4fE3wQ+JXh7xvbQQxS6ppVrO9j4o0Ay4VYvEP hXUo7TX9FZpCY4pb7T4rW7ZWeyuLmLbI34j438L8QYPjXPuIK+U4xZJmOJw1TCZpTpOtgpKOBwOH catag6qwtT21GpBU8WsNKdk6cqilFP8AavBjiXIcbwXkGR4bNcHPOctwVWljMslVVLG05LGY2tzU 6Fb2U8RS9lWpzdXC/WacU2p+zcZHv1f5/n/BfD/lJj8YP+xQ+EH/AKrPw3X+gHX8h3/BWz/glT+3 J+1L+3B8RvjN8EfhHp3i34d+IPDnw50/StbuPiT8M/Dktxd+H/BGi6NqsTaT4l8XaRq8AttRs7iF XnsY451QSwNJE6ufxPv/AF1P2SGj17M/oV/ZE+NHwd0v9kr9mC01L4sfDTTrvT/2dPgrbX9rfeO/ C1pcWNxafDTw1FdW95DcarHJbTW0sckdxFMqSQyI6SKrKQP5NP8Agv8A/ti/DD9pr9on4aeAPg94 r0fx54N+AvhLxBp2peMfDt/BqnhzUvHXjnU9Nu/EdhoOq2bS2Gs6fo+leGfC9tLq+nXVxZT6rJqV jC7f2c003hf/AA4i/wCCn3/Rv2kf+Hl+Cn/zwK+pf2Zf+DdP9q/xx410ef8AaX1Pwl8E/hpaXsE/ iS10bxTo/jj4i6xYxSq82meG7bw22r+FNOuL6JZLY63rGvSLpDSx3seha75T2DhSUU7uSe+3n951 XgL4Zan4C/4Nt/jv4k1O2mtv+Fv/AB78OfEXSxOjRySaNafGH4NfDa1lVHAb7PPd/D2/ubZyoWaG 4W4jLwyxu3kf7CWm6vqv/BGv/gqta6IsrXkWrfCrUphDuL/2Ro2paJq+vs23nyl0Gx1Jp8/KIBIW +XNf0wf8FHP2QvE/xL/4Jt+MP2S/2WPAen3Opafpvwd8N/DrwNFrWi+HbKDw94B+IPgrU5rf+2vE +p6ZpqyWfh/Qru6luNS1IXepXMTs0l1qF1iX5Q/4Iy/8E/PjV+zf8BP2ovhB+158MNM0TSfjZrOn ac/htvFnhHxdZeJvBt94O1bw14ltLybwdr2tRWkVxBqMllJFdT2ty6TNJApC71F/X4Cvo315k7fc fml/wbKeLvBOl/Gv9pjwdq17p1r488W/DzwLqPgy3upYob/UtE8La74hbxnaaX5hVrmSKTW/C9/d 2duzTNa2T3pia3sZ5YPqn/g5z/5Ir+y3/wBlR8c/+onp1fB37Qf/AAb4ftl/Cf4m3uvfsl69ovxR 8ExarNqPgjUk8daZ8N/in4Xtnlka2stbk1y68P6JLqOmwutouveHvEAGrCNr5tI0NpzpsP5u/tqf sj/t8fs1+H/Auq/tjJ4qi0LxTrOraf4JXxH8Z9B+J6Pq+nWVtc6s1pYaT408UTaWyWdxaia8lt7W OUPHCJnbCUf5Mdk5JqS3WnXQ/SH4s/8AKuD+zF/2dDr/AP6sD9oWv1f/AODbD/kw/wCJH/Z1Hj3/ ANVZ8Fa+J/Af7K3xx/a6/wCCAf7M/wALPgH4Qg8Y+OIvj14z8YtpN34i8N+Foj4e0f4n/HXTNQvk 1PxXqui6XIYL3VLOEW6XhuZS7mKJ1hmKfrJ/wRO/ZQ+Ov7HX7J/jX4X/ALQfhC28FeNdY+Pfi3xx p+k2viXwx4qjm8Nap4D+GOh2N+dR8J6vrWmxPNqXhvWIDZy3aXka2yzSwJDcW7ynb+uontJdeY/m C+EM0Nv/AMF5neeWOFG/4KM/E+BXldY1M1z8Z/F9tbxBmIBknuJYoIkB3SSyJGgLsoP9hn/BTL9q PxH+x3+xd8Yfjh4JgtJ/HmlWeheGfArX9vHd2Nh4o8aeIdN8M2WuXdpMr292nhyDUbvxDFY3Uctp qNzpcGn3cbW11Lj+dP8A4KF/8EQP2xPEn7WvxR+On7LOlaD488IfFPx9qnxYsVt/Hvh7wL4x8E+M PE2qP4j8RW0//CVap4ftWS38VXN/qWgapoerXEsdlNaJNDZXlq2/64/ZJ/4Js/tz/FP9lD9tr9nH 9vzxh4+srz4u2Xwcn+BniLx38ZLb42p4U8T+AdS8Z+Ip9Ssrew8b+K30TSzri+DLbxHZRzaXPr2j PNb2zyy2aSWoDs7O60STXXofjd+zH4K/4LCf8FCrfx58SPg7+0V8bte03w14gg0fxHq+sftMeJPA mmRa7qNp/ao0nRdCh8UWMFtBbWUsNwbbStIs9HsobmCC22NmCP41/bx+Bn7WX7P3xi0LwX+2R4s1 vxj8UdR+HejeJdH1TXviXqHxUvIvA174i8V6ZpViniLUtQ1Ke1t4tc0fxJMmjrOsVtJcS3ixK1+7 v+ifhz/gj9/wWa+A2qeIdH+Cb+IfDmmahdRDUdc+DX7TuhfD/RPFP2HzY7K9ntZfHPgbXLtIo5ZD af23odtdW6TOohiLutcZ8QP+COX/AAWJ+LOtW/iT4qeAfEXxM8RWmmwaNa6/8QP2kvhn4z1q20e2 uby8ttJt9V8R/FDUr6HTbe81C/u4LGOdbWK5vryeOJZbmZ3Raave8bdFZJ/ee8f8F4f+SU/8EvP+ zYbr/wBRv4P1/TV/wSs/5R1/shf9kZ8O/wDoy7r8fv8AgrD/AME3P2wv2oPAH7CWhfBT4YWPizU/ gn8C7jwV8SLe48ffD7w6uheI30X4cWa2MU3iTxPpMOrobjw/qqfa9HkvrMC2VzOEngaT9xf2BvhV 45+B37Gv7Onwj+JekR6B498AfDTRvDvirRotS0zWI9O1e0e4NxbJqmjXl/pV6qCRMT2N5c27Z+SV sHDfX1/Vmb+GPqz68ooopEhRRRQAUUUUAFFFFABRRRQAUUUUAcJ8T/iP4V+EPw+8XfEzxtfDTvC/ gvRLzXNWuBtaaSK1TEFjZRMyC41LU7t7fTdMtFYPeahdW1rH88q1/EX8fPjR4p/aD+LfjX4t+L5C NU8WarJc22nrM81roWi26ra6H4fsGcL/AKHo2lw21lG+xHupIpb2dTdXM7v+tv8AwWL/AGr/APhK PFOn/sv+C9S36D4MubXX/ihc2kuYtT8XvAJtD8MPJE22W28M2Vx/aWpQM0sL65f2kM0cN/4dNfhj WsFZX6v8v+CAUUUVYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF AH+ghRRRXOAUUUUAFFFFABRRRQAUUUUAfmL/AMFOv2FvHP7dPgP4YeEvA3jPwn4LuvAvi/VvEV/d eLIdYmt7y21DRf7Mjgs10ezvJBPHL+8fzljj8v7rFvlr8mPBH/BBv9qD4b+MPCvxB8E/tIfCTRfG XgjxDo/ivwvq6+H/ABLef2V4g0C/g1TSNQW11LRL7T7s2l9awTi3vrC6tJinl3FvNEzxt/VDRX6N kHirxnw1ksOHsqxmAhlMHjP9mxWUYHG88cfOc8VCrPEXlVp1faVIypzTj7Oc6dnGTT+Bz3wz4P4j zh59muAxVXNXHCRjisPmmYYOVP6iksJOlHC1IRp1KLjGUakLT54xnfmjFr8mNA+F/wDwWR8NPE8/ 7TP7JHxFWILuh8b/AA58QaLHcbevnt4B8HeHpl3/AMRgkiPJ27eK9csPFv8AwU70BSvjP4IfsdfF O3KFZ4Phx8Yfib4AluYyCroqfED4e+I7aNpFJzFLLLEMlDKw+av0Lorxa/FksW74rhvg2pfd0OHY ZbPvpUyrNsC4O+qcad10tZHt0eG44ayw+fcVU0lZRrZ7PHwsu8czyzGuXrKq29bt3ufk548+HHw/ +JNtOf2jf+CTt9NNc5Nz4o+F037P/wAQNTQtnzT/AG94V8cfD34rbDnfjTtCneVtrGISAY+GvE// AAT2/Y20vxNY+Of2eP2g/jz+wX8VNPke70A/Frw98RfAvhyxujgx6dpuvfFDTfA2o3q3EgFpcSaX 8TPFFndwM8Is9QAkik/pIprokisjqro6sjo6hldGBDKykEMrAkMpBBBIIxXq5b4iZxlcXTwNbM8B QnGUKmDw2eY/HZZVpyXLKlVybianxFltWjKLcZ0X7OEoNx0Wh52Y8DZNmklVzDCZdjsRGaqU8ZWy nB4LM6NSNnCpRzfIZZJmVKtCSU411VqVeZR1srH5TfDf9pD9rn9my1sdF/bf8C6f8U/haIIDpv7Y P7PtpL4p0C206QI8Oq/FvwFo+n2mu6Hpy20qy33jPQPDcGg22Io/sN+hudaH6heHfEfh/wAX6FpP ifwrreleJPDeu2MGp6Lr2h6ha6ro+raddIJLa907UbKWa0vLWdCGjngleNx0bg03Q/DXh3wzbT2f hvQdG8P2dzcy3lxZ6JpllpVpPeTndPdy21hBBDJdTnme4dDNMQvmO21ccn4R+FfhD4f61rWqeBbH /hE7DxLcz6j4h8KaMRbeD77XLh/Nm8S2fh1QNP0HxDeSmR9Z1DQItNTxJJPLd+JLbVtTisNQsfns 3zHK82lUxVPLKWUY/mcprLqao5XjrtXnLLFVrQynFO8pP+zsRVyyq7pYPAylG3uZbgcdlsY4aeYV 8zwaSjTeYT9tmOFsrKDzBU6UsyoJJJSx1CGPgrc2KxiUpP0eiiivnz2AooooA/ii8T+B/wDg4lfx L4hbRb39qgaO2uas2kiD4heEUgGmm/uDYeSj+JVdYvspi8tWUMqbQwBBFeQeIv8AgnB/wWj/AG0/ G3grRv2itH+It9p2gyXNpp3jP45/Evw3N4V8BafrM1o2taja6bY+IdW1WWS8+wWP2+Lwz4e1LVtR Fjp8dxG1vZwvb/3eUU7lKVtlH1seCfsu/ADwz+y1+z58J/2fvCN1LqGi/DDwlZ6ANWngS1n13V5J rjVPEniKe0ieSO0n8ReJNQ1bW5rWOWVLaS/aBZZRGJG9v1HULHSdPvtV1O6hsdN0yzutQ1C9uHEd vZ2NlA9zd3U8h4SG3gikllc8KiMx6Vcr88v+Ckfxb8b/AA2+Efw28JeC9btPA8f7QHx1+HvwB8Yf FTUrCy1DTvhd4G+ITanb+JvFMkWqRzaRDdtYWj6Za3esRf2baJe3Vw1xaXsdjcJ6eS5XVzrNsBlV GcKdTG4hU3UqNqFOlCnXxOIqPlhUnJ08LhMXUhSp06tWtUhSoUqVSrWpwl5ua5jSyrLsZmVeM508 JS9o4U0pTqTnVoYejTXNKEY+0xGLw0JVKk6dKlCdStVqU6VGrOPZfA39trwz8bLb4c+Jo/AniHwT 8PPjj4v8Y+DfgT4p8S6rop1b4hXfgjR/E+vapql54QspptS8J6LqOmeDPE8+hXmoXV3JctpaQ6rb 6NLq+gJq2T8Z/wBuvwz8LvjH8PvhZ4T8A+Lvjn/wlPgvUPF2vyfBuKz8Xa7oiX/jPS/AvgW20+yS 6tdAvxrutReNJdZm1bxL4fg0LSvB+oXwnvZlFg/x3oP7JPjvwZ+zx8Qf2a/hr4c8T6FqvjC28GeI pPBeqftC3vxL174dfClviLZ6D488EaFquqaT4Z8E/DfxR8VvhtdeNhp8/he8h0XxRcJ4s0LU9YW2 8O6frV3554u/YS/apvvFfi3xt4J8FfD7wLqU/jH4mfETwjonhjxNomk6HpHiH4deArPwP+yJo1rD p0OlLDovgWw1zxr4vsL9IrKTUPjBf3N/410S18NvZ6wf02hw/wAB1M1xlapmWEw+Wr6/h8vwWMzK dBV4TVKGW4/E14VsRjoShGrJ1ZYWdXD4ivg8VjKbp4WrhcGfEVs24wp5dhKX1GtWzDlwFbH4rBYO nWUJxjWnmOFwtGtCjhqinUpRVKNeFKtQo4nDYWftMTGvjD9EPgF+2snxtbxZqdx8I/FngnwbZfEv xj4J8GeLNe8R/DqK18R6P8PdPtF8ba5Lp/8Awmf9qX9x4f8AENp4s0y6tvANn47057TRIb9NW8u4 uPsnv0nx78A3nhv4a+LPB0mq/EjRfir4j8CaB4Zm8BWUes3Nva/EDSYPEel+KNesLi60+90Xwzpn hW4i8V+Iru8gW/0jw839oS6bIMRn87v2ff2EviJ4D+I1wfEN1N4S8LeDtJ+Geg/Cvxf4Z1jw5qms aH8N/DPw117Tdb+H+nWOuad4gk0Xxd4o+Lvi7V/in8SfF9nZWllrXibRNC1XQrqZ7v7N4e+cNZ/4 J8ftXxX3jnXPAVv4Y8E63NL+0T448DHSvFmm2NjpPxD8WQp8LPhy1iIY7ma2h0H9n61HhX4avcCG 78NeIdf8Q+Ptf8SaJra2nhubjrcP8C43NMVDC5/g8swlOng6mHjVxFaeFqxxNKpRVOpiKk6uJ9vR n9VxmMnh/wCFP6/h3how+rVJ9dPNuK8Ll2GnXyfEZhi5SxkMT7KGHp4iEqFVVVUpUoxp4Z0qsFXw uDpVUpVYLA4h4jnqYiFL9n/iv8e/h18Kvhb8UfijqHiXw/qmnfCzwl4j8T61YadrmnXN20+gxXEU WitHbTXEtvqOpa1FD4ftYZIvNOr3UVl5ZuD5Vdn8MvEfiDxh8N/h/wCLfFnhpvBninxT4K8LeIvE ng97qS+fwrrut6HY6lq3hyS8ltbGW6k0S/uZ9NkuJLO1eV7ZnaCItsH4wz/8E/fi/qnxTgvtN+Hn gvwZ8I/+Ew+CnhSz8Jvrmi3PlfAz4NeBD4q8I2Xja00a8ig8W6jq/wAdLTQdX+NtjPJqeo+IpvC3 hvTfCniG/wDDsN54ib9y9PtZLGwsbKW9u9Sls7O2tZNRvzAb6/kt4Uie9vDawWtsbu6ZDPcG3tre AzSOYoIo9sa/LcQZdkWV4LAUcrzGnm2MxVapi8TiYypqeCwywtClSy6pTw1WrhfavE1K2JrVFOcu aEaNOUqdKpUre5lGMzbHYrF1cdg55dhcPThhsPh5JyWKrvEVqlXHRqVYQrqkqFOlh6NOUYe7OVap FVKkIUbdFFFfJn0AUUUUAFFFFABRRRQAUUUUAFfKX7Z37Suk/ssfAjxR8RpntZ/FV0h8OfDvRrgq 39r+NNUgnGmmSAkGbT9Ghiude1dd0Yk07TZ7WOVbq6tlf6sZlVSzEKqgszMQFVQMkkngADkk8Acm v5Af+Ck/7VzftM/He9sfDWom5+FPwua+8K+BhBKWstavBOi+JfGaKCUf+3r61ittNmB2v4f0vR5h HDcXF2r1FXfl1/rzA+Adb1rVvEms6t4h17ULnVtc17U77WdZ1S9kM15qWq6ndS3uoX93M3zS3N3d zy3E8h5eSRmPWsyiitgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigD/QQooornAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig ArC8TeFvDPjXQtR8L+MvDmheLfDWrwi31bw74m0jT9e0LVLdZElWDUdI1W3u9PvYRLHHKIrm3lQS IjhdyqRu0VUJzpzjUpznTqQlGcKlOcqc4Ti1KM4ThKE4TjJKUZwnCUZJOMotJqZRjOMoTjGcJxcZ wnGM4SjJOMoyjKMoyjKLcZRlGUZJtSjJNp8t4Q8DeCvh9pI0HwF4P8L+CdDEvnjRvCOgaT4b0oT+ TDbmf+z9HtLO08429vBAZfJ8wxQQxltkaBepoop1KlSrOVWrUqVak5OU6lWpOrUnJ7ynUqTqVJyd leU6k5PrJhCEKcYwpwhCEUoxhCMYQjFbRjCEYQjFdIxjFLokFFFFQUFFFFABRRRQAUUUUAFFFFAB RRRQAUUVyvjjxp4b+HPg7xN488YalFpHhjwjouoa/rmozEbbbT9Nt3uZzGmQ09xIqeTaWse6a7up IbaBHmljRgD80f8Agq1+1f8A8KM+DB+FnhHUvs/xM+MtlfaUslrMUvfDfgEA2niXXA0Z8y1utYEh 8OaNIfKdjcaxqFlOt1omK/lHr3v9pr49+JP2lfjR4z+LXiMywLrt8bbw7o0kvmx+G/CWns9v4e0G HBMW6zsdst/LCscd9q9zqOpGNJL2QV4JW0VZefUAoooqgCiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigD/AEEKKKK5wCiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+en/ AILI/tYfarrTv2U/BWpZt7J9N8UfF24tJgVlvCseoeFPBc+08raI1t4r1aFgym4l8M7HWW0vIa/o Wr+Ev4/317qXx1+M17qN5dX97cfFT4gNPd3txLdXU7DxVqqBprid5JZWCKqAu7EKqqDgAVcFd+gH kdFFFagFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QB//2R== ------=_NextPart_01DC272D.C4409290 Content-Location: file:///C:/2CC9448C/05-3Impactodelusodelainteligenciaartificialenlaformaciondocentetecnicoprofesional_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DC272D.C4409290--