MIME-Version: 1.0 Content-Disposition: inline; filename="document.html" Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: quoted-printable Content-Location: document.html </title= ><style type=3D"text/css">@page Section_1 { size:612.1pt 792.1pt; margin:11= 3.4pt 70.9pt 79.4pt }div.Section_1 { page:Section_1 }body { line-height:150= %; font-family:'Times New Roman'; font-size:12pt }h1, h2, p { margin:0pt 0p= t 8pt }li, table { margin-top:0pt; margin-bottom:8pt }h1 { margin-left:36.2= 5pt; margin-bottom:19.8pt; text-indent:-0.5pt; page-break-inside:avoid; pag= e-break-after:avoid; line-height:108%; font-family:'Times New Roman'; font-= size:12pt; font-weight:bold; color:#000000 }h2 { margin-top:2pt; margin-bot= tom:0pt; page-break-inside:avoid; page-break-after:avoid; line-height:150%;= font-family:'Calibri Light'; font-size:13pt; font-weight:normal; color:#2e= 74b5 }.BalloonText { margin-bottom:0pt; line-height:normal; font-family:'Se= goe UI'; font-size:9pt }.Bibliography { margin-left:36pt; margin-bottom:0pt= ; text-indent:-36pt; line-height:200%; font-family:'Times New Roman'; font-= size:12pt }.CommentSubject { margin-bottom:8pt; line-height:normal; font-fa= mily:'Times New Roman'; font-size:10pt; font-weight:bold }.CommentText { ma= rgin-bottom:8pt; line-height:normal; font-family:'Times New Roman'; font-si= ze:10pt }.Default { margin-bottom:0pt; line-height:normal; font-family:'Tim= es New Roman'; font-size:12pt; color:#000000 }.EndnoteText { margin-bottom:= 0pt; line-height:normal; font-family:'Times New Roman'; font-size:10pt }.Fo= oter { margin-bottom:0pt; line-height:normal; font-family:'Times New Roman'= ; font-size:12pt }.FootnoteText { margin-bottom:0pt; text-align:justify; li= ne-height:normal; font-family:Arial; font-size:10pt }.Header { margin-botto= m:0pt; line-height:normal; font-family:'Times New Roman'; font-size:12pt }.= ListParagraph { margin-left:36pt; margin-bottom:8pt; line-height:150%; font= -family:'Times New Roman'; font-size:12pt }.NoSpacing { margin-bottom:0pt; = line-height:normal; font-size:11pt }.Title { margin-bottom:0pt; text-align:= center; line-height:normal; font-family:Verdana; font-size:14pt }.paragraph= { margin-top:5pt; margin-bottom:5pt; line-height:normal; font-family:'Time= s New Roman'; font-size:12pt }span.AsuntodelcomentarioCar { font-size:10pt;= font-weight:bold }span.CommentReference { font-size:8pt }span.Emphasis { f= ont-style:italic }span.EndnoteReference { vertical-align:super }span.Follow= edHyperlink { text-decoration:underline; color:#954f72 }span.FootnoteRefere= nce { vertical-align:super }span.Hyperlink { text-decoration:underline; col= or:#0563c1 }span.Mencinsinresolver1 { color:#605e5c; background-color:#e1df= dd }span.Mencinsinresolver2 { color:#605e5c; background-color:#e1dfdd }span= .Strong { font-weight:bold }span.TextocomentarioCar { font-size:10pt }span.= TextodegloboCar { font-family:'Segoe UI'; font-size:9pt }span.Textonotaalfi= nalCar { font-size:10pt }span.TextonotapieCar { font-family:Arial; font-siz= e:10pt }span.Ttulo1Car { font-family:'Times New Roman'; font-size:12pt; fon= t-weight:bold; color:#000000 }span.Ttulo2Car { font-family:'Calibri Light';= font-size:13pt; color:#2e74b5 }span.TtuloCar0 { font-family:Verdana; font-= size:14pt }span.UnresolvedMention { color:#605e5c; background-color:#e1dfdd= }</style></head><body><div class=3D"Section_1"><div style=3D"clear:both"><= p style=3D"margin-bottom:0pt"><span style=3D"height:0pt; display:block; pos= ition:absolute; z-index:-65536"><img src=3D" goAAAANSUhEUgAAAUIAAABPCAYAAACeRMz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAA= DsQBlSsOGwAADrxJREFUeJztnX+sV+V9x9+nP8zcdrdm7Ui6uJqSlSY01YWNzKRxWdwMMcYY48o= 6Qlc2M6KNq1kXBbuprdYOWjsnRarir4l2jNZag6jMabV0astgprMtioICVVEQ2JXL5SK+9sfn8+= U+3+d7vuec7/deuDA+r4Tc73l+fJ7PeQ7fz/c5z3PO85aCIAiCIAiCIAiCIAiCIAiCIAiCIAiCI= AiCIAiCIAiCIAiCaoC1tDPs6WcB64C9wBDwA+Bi4LasftdywJcSu0PAp7K6d2VtL23g75nAemAf= MAis7FJuErAEeA7YDTyS5K0C3nKfH+7HflZnDvCs29sPbAGuyspUtdmk/hY6uaLOtyAIGgAMAP/= oX6yngMme/hzwEnABcDZwA/A6cEdWv7ac5wG8CAxk9c8H3gTObejvcyUB4c6szHnAZs/7KfDPwH= TP+56nLwZu9c8re7GftTUF2AkcAP4B+DTwv1ggPbOuzYb155b4tL1JfwVB0BDgXP9yfTdJGwGWZ= OUuBG7P0mrLeSD8H2xEdF9J+xsa+nkZ8AhwOrAAGz2R1gemYYH4IHBzVn8SNuoCOAmY7p+HPK/W= folPl3uZQTzIYyNksBFxXZuV9f34UeArTfooCII+6RIIfw5sBT5ZU7e2nAfCJ4GFHjj/NstvGgh= nZMc/dr/XJ2k/8LQfltSf53lvJ2ktvtDEfonNzyQ2Hva057Ggf3qDNuvqDwB7vN9eB/4TmNukv4= Ig6IEugfAT2FzZMPAwcHqXurXlWoHQP68GtgNTk/wNWfllwA5gSo3frfnNxX483f0AeBUb0e0Ar= vf82z3vQGLjHU+7vc5+hR/rk2C2zc/v4qZt1tS/jk4OkM3VBkEwRsoCYZJ3FTbi2wssr7DRtVwW= CAewucI1SX6jEWFJmzuAzcnxgiRYfAa4xT+PYHNvK1rHSZ1WUFpRZ7/Cj+lY4E0D1Y2eV9tmVX3= Pnwb8DXAvsCspUzlaD4KgB6oCYVLmLmzebXWNrY5yaSD04/OwBYGv+nHPgRBbeBgEZiZpy/w8Di= ZpezxtOaOr1GlQapEvAnXYr/Dl89io7rNJQBsBZjZps6p+SVvTgU1epmMUGwRBn5QFQspHSGuw2= 82BXsrlgdDTvoI91jKj10CIrU7vAOZl6UuTIDPD07b68SrgSv98wPMGkvKXN7C/jnZG/NxGgHVJ= 3X2e/626Nuvqdzn/z3n+krL8IAiMd42Djel0ztHt8L8n9lGujaIoviDpSUlf78UpYJKkr0q6qSi= KhdhK7HeAOZIelUTLr6zqJkl3S9on6T3YHOVHPG+fpGV19oui+L2inRMk/Ymk90p6t5/XKklb3e= 5bDdqsq1/G45KGJd3TqNOCIKgHuNZHGE8Cp3jaIDaXNx+bo7oGu519KqtbWw5YhK2EnpLVHQA20= sMzccBjdDKU5P/I09Zj84TD2Gpr6/nIlZ7/TeBm/7yqqf0Sfy7FpgKGsFvci7F50l3AH9W1WVcf= m/cc9n5aCJwGPATc1LTPgiCoge5vlqzwL+EmbGJ+N/Y829SsfmU54JnMfv6IyjnAC1nav2K3ptO= z9KWU82JSZjLwfezxkxHgZ7TPIw4A/+6BZwh4oBf7XfpwMfCKt7cXe0vkr5q0WVcfmI390Oz3fy= 8AX6zyJwiCYxD8DYogCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCILgSMLo/nYtH= szy9yZ5dzWwdyb2LuyePnwZd7GnIwm2Z2Dl63hjsH0d8Ab+znSPdWcCTwCv9GOvqmyZ7X79Ah4H= bunVThCMGUZV6PD3YSdn+XOw93bvBE5qYO8+7J3jt+vKVtgYN7GnIwW2Me0e4BsT7UsOtr3/28D= Oo8l2XhfTutlOsglGEBwxMG2MYRLJyyRvKvCjHu0tG4dAOGaxpyMFtofgIL7R7NEIJpEw7oFwrL= bzusAn/bpfP34eBscrPe1HWBTFGklrJf1Bye3P30mq3JW6hOEey5cxKOlGSWeTiT0dhcyXtKMoi= ssm2pEKxuOaHA7bbXWLovi2pIckzcb2hgyCvulnY9ZbJf2KpL/P0j9aFMWVaQK2q/Q6bCfl/dhW= V7P6dbYbRVHMk/R9SfPJtv9KfGnpfzzhx8/68S/8+PPYVmD/hW139SY2/3iLz+n9wm/luyrVVeE= /HL8v6Zkk7cvABp9qeBLbXmsn8LWkzEz3dQjbv/F+T78M+ImPiDf6SP3fMGGsPUn9ymvgo/x1Xn= +XpN/K6ub2zsH2cNzrNn8MnNKlbFfbnv+wn9NB7+/rmtZ1Vkn6gKRLersaQTAO+BdzW3L8ObLt4= rG99bYAT/st4Tz/z/46PoeI7es31lvjRmJP2OLMriQQTvXzaAXClz0wbsM2iD3DA+Nb2M7T52EC= 8ABX9eFrS5c4DXJDnrYJ23j1PD+HfR5wJnmQuwrTIGlt1noD8Jp/3g6c7/YeIJl3bXgNfu5tzvT= 83YzOxeX2TsL2Q1yDbQa72APVgrxsA9sz/DyvxTbqXUf7Ik3Xulm/7gce7fV6BMGYAa7wL+GVfv= wInZujLvQyZydpizytJas5boHQjyvFnjBdkieS48fwQOjHzwPpiG0p7fKak1L/e/T1Jq87P0vfR= buA1UVebimjO4LnPO1lXwTWZvYOzbvWXYPkOs5N8vO5uNTe9R68ShfDsrK1tj3ts1igHmY0SDaq= m/Tff5f3ehA0oy/NkqIorpG0TdKfegA8WBTF2qzY7/jfkSRtpf/9YD/tNvDrPkmLJc0l2+G6ISP= Z8UFJRWL/9TG41wr4A1l6W5tFUXzT232/pA9JeqXo5DQvfkCdpHNpddfgVP+cPgqVz+Olx78tab= goim0qJy1baxsbyV0jabOkNUlWE78OmdH4aO8ExzFj+Q/0oKSPSbpaUpm8Z0tY6Pwk7Vf972Fbz= W0g9pSf83sPly8ZW/xv2cT+e1ofsNvcd8uCw6uSJpHNq9L8uci6azDon/+imz8Zr0n6dUwAq45K= 2z5q/0NJs4ui+HNJQ03rZvySpDcb+BME44/fJu4Cnq/Ifw17Zu6L2JzS08DLSZkHsEWM2X360JP= YE7YwsQ2bL1wAvOS3YLuxOcNt2HzdFLdxv/s3y+u3blu/R48rlW5vL506JNuxObu52LOaz3q/TX= Kf3sDm5S7HFhAexISbpmELOM9k9lp9OqvuGmDzdHvdh0uxecSf+Dnu8/qpvWnYHONWv6U9Dbvlv= 76k7Trby7FFkvnYc4EbsEeLBpr45e3N8rR/6uVaBMG4gj0Uvagi/1PYpPeI/wdez6iO8HLauQCb= MG8030N/Yk/X+pdtELgXE496Hria0cUSMPH01Zn9xdnxPb346+0/BryUpW3HVqrfwObJfoovfnj= +HPdxPyZU9fWkXiswbPa07+Z9UnUNvM487AfgACb49Dj2Y/C1LvYu8vwRLCjeW9F2le1PeJ8PA0= 9hP2r78GdUq+omvq/AfoxrH+APguMWjjKxJ2wleg9wc5K2nWSxJGgGNjreDdw40b4EQdAj2PN/e= 7DnE8/EVrnXxqimOdjdwzZK3nAKguAYAfhr/yKnbJxov44VsA0Y7phoP4IgCIIgCIIgCIIgCIIg= CIIgCIIgCIIgCIIgCI4nsC2fUg76K1GbgS+PYzt9iw9NJDQQo6o6N8YonNRPm03O4Vi9HkFwWMB= ehm+pwy0GJmMbhu7090EvnGgfJxLGKEbFYRRO6sGHMQtqBcH/exjdMHNxktbaNfmhCfBnOkeRkh= mZGFWv/nEYhZN68GFMglpBcCzSbd+5XjjR/x4cB1uNweQ7b1P7PnYTzaHNQ/v073AKJzXlaPAhC= I4ofW/Miu2dt1S26ecBSd/J8jtEh2gXif8PL9fa7moX5QJADyVzkbcAF3jWGkkflynqgW1L31UM= qMT/nsSaqBF/KiH3b0XJufUqnNStL1rbjuWiShemNmggFpX10Yys/nxMLOpp4F+8r9+iXXSp9Bp= QLja1oNv1CYKjFkZvjVM20qnD0U106A4s8G1hVDxoALjLP+diQXP9izoLmI3No6Vf/o2M6ndUig= GVnEtPYk3UiD95WpsGS+Zfr+JGjfuC7qJKL2Q2KsWi8nMo8eFVr/8qsMTb2ghsqbsGlIhNBcExC= aOBcAk2AnunFcSycl1Fh/zLsgffVdqPL0zqpgJA5/qX9z5K9hZMA02S1iEGVHE+PYk1US/+1DUQ= lpxbr8JJXfuCClElOuctu4pFdTmHvP5LJIJR2I7ZO7I2S68BJWJTQXA00O+t8TuuJfyEpD8DLsr= yu4oOFUWxWtJzki71sr9bFMVNSd1Dc1RFUdwvE0WfLGkltpPxtG5O0V0MqBuHU6ypjJ7EjdS8L6= pElXKbVWJRdT5LnYJR7yjps5prUCY2FQQTzljVvy6QtFPSlbTrhtSJDi2TdIZ/zoNRG0VRLCqK4= lRJn5YF2FJRJqrFgMaT8RJ/6lU4qaovehFVamuDdrGoMXEEr0EQjCuNV42xVdApfngyMKkoik3A= 1ZIWSVoN3C3pXkl3SvpLSdcBJ0v6oaTL5aOfoii+AVyCba55RdbUByW9y4PohySdI+lumXzooKQ= TkrIHJb0fuFTSWbIgdaq3+VFJJwADRVEMKgOYKul9kkaAKbLgfajtoii+lYx0T8IEg/ZK+rDfmv= 6xbHT2m8Duoijel9SfXRTF3Zl/H8jObbmkmZIu8dvxn0n6sKRfA/ZJOrmHvrhd0ixJ1wC/LGm9p= DmS9uXn5OU/7rfkWyV9SdJ2SQuz/m+dQ+rDszI5UrAHrN+QjSRPBM6QKfSVXgNJH/G6sSodHLvQ= +WbJ9iTvnjydLqJDSZ0bgAeztFwA6DZs4v9FbIVzA3BWUv5WnxtbR40YUMn59CPWVCX+VCZGlfr= Xq7hRr33RIarUpc2uYlEl57AuO96RfH45yx+m4hpQIjYVBEEwIRBiUUHQwVjnCINjCOyW/kRJv0= GIRQVBcLzht8UpIRYVBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQB= EEQBEEQBEEQBMFxzP8Bopn7KXVmh0AAAAAASUVORK5CYII=3D" width=3D"322" height=3D"= 79" alt=3D"" style=3D"margin-top:-17.45pt; margin-left:239.7pt; position:ab= solute" /></span><span style=3D"height:0pt; display:block; position:absolut= e; z-index:-65537"><img src=3D" ABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEY= Gh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4eHh4eHh4eHh4eHh4eHh4= eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCAQZAzIDASIAAhEBAxEB/8QAHAABAQ= ACAwEBAAAAAAAAAAAAAAECCAMGBwUE/8QAUxABAAEDAwAECQgFCQUGBQUAAAECAwQFBhEHEiExE= xQWQVFVkpPRCBciUlRWYZQ3cYGRshUyNkJ0daGxwSMkM7PSGENicnPhJTQ1RlNkgoOEov/EABsB= AQEAAwEBAQAAAAAAAAAAAAABAgMEBQYH/8QAMxEBAAIBAwIFAgUDAwUAAAAAAAECAwQRUgUVEhY= hMUETFCIyUWGBNXHwIyWhNEKRscH/2gAMAwEAAhEDEQA/AOgSiyj9Lh8VAAAAgAC/AALAAKkoso= JIALAkqiE7fIP0YOFl516LOHjXb9ye6minmZfX8i928f0d1L3FTCctKz62Z1x2n2h8AfS1XQNa0= m1Rd1PSsvEouVdWiq7bmmKp47o/F8+u3XRH06Kqee7mOGUXrPtKTWYn1+GKSqSyYwgAEosoADKq= 3cojmuiqmO6JmOEWImY3j4YpKpKqgAAAJKLKKACBKLKEAASCT3Kk9wIAoAIqSeYllbomuuKY71h= Jnb1c2Ha69fWq7ofuY26YopimGSw4733kAViAJKpKLKIAABISLCACAAyAAAAgAGSVIT3jGWUegA= jJGNUsquyGFUcsLS21jZE4XuOWDLdBSI7UXfYiOIFqRkx3AElYOEUkVE4UNk3YjJiKOK5PMs7k8= UuKWFpWIQBgy3JRSTZd0Winmr8E47eHNRHVp4ZVrvKTPoyF4Gzwwwc0oso6Yc8AAACAAL8AAsBz= +923o72Bru9c7wWn2Zt4tM/7XKrj6FEf6z+D3zQPk/7QxMaI1W7l6jemniqqbs26Yn8Orx/i87V= dSwaefDad5/Z2YdFlzRvEbQ1WooquVxRRTNVUzxERHfL2LZ/QRrGsbWu6nn5M4GZdt9fDx6oj6X= o6/o5d81PoQxdF1PG3BtC71srCr8LTh5kRct3OI7u3t5/W9G2TuzE3HYuWqrVWHqWNPUysS72V2= 6o7+PTHol5et6va1YnT+3y7dP0+tbbZf4aU7g0fUNC1S9pup49ePkWquKqao7/xfPbq9KnR5pO+= dLmi9RTY1G1TPgMqmPpR/wCGfTDUPd+2tV2rrF3S9Wx6rV2ieyrj6NceaqPwel0/qNdXXafS36O= TVaO2Cd/h8Zz6biXM/UcfCtRzcv3abdP65nhwOzdFcW6ukTRIu8dXxqOef1S781/BjtaP0cuOIt= esS242JtbRNh7Upt27dnHqt2vCZmTXxzVMRzVMz6IdTy+n3Y9nJuWaPHLsUTMdemzPEuwdO1V6j= ot1mbHPM2eKuPq+f/BpY+X6boaa3xZMs/L2tXqbaeYpSHvnSL0nbf3nqW2MbScTLv3MTVrd65aq= tdtdPdxHply/KS1G1m7Vwqadp5mBNORP+838aKIo7uyJ48/+jx7o1/p9of8AbrX8cNnPlDaZ/LG= g6PpfW48a1K3b5j8XTnpj0WfFSsekb/LXitbU472lq5oG1Nx69RNWj6Nm5tMTxNVq3NUQ+rkdGW= /LNmu9c2zqFNFFM1TPg57obg14N7b21qcHa2l41y7YoijHx66/B0ftl0fcOtdLVjQ829k7a29RY= t2K6rlVOXVMxER2+djXrOXJbakREfvJPT6Vj8W8y1x03o63rqOBZzsHbudfxr1PWt3KbczFUely= X+jLflm3Nyva2pdWImZmLMzxHpbVdFuTVj9D+j5k0xNVrTvCcc9kzETPDrPRB0u398bhvaTkaTb= xepam5TXRXM93mnkjq2ptFrVpG1fc+ww7xWZneWqF6zds3qrF23XRdpnq1UVR2xP6nYNL2BvPU8= ajJwdt6jes19tNymzPVmGxGt7L0nVflBY+ZkY1uq1RgRk3aJp7K7kVTETMef8A9ofV6YelOz0f5= OFgWdNjMv5FE18dbimimOyP9G6er5Ms1phpvMw1/YVpE2yT6Q1u8h917fysTUtZ2zmRiUZFFNVN= dvsrmZ7Ke30vXun7VLWZ0d27FO08/CmMiiYvXsXqU0fRq8/DrutdMuXvWdP0K7pFjFprz7NzwlF= czMdWrnjvemfKZ7OiuZiO3xi3x+6WrNlzfWxfWrtO7bix4/p2+nO8NdMTo031lY1rJx9tZ9y1do= iuiqLc8VRMcxP7nDqXR5vbT8evIy9tajbs0RzVXNmeIhsFsTcfSvm7ZwIwdo6VRjWse3Raryr1d= uqummmIirjnzxHL0PZ+VurLsZFO7NKwMK5zHgoxb03Ka4nnnnnu/wDcy9X1GKZ8UV9P3Smgx3iN= plohMTE8THEx6R33p+0jE0XpS1TDwrdNuzV1L3VpjiImumKp4/bLoT38GWMuOLx8vLyU8FpqANr= BJRZRQAQJRZQgACQSe5UnuBAFABFSX7sO11KOvMdsuDFtTcr5nuh+9Yc+a/xAAsNAAoAJKpKLKI= AABISLCACAAyAAAAgSVYksoAGMqAxqnzMZllX1Se8kGpv29ERkcBDHiWUJCrEJMpKLKKACLASEi= oAIJPZHKsK58ySyj1YVfSnljMMpRqlkwGcwxmA2ISqFhYjmeDbdZW1T55chEdkEtsRsw3ABXPKL= KOmHNAAAAgAC/B5nZejXat/eO7cXRrU1UW6vp3q4/qW475daezfJNysS1vXNx700xfvY3+x57+y= Z54/fDk12W2LBa1ffZv0tK3y1rb5bDYmNoWyNqRZt+DwtOwbfPMz++Z9Mz/i136ROnTX9S1C5j7= ZvfybgUVcU3Ipiq5c488zMTx+x3n5WdzVY2ngW8WLniNWT/vM0d09k8RP4c8ft4axefh43SNDjz= VnPl9Zenr9RbHMYqej2Doy6btd0nUqMXc2TVqOnXKuKq64jwlr8Ynzx+t7huDQ8TdNjF3XtPULe= Nq1umKsfLtT9G9T9S5H9aPN29zS6Xatn9IG5tqadl6fpGdNuxk0TT1ao60W5n+tT6JdWs6VF58e= D0n9PiWjT6/w/hyesNr9g73xdfu5GkZ3UxNcwavB5WN1vP9an0w/T0ibI0feui1YOpWoi9TEzYy= KY4rtVebt9HphploWu6lpe5MfW7GVd8covRXNyapmauZ7efS3o0DO/lPRcLUep1PGbFF3q+jrUx= PDxdfo7aG9b0n3elpdRGqrNbQ0b3ptvUNq7gyNI1G3VFdqr6FfHEV0+aqPwfP0fNr03VsXPtzPW= x71NyOPPxPPDZb5V+3sfL2nja/RajxnDuxbqqjvqoq80/hHb+9q9PfPD6XQan7vBFp9/aXjarF9= vl2j+7ebb2r6JvzaFNymq1lYuZY8Hk2ee2JmOKqZ88ed5nl/Jy0CvJuXLGt6hat1TM00fQnqx6O= eGvGga7reh3pvaLqOXhzP87wNyYiqfxjul2P50ekP7xZnsU/B5demZ8Fp+jk2iXd95iyVj6ld5e= g7i6LMDYO5NqZ2JqWTl1ZOr2rM03Yp4iOeeeyI9D0b5Qupxo+h6PqnHPiupW7kx+prNrW+t26tX= iVanrWRfqxL0X7E1U0xNFcd1UcQ4dybx3NuPGt4+t6xk5dm3VNVNFXFMRPpmIiOW7t2bLal8t99= t92uNZjxxaKVbo3M25uPbEZu19Wt2bl63Fdi/1KblPb28TEvPtzaN0u3Nv59u7uXSrtuqxXFVuM= Smmao47ufM1r29uzcm36Jo0fWcvEtzPM26K/oc/wDlnsfUzuk3feXi3ca9uPLqt3aJoriIpp5if= xiOY/Y016Plx2/DMTH7w2Tr6XrtbfdtD0dRVT0I6fTV21RpNUT+vq1PEPko/pDyP7LV/q6NhdIe= 8sLSqNKxdeyLeFRb8FTaimniKfR3cvj7f1zVtA1CM/R867h5MRNPXonvifTE9kt+HpmSmPLSZj8= TVfWVteloj8rancu4sTQenTTqM69TZx83TvA9eqeIirrTx/qy6ZeimnpBy8LUMTVLeDfsUTRVNV= vr010z289kx29zVfcO4Na3FnUZmr597MyKaYoprq47IiZniIiOPO+rpfSDvfSsWnGxNw6hbs0xx= TTXV1+PwjrRLTHSsuOa3xX2tDZOtpk3revpL0PWehfN2TVp+vX9dx82mjPs2/BUY80TPWq47+Xr= PT3XZo2Pg15PHgY1DHmvnu45nlrBrXSBvHWcPxPUteyL9iK6bkUzFMcVUzzExMRz2OLcG+N16/p= 1On6vrWRlYtNUVxbq4iOYjiO6O3vbrdP1Oa9L5bRMxMsKarDSLVpG0N0Nep1XM21T5JZuJjZFdN= E2bty316Io7O6O7ufk2LibxxvG/KvVcPP63V8X8BYi31O/rc8d/mafaLv/AHlo2HTh6duDMs2KI= 4oomqK4p/V1onj9T989KnSHTHM7ky4/GaKP+lxW6LlrE1iY/wDrpjqOOdp2l9b5Tv6X9R7f+4sf= 8uHmT9+v6zqWvanXqWrZdeVl1xFNVyqIiZiI4jufgfQ6XFOHDWk/EPIzX8d5tAA6GtJRZRQAQJR= ZQgACQSe5UnuBAFBlRTNdUUwxftwrXVp68x2z3Il7eCHNaoiiiKY8zIFcUzv6gCwACgAkqkosog= AAEhIsIAIADIAABJCCUBGQAgT2QwWqUYWbaxsAMdme4Amy7gDJikoySYFQXhEllASEoqBwDFKp4= hxsqp5liwtLZVJRZRioASu6S5LccQlMcyzZ1hjaRJVJZMAAZbueUWUdEOeAAABAAF+H2dn7a1Xd= Ws2tK0mxN29XP0qv6tFPnqn8GyGn9CuDoug4uRoubdsblxaovU53Wnq11fUmnnjq/wCP4tcNmbn= 1baet2tV0fIm3dpniume2m5T56ao88NvujDf+kb40mL2LciznW6Y8YxaqvpUz6Y9MPnus31NJia= /k/wA93r9NjDaJifzOPbuv4e6sPK21ufTrWPqlFE0ZmDd7aLsfXo576fPHnjsa/dM/RPm7Qv16r= pUV5WiXKueeOasfn+rV6afRP7/S2Q3vtLF3Dat5Vi7Xg6viz18PNtdldur0T6aZ7piXhPTdv3et= rTqdo6rp9OBXNE0ZWTb5mnMp9NP1YmO+PTy4OmXyfWj6M+k+8S6tbSk0/wBSPWPaXiM9v7kWe/8= ACe59/ZW0db3dqlGFpOLVXzP07tUfQtx6Zl9bkyVpHiv6RDwa1tedq+7Lo72zmbr3ViaViUTMTX= FV2vjsooie2Zbxafi2cHBsYdinq2rFum3RHoiI4h1bov2FpWxtFpxsWiL2bciJyMmqPpVz6I9EO= 3XblFq1VduVRRRRE1VVT2RER3vi+pa77vJ+H2h9Ho9N9Cnr7y8r+VHn2sXo0rxqqoi7k5FEURz3= xHf/AJtSZ7+56b8oHfNO7d0+K4NyatNwOaLXHdXX/Wq/0/Y8y8/dw+j6Tp5waePF7z6vH1+WMmX= ePhs38lvR9Jz9i5V7O0vCybkZkxFV6xTXMR1Y88w7zqmp9F+l59zB1CNv4+Tbniu3Xi0c0z7Lqv= yTP0f5f9sn+GHiHT7+lXWf/VePGn+6116TaYelOWMGnraIbN6rsfYu79Emq1pmn12b1M+CycSim= iqmfTE08d3ol4BtDaGibf6Ycrb286Ld7T7Vmuq3VcmqKa47OrP0e30u/wDyQ83Ku7e1XCuXZrsW= b8TaomZ+hzHM8R6OZdk1PFx6/lG4FVzHiuatEr5mqmJpniqf8WuMuTS3yYJtMxsymlM9a5Nniny= gMDZuBqWk07Os2bdmuzcm/wCDmueauY45634cvM6LF65ETbs3K4mYiJppme2fM2c6Zdn4+5+lHa= ejxaps4tdi9XkzbpiJ6lNUT5vTPEftdt3bqWwejXRsKjUNKsW7FVUU2LdnGouXJmnt608+f8eXd= g6n9LDjpETa0/8An3cuTRePJa0zFYhp1/J+f9iyfdVfB690BaVsHM0TUp3ljY9eVRlRTa8LNyJi= nqxzH0ezv9L3zYe4dt700evVNHweLFNybc+Gx6aauY/Dt7HUegnExK9S3tTXjWaurrt2KYmiJ4h= q1XVLZaWpaJrMfpPq2YdFXHatonfd45o2m6Pc+UPYw9Iw7d3RqdSoi3RFE124o6vn63m5573ofy= qtCwMXZ+l1aTo+NZuzqERVONjRTVMeDr7J6sdz9e093aLovTRr+2r+lx41n6nTTj37dFPZ9COye= zmIj/V3/pP3lo+ytJxc7WcO5lWr9/wNFNFEVTFXVmee38Iloz6jL9fFMRPpEbfu2Y8OP6Vt5+Wk= lGJlVXa7dONeqrp/nUxbnmP1w5P5Pz+/xLJ91V8HtmyukrQLXSLuTVqNAzMuxqdVqce1asU1V0d= WmInmPNHMPTNJ6RdG1LLsY/kZq1m3fqimLleFHVp588vVy9RzY59cf/Ljx6PHffa7UfTKP/iePb= rp5jw1MVRVH490tqem/QtFxuiDJycbSMCzeptW5i5bxqKao7PTEcvlfKL2Ro1jTMPc2nYNnEybG= Vbov+BoimLlNVcR2xHZzzPe7N08foWyv/Rt/wCTgz62NTkw3p6errxaf6NL1n9GnQD6h4gACSiy= igAgSiyhAAEgk9ypPcCAtNM1VRFPfKm+zlxbXhK49Ed76HdHZ5u5hZtxboimO/zs5HHkv4rIAMQ= BYABQASVSUWUQAACQkWEAEABkAAAIsCcKDJilUsqmEsZkrCAMG2AAXcAVABNiAAZBwARKcJLJJG= W7HuSueI7mUsJ7WMyRDDgZSnZLBsRJWQRivf2HDO3T55IgWI4gZJLZDCUSVSSSABFc8oso6IaIA= AAEAAX4H0du63qW39Ws6ppWVXj5NmYmKqe6fwmPPD5wwtSt6+G3sypaYneG4/RH0m6bvfT6bN6b= eHrFqn/bY/PZX6aqOe+Pw74/F2zcu3NF3HhTh61p9nMtebrxxVH6pjthonp2bl6dmWszByLmPkW= qutRconiYl750e/KBpt2LWFu7DrqqpiKYzMeOZq/Gqmf84n9j5fW9IyYrfU0/t+nzD3NP1Cl6xX= L7u84/QdsC3k035wcm5ETM+Drvz1J/Ds7f8Xf9G0fTNGxKcTS8GxiWaY4im3Tx+/0up2Olzo8u2= IueUmPb5/q1264mP/8AL4e5OnfZOmWavELt/Vb0R9GLNHVpn9dVXHH7pedbHq88+GYmXXF9Pj/F= G0PUcm9bx7Fd6/dot26I5qrqniIhrd069L86lTe25ti/MYn83Jyonibv/hp9Ef5uk9I3SruXeNd= WPXdjB0+O7GsTP0o/8U+f/B0B7nT+j/TtF83rP6PO1XUfHHhxrPex86pPnfQfGzyfZtT8k39H+X= /bJ/hh1/pO6Ftz7m3tn61hZen0Y+RX1qIuV1daI/Hsea9HfStr+ydIuabpmLg3bNy7Nzm9RVM88= ceaY9Ds/wD2it4erdI93X/1Pm76PW01Ns2Hb1ezXUae2GKZPh7Z0NbCo2HtqvEu5FORm5Fc3Mi7= T2U8+aI/CI7HTtH3Dj678pmqMS5FyzhaZXj9ameYqqieZn/Hj9jyvc/ThvfW8GvDi7iafarjiqc= W3MVzE98czMup7D3dqWz9xTrmBbs38mbdVE+HiZiet3zPEx29iV6VqLxfJl9bSl9bjjw1p7Q2k3= lqmNpvTRtanJqiiMrByLNNU90VdamY/wAnxflF9H+t7xtadmaJTbvXcXmiuzVV1ZmJnvj97wvem= +twdIWv6TVkWcbGzMerwONOPzT9KqqO2ZmZ88Q9t0Srp507Ct4tdjQc6KIiIuZE1TXMfjMTEf4N= FtLk0n07+KItHxM/u3VzU1HirtMw+/8AJ82zrG1dmXdP1rHixkVZNVcUxVz2S/L0C/8A1TfH9/X= Xc9nZO46tBryN328HHzaaqpmnFmepTRHdPM+fvay4HSzq+0Nxbjo0LHwcnGztUu34rvU1Tz9KYi= Y4mOyY7XNjw5dZfJ4dt/8Ahtvkpp4p4vZ9DMqin5V/WqmIiNXo7fN/Mh6r8pTaut7r2np+LoWHO= VesZsXa6IqiJ6vUqjmOfxmGsGv7l1HVt25G565px869ei9zZiYiiqIiOY5/V6XomJ8oXe9mzTau= 42kX+rTxNc2a4qqn0zxXw9XUaHUeLFkxxEzWIhw4tTi2vW/tMvTfkzbXp0LSNVjUcOi1rNrM8Fe= iriarcdSiqKef/wB3P7Xacjdm87eszh2+jrIuYsXup41Go0xE088dbq9T9vHLWrTul3dmnbs1Hc= OHVi0V6hXTXkY9VEzZmYpimJiOeY7Ijzuy0/KK3nFERVp+jzPnmLVfH8Tmz9M1V8k3tWJ3/f2b8= WtwxSKxMxs9l+UT+jW9/bMX/nUuDp4/Qvlf+lb/AMng+9Omfcu6tCr0jOw9Pt2artu5NVu3VFXN= FUVR/Wnzww3f0ybl3Ltevb+Zh6dbxrkU01VW7dXW4iPT1jB0rUUtTeI9J3/9F9bht4tp94eagPq= XigAJKLKKACBKLKEAASCT3Kk9wI/Zg2uI8JVHb5nBj25uXIjzQ+jEREREeZWjLfaNlSVSRzIAMg= BYABQASVSUWUQAACQkWEAEABkAAABABKSzhJTgGDOEmE4ZCDAlSRZQBSJAEUAFAEUSVY19wsJVL= EGuWZKLKIqTCdvoZJIJT9KXLCUxwrOseiSJKpKohMAogomw5pRZRvhzwAAAIoAKAC1AD1VJ7UWU= Pb2SQAWBPOqSAAh/YAUc+BlXcLOsZliYi7YuU3KOY5iJieYelT08b+j/AL7A9xP/AFPLknvaMun= xZZ3vWJbKZr09Kzs77uTpd3xrun14OVqVFixXHFyMajqTVHo55l0EGWLDjxelI2LZb5PzST3Iso= 2+vswkACNkJ7lSQQAXcABJRZRQAQJRZQgAFkDiZmIjvkfrwbXb4SqO7uRje3hhy2LXgrfH9ae9y= kiuOZ39RJVJGKACgCwACgAjJJRZREABQkBYQAQAGQAAAECSSiM4gCZGLKAA2VEXgNlSYRkCMReE= FAEXcAYysDjqnmWdUsJYyzrCAMWRKKnBKwLTHakM6VrCTILwnDNiJKpIIAKAA/bOHl/Zb/u5TxP= L+y3/AHcvRB835hvxetHSK8nnfieX9lv+7k8Ty/st/wB3L0QPMN+J2ivJ534nl/Zb/u5PE8v7Lf= 8Ady9EDzBfidpryed+J5f2W/7uTxPL+y3/AHcvRA8wX4r2mvJ534nl/Zb/ALuTxPL+y3/dy9EDz= BfiR0mvJ534nl/Zb/u5PE8v7Lf93L0QPMF+K9qryedTh5f2W/7uTxPL+y3/AHcvRQ8wX4p2mvJ5= 14nl/Zb/ALuTxLL+y3/dy9FDzBfidqryedeJ5n2S/wC7lj4nmfZL/u5ejh5gvxXtVeTzjxPM+yX= /AHcnieZ9kv8Au5ej/sP2HmC/E7VXk848TzPsl/3cnieZ9kv+7l6P+w/YeYL8TtVeTzjxPM+yX/= dyk4WZz/8AKX/dy9IDzBfidqryeb+JZn2TI93J4lmfZMj3cvSA8wX4naq8nm04WZ9kyPdyniWZ9= kv+7l6Udh5gvxO1V5PNfEsz7Jf93J4lm/ZL/u5eldh2HmC/E7VXk818Szfsl/3ck4Wb9kyPdy9K= 7A8wX4na68nmniWZ9kyPdz8DxLM+yZHuqvg9LDzBfidrryeaeJZn2TI93V8E8SzPsl/3dXwemB5= gvxO115PM5wsz7Jke6q+CeJZn2TI91V8Hpq8nmC/E7XXk8x8SzPsmR7qr4HiWZ9kyPdVfB6dycn= mC/E7XXk8x8RzPsmR7qr4J4jm/ZMj3VXwenB5gvxO115PMfEc37Jke6lz4eiazm1VU4ekZ+TNP8= 6LWPXXx+6HpVi1cv36LNqia7ldUU0UxHbMz2RDZLoy2xb25t63auUR47ejr36u/t81PPoj/AFPM= F+J2uvJpfa2lueu5ETtzWIjz84Nz4Po07X3JEREbe1bs/wD0Vz4N6erHoOrHoY+YMvGGF+kVt/3= NFp2xuT7vat+SufBPJjcv3e1b8lc+Derqx6IOrHog8wZeMMOyU5NFfJjcv3e1b8lc+B5Mbl+72r= fkrnwb1dWPRB1Y9EL5gy8YOyU5NFPJjcv3e1f8lc+B5Mbl+72r/krnwb19WPQdWPQeYMvGDstOT= RTyY3L93tX/ACVz4HkxuX7vav8Akrnwb19WPRB1Y9EHmHLxg7JTk0U8mNy/d7V/yVz4HkxuX7va= v+SufBvX1Y9EHVj0HmHLxg7JTk0U8mNy/d7V/wAlc+B5Mbl+72r/AJK58G9fVj0QdWPRCeYMvGF= 7LTk0TnbG5fu9q/5K58E8l9y/d3V/yVz4N7erHog6seiF8wZeMHZacmiXkvuX7u6v+SufA8l9y/= d3V/yVz4N7erHog6seiE8wZeMHZacmiXkvuX7u6v8AkrnwPJfcv3d1f8lc+De3qx6IOrHog8wZe= MHZacmiPkvuX7u6v+SufA8l9zfd3V/yVz4N7urHog6seiDzBl4wdlpyaI+S+5vu7q/5K58DyX3N= 93dX/JXPg3u6seiDqx6IPMGXjB2anJoj5L7m+7ur/krnwPJfc33d1f8AJXPg3u6seiDqx6IPMGX= jB2anJoj5L7m+7ur/AJK58EnbG5Y/+3dX/JXPg3v6seiHHc4meIiODzBl4wvZqcmifkxuX7u6v+= SufA8l9y/d3V/yVz4N6eI9BxHoXv8Ak4wvaK8mis7Y3L93tX/JXPgvkxuX7vav+SufBvRNMJNKd= /ycYXtFeTRjyY3L93tX/JXPgeTG5fu9q/5K5/0t5+I9BxHoO/5OMHaK8mjHkxuX7vav+SufBJ2v= uX7vav8Akrnwb0cQnHb3Hf8AJxg7TXk0X8mNy/d7V/yVz/pPJjcv3e1f8lc+DehOI9B3/Jxg7TX= k0Y8mNy/d3V/yVz4HkxuX7vav+SufBvPNP4Jx+B37JxXtNeTRidsbl+72r/krnwTyY3L93tW/JX= P+lvRMQk0x6Dv2TidpryaMeTG5fu9q35O5/wBJO2dyR37f1aP/AOnc+DeWaePM/LkV9arqx3Qd+= ycTtVeTSCdtbj9Qar+TufAnbW4/UGq/k7nwbsTESxmJiU77fiyjpdeTSjya3H6g1X8nc+CeTW4/= UGq/k7nwbsJMHfL8TtkcmlHk1uP1Bqv5O58F8mtx+oNV/J3Pg3V4Z49vr19vbEJ3y/Fe2RyaURt= jcnHPk9q35O58F8mNyfd7VvyVz4N5OOzhOFjrt+KT0uvJo75M7l+72rfkrnwPJncn3e1b8lc+De= LiDiF77fina68mjvkxuT7vat+SufBjO2dy/d7V/wAlc+DeOY9EJxB32/Fe115NHPJjcv3e1f8AJ= XPgvkxuT7vav+SufBvFMJ2Hfb8TtleTR7yY3J93tX/JXPgN4ewO/X4nbK8mq4D556oAAAAAAOXH= xsjJmqMexdvTRTNVUW6Jq6tMRzMzx5l8VyfFYyvF73i81dSLvUnqdb0c93P4A4R+nIwM/Gt0XMj= CybNFfHUquWqqYq57Y4mY7SdPz4yacWcHJi/VHWpteCq68x6eOOeAfmH6f5Pz/GoxfEsnxiY5i1= 4KrrzHp445cfi2R4G5e8Bd8Hbq6tyvqT1aZ9Ez5pBxD9ODgZ2fXNvBw8jKriOZps2qq5j90OeNO= rs2MynNxNQtX7ERM0+A4po5mI+nzxNMdv8AkD54/bjaRq2TjTk4+mZt6xHfct2Kqqf3xHDHD03U= cyOcTAy8iOt1ebVmqvt9HZHeD8g57+Hl2MnxW/i37WRM8RartzFXM90cT2v1zo+o4+RZjUdM1LH= tXKurH+7VRVV+FMTxzIPmj91vTM3KzL9jTsDOyPBVzE002KqrlMR9aKeeJ/Bw1YWZTl+J1Yl+Mn= njwM256/Po6vHIPzjs2n7bvUaHrOXquBmYt7Fx6bljwtuq3zM3KKZ7Jjt7KpfIzcLq5FixiY+dN= dyiJii7Z6tVVU/ViOeY9Eg/AP3ZOjavi0VV5OlZ1immnrVTcx66Yin0zzHd2w+rp21szVr9NvTc= XOiKcWb1yrIx5iJmKOtxTMc8890enmAdcH77ejavcybmLb0vOuX7X/Et049U1U/rjjmH09saXbu= zq9vUMWum7jYdVdNFymaaqKutEd0g66LTTVVMU00zNU90R28v2ZekatiWPD5WmZti1/8Aku2Kqa= f3zAPxD9lOlapXjTk06bmVWIp683IsVTT1fTzxxx+LOjRdZrx4yKNJz6rNXdcjHrmmf28cA/AMr= tuu1cqt3aKqK6Z4qpqjiYn0TDEAAAAAAAH29k6Bf3Hr9jT7NM9TnrXq47qaI88g710GbTjLyPKL= Ntc2bUzTjU1R2VVd01fs/wA4e1Rzy/PpeFj6dgWcLFtxbs2aIppiPwfpZAAAAAAAAAAAAAAAAAA= AAAAAAAADGueIcbKripjwCcHCgMRknAJMJwoCC8JMAkwjJAQXhATgVKuIiZnzA4sirq0ceeX45p= c1czVVz5mAOKYRyzDGaQccwkwzmOEBhEczxHfL91m3FFHHpceNa5nry/QCcIySQThGXCAxOF4SY= A4RSQY8DLgBqoAxAAAAAAH19n6jGmbgxb9c8WaqvBXuZ4jwdX0auf2TLvMZehV5VW0qtQxY0ym1= F6nJm5HUm/EzPf3d0xH7Hl4D0fTta0vXdR1WzqeTZx8S3fjLw/CVRTTxbniKI588089jLK3Bp2Z= omTr85Nm3q1q3Xh2rXPFc01TPVriPwiYjn8Hmwu49F0/XcDG2/i7gnKtVavasxheCmqOvxzExXx= +qKo5/FxbmjSsm3h6TpWqYVqjU73jmTdqucUWqqv6tU+bh5+G47rps27m0sjRMHVcPGzreXVXcm= u/TapyKOIinq1zMR2cT5/Otd6cbbuu4WdrOLmZE4tmi3FF+K+2LlE9WJ/rcRHm57nSQ3Hqleoab= mTpmbhXMGm1Ys00z4XVPATaqjv5t989vb2RPL4Wq65aq2tqviOTYsV5WqU1eCs1zEzb6tc8xE8V= cc8eZ0gNx6LY1jTqc7RL9/Nsxfq0q5ZnI56/gbs1VxRNXHdMfRfPwrWdp2oWLuduHBuWK8mKpt2= 8ym71+/wClPEzER+vjvdKDcd9wadPyK9YuxmWr16vPrqixVqFONbqo60zFcVTMdb9j6Wfqel+Uk= 04+oYtm9f0qmzayqbsV02rvWq7Jr8093b+p5gIO/wCJTd07ZOv42oa7gXq79mjwONbzKLtUzFyi= ZmOJnzc9jmt6pp9GvWurqNixduaXTYs5UVRNNm5NPEczHd2/uedP26Pn0afl+HuYdnLtzExXbvU= 8xMT3ruO7aXi6hibU3HRl6viZNFWLzFmzlUXpmevT9KerM8f+7kwtTwo1/AojULFFFejVWJr8NE= UU3JszTEVTzxHbPn7nVsrX7NOlX9O03SrODRkTHhq4uTcrriP6vM90fB8E3He9EwsW3pmRbyNQx= 8jMjK+njzqlFm31YiOK4r630u+e7l9DV8/TKtb1O7azsSqm5o9uimum/FUV18U8xzPfPf8Ai80D= cdr2pbwdF1bS9Sy9RxK7eRRVPFuetVjVc8RNcebjjn9r6mm1XNKu6pl6vruFl4t+1VTFq3l03qr= 9U909WJmY47+3h0ANx3HWdWs04G2LHjVN7GsWetk2aK+e3wlXMVR6ZjzPs4tGZl74s6pi7hwfE6= 5jqf73TFUU8fzPBc9bn9jze3V1LlNfVpq4mJ4qjmJ/B2K1ubDsZUZ1jb+JZzaaeKbsXJ6sVemKO= 7lB83dP9JdT/tVz+KXzWd65XevV3rtU1V11TVVM+eZ75YAAAAAAAyooquVU0UUzVVM8UxEc8y2K= 6KNrxt7QKLmRb4z8qIrvc99Meal590JbUnUdS/l3Mt/7ri1/7GmqOyu5Hnj8Ie6x2QuwQAoAAAA= AAAAAAAAAAAAAAAAAAAAMa/QyY8AwVUmAJiGMwoCC8cpMASnCgMRknAMeDhQEFmEBOHBfqn+bDm= uVdWnnzvzT2zMgwThnwxmAY8Iz4TgGExCU25rmIhnx2v0WaOrTzMdsgUxFNPEeZWUxykwCcJKgI= jKU4BiMgGEwjPhAYjIBqkNgfmm2p9TJ99J8021PqZPvpTYa/DYH5ptqfUyffSfNNtT6mT76TYa/= DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT= 76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfN= NtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfU= yffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH= 5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76T= Ya/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT6mT76TYa/DYH5ptqfUyffSfNNtT= 6mT76TYa/Pq7U0XI1/XMbTcamZm5V9OrjsppjvmfR8XtnzTbU+pk++l93aWz9G21Xer061XFd6I= iqquqap49HabD6uiadj6RpWPp2JRFFmxR1aYiOOfPM/vftBQAAAAAAAAAAAAAAAAAAAAAAAAAkE= kAEJhQGKTDI4BgqykwCcQkxKgILwkwCcHCgMRZcd2eI484OK7PWq4juhxzDMBxnezmGMwDHhJhm= RHM8AWqOavwhzrRTFNMQswDEVASYThkAwGUwkgnCKAiTDLhAY8C8/gA+kAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACTAoCBwAACbITCgMZSYZHArBTg= 4BOOe5OFAYzPEOGqOZ5cl2eeyGAMJhjw5E6sAwRlMJwCTDO1Rx2pRHMuaI8wILMIAnCgiIyOAYi= oKkwkxLIBgMphiAAD6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAJwKcAgTAAACHCgjFjX2QznucNfbPIrHhGScAx4GXCSDFJj0MuFpjkQop4hkp= wKiKAnCMgGIswgEnACJwjJJgBFQU4gAH7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATgUBA4SeyAY3J7OIcbKe0Bikwy4QERlwnAJxMyyha= YXgGIvCAJMKAxVTgERQE4RkAxF4QBOFIiZ7IBj1R+iLUcdoDlAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnkBhX2s5YSDHhGaTAMQ4ATgh= WURHAMRZhAAAThGScAgvCAJMKAgvCcAAAkw5LFHb1pY0x1p4foiOI4AAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJAkAROEZIG6MZhnw= grBWXCTACcABMSjLk4iQYhMABxyAJwjJOAQWYQBOFZ245nnzAytU8U8+eWYAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASiynAAAAACKA= nCMkESYThlwgrEZcJMAJxEgBMIy5OIkGITAAkqAnE8uamOrHDG3HZyzAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4RQEFmEAAAAA= AEThGQG7CYOGUwgrEZIAk9oAkwtEcyrOmOAWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhFAQOAAAAAAkA2ThGSAx4OGXC= cAtEedkQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAATCKAgcAAAAAmwRBCigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJMCgiBMEQ= KoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAIBMnLq3Sdu6nZO2a9brwqs2KbtFE2oudTnrTx38S+P0b9Kmhb3zq9Ow8fIxc2i1N2bdyOY= 6sTETMT5++PM3V0+S1PqRHo0W1OKt/pzPq79Ret189SuirqzxPFXPDPrejtaVbh3RuLRd+61c0v= Ws3G8HqWR1aabszT/wASr+rPZP7myPyfty6vurYk6hrWRGRlW8uux4TqRTNURTTMTMR2c/Sl2ar= pt9PijLvvEuPS9TpqMs4ttph6Jy4ruXjWaurdyLNur0VVxD4+/td8mNoajrsUUXKsW11qaa+6ap= mKY5/DmYav7G2rurpZ1XUdSva7Xi0UXOaq7lVdcRM9vUpp60cRHY816bbizl4t6uaLORZuVRHMx= RXEzx+xyxVE9zwLTOifVNj4Gra5lbvuVWowa7c1WbNcV0c1UzzH0/wfs6C92aXomwNZ1jWty5uf= j2s2KfC5cVdeJ6lPFFMVVVc/+4PcoOXkP/aB2XVk0WbVjU6+vVFMTNmI7Znj0uTVunnaOm6nk4F= 7G1Gq5jXarVU0244mYnifOD1qDl0XYnSltXd85FvBv3Me7j0TXXbyKYpnqx3zHb3Q+DqnT5sXDy= bli3OdlTRVx17dmOpP4xPIPV+tHPBy1v6Sd54W5NzbX1XTtw6xpGLk2I4sW7dXFfF6qmZq6tcRz= 2cO96903bV0DWMjRsyxqFzIxKot11U24mJmIjtjtB6sOjdH/SjtjemZcwtMuX7WVRT1vBX6OrNU= fh29rvIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAPKvlR/ouv/wBotfxQ8l+Sr+k29/dt3+O29a+VH+i6/wD2i1/FDyb5K3= 6Tb3923f47b39LP+23fN6v+o0ef77/AKca9/eWR/zamyPyUP0Z3/7yu/wW2t2+/wCm+vf3lkf82= psj8lD9Gd/+8rv8Ft29Wmfsa/w5ekxH39v5ds6adMv6v0Ya3gY1M1XarEVxEefqV01T/hS8L+Tj= 0gaJtG1qWma9dqxaLtyLtu71efpccTTPo7obR1RExNNVMTExxMTHPLybc+yuh3M1e/cz72HiZnW= /21FrK6v0vxjtiJ/U+TfXOXdvSLtLc2zdb03R9Ti/k+JVVxR1Zjsiqn4tcKaMuropqroiZx6dan= wnV7onwNPHLY7aWx+inHzMinSMuzk3cixVYrt1ZnMzTMxM8R2dvZDsGk7A2Roei5O24xrVeJn3I= uXLGTeiZrq4imJp7p83mBrls6jcNOHgRia/te1jdemYt37Fmq7Ec9sTNVqZ5/a7D0dYODn/ACi9= Zx83Ex8nHnNy/wDZ3LcV0T9Krjsl6tT0H7AoyKb1GBk0TFUVREZE8Rx+uH39B6O9r6LubI3Fg4l= yM/IqrqqqquzMUzVPM8R+2QazZOLctdJG7sXS7PgurgZdNNFmnjinqR2REOz/ACfNY6OdO0PPo3= ZOnW86b0TTVmWev1qe3+b2Tx+L2zSdk7Nxd25e5sKKK8+umqL/ABfiqiIqjieafN3ed12jow6K9= zZmRl6fZt11RVzdpxcj6MTP4eYHl3TjmaDnb52pkbbqxatOqxqfBzjUdSj/AI9cTxHEefl+HdW7= tc1vfOdgafGgaVRameLmVhWZmriI/nV10VTNU8vdfmi2VM6b1sG/VGmx1bETenu6819vp7apce8= ei7o/1HJv65rGH4rMUxN+7Re6lPo5kHhfQb4zb6ecGnJyMe/enw/hLmNERbqnwVfdEREcfsbcR3= PONg9HWwNN1SxuLbVVV+7Ymqmi5TkdemJmJpnmOPRMvR47gAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQHlfyo/0XX/7Ra/i= h5N8lX9Jt7+7bv8AHbes/Kj/AEXXv7Ra/ih5N8lT9Jt7+7bv8dt7+l/pt3zer/qNHn++/wCm+vf= 3lkf82psj8lD9Gd/+8rv8Ftrdvv8Apxr395ZH/NqbHfJRuUfNtkUdaOvGo3JmnntiOpR2u3qv/Q= 1/hy9JmPvrfy9g87TnD2zj7u6bdQ0PKyLli1eyrszXRETMcNxYaf6TuTA2n0552t6nRkV41nJux= VTYpiqvt9ETMf5vk31zm6Yeje70b3dP1PStVvXrN2uY8JMdSu3XHbHHHfz2+jufR3TuixreobC1= TPtZt3JuY1umquzl+DiaqL80zMx1Z5mZp5fn6cukzB3/ABp2maBhZkWbdfXnw9ERXXXPZERFMz2= ds+d+Pemi39v6hsDS8mmaL1GNRcrpnvpmu/VXx+zrA9i31016PtjVKdGwNMv6xm26KfCU27vVpp= qmP5vPEzM/sfG0Tp4r1rWaNEv7SvYVWRRXE1eO/So+jM90247ex55trUMLZHTZk5W7sS5Nnq1RE= 1Wutx1uOrc4nvjsntZ6trek7g6d6dU0SrrYVy31aJ6nU7YszE9n6wfq6P8AdtrQcXeOfgaNqGbX= VVbtVWq8zr9lVdyOt2UdnD53QLvjJ2rqeTjY+gX9TjUb1qiqui5NPgeZ45nimfT+DsXyb7UXtV3= tb6nhJmzHFMx5+tcfN+Tzu3QtrZOrWdYuTbyMqumnHpm31utV28R+HbwDvmr9Omp4Gq5mFT0f51= 6nHvV2ouxk1RFcU1THPHgvPxy4tY6TdP390SbstW8C5p+XjYkTcs13Yr5iao/mz2TPHHb2eh5fn= bt1vWt16pGq7snRaLd6uKKZs809lUx1eKY55iI874m1OIvbs6mRTkU/yNe4uRT1Yr/2lrt4B7v8= kj+g2f8A2v8A0e0vFfkk/wBBs/8Atf8Ao9p4QUIFAAAAB+fOy8bBx6snMvUWbVP86uqeIh+ie54= V027snUdR/kPCu84uNVzdmmf59fdx+qO0HrXlbtv1zie0eVu2/XOJ7TVoTcbS+Vu2/XOJ7R5W7b= 9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/XOJ7R5W7= b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/XOJ7R5W= 7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/XOJ7R5= W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/XOJ7R= 5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/XOJ7= R5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/XOJ= 7R5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/XO= J7R5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/X= OJ7R5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2/= XOJ7R5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu2= /XOJ7R5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntHlbtv1zie01aDcbS+Vu= 2/XOJ7R5W7b9c4ntNWg3G0vlbtv1zie0eVu2/XOJ7TVoNxtL5W7b9c4ntDVoNxuAAoAAIoSOh9O= O2tU3Xse7pWk02q8mb1uuIuVdWOIq5l5V0adHnSJsfcc61jaXp+bVVYqsTbqypp7Kppnnnqz9X/= FsjxCcdjsw66+LFOKIjaXDm0FMuWMszO8Nd9Y6O72pahfzdU6PNRt3si9VduVafq1qrmqqZmZmK= 6afPL8WPsjJ0LIqy9Dy917duWvpcX8Wm/bmf/wCKuqZ9lsr1Y5OrDZHUskR4fj/P13ap6Xj38W/= r/n6PJdp793JgVeL7owKdQxKaeZ1DAt19aiOYiJrs1xFfHpmIn9TsFvYHRvuDraxb0LAzfGZmuq= 9FVf0pnv57eyfwd38XseEqueBt9eqOJq6sczHo5cOHp2Fh3LleJj0WZuzzX1I4iZ/V3OXLel/WI= 2dmHHfHG0zvD4Oh9H+zNGyacrTdvYVi9RPNNcRNUx++Zfr1/aG2td1HH1HV9IsZeXjREWbtc1c0= RE8xxxPpfdiOBpb3gPTPZ3tmbpu4mJsfTNX021RTFi9ex5qrmPR1oriXxOivoz3NkdIFjWtc0Cx= oun2KZqqs2piKauaJiIpp61U9vPbzLZjiDgkdVs6JtHYmBqeu4WmWcC34KbuZct8zNVNPM90z+M= ug1ZfRLl4GXuvK25ZxcjH6t+mm/wAU3LszP0ZoimuYq7eO7u87vPSrtjO3Xt2nTcHJtW5i9Tcrt= 3K5oovUx/VmqImY/dLrdnof03UsSidwZWV4frVT4PGvxNFETPZTEzRHMR+qHXhrp/Dvklw5rajx= 7Y4fA0/WuijeGpX8nUtqeAmizN6/kX6OOKojrVRxRVMz2dvPHa7BpekdENjUM/BxdO0uxFeJTF2= 7OREW71queZppnr89k0Rz2R3w/RpfQvtHTr1Vyxd1OufBzTFN3IiaY57p7u+J7X56OgzZtNqaIv= arFU881eMRzxPfH83u7Gy9dHM/hmYj+zXSdbERFoiZ/u7H0W0bfp0TJnbmjfyZh+N3bfEc9W7NF= U09enmZnieOXb47YfM2voOBtzRrGk6d4XxezH0fCVdaqf1y+o4r+HxT4fZ308Xhjxe4AxZgABI/= LqudjabgXs7LuRbs2aJqqqkHVulfdXk7oE0Y9ceP5PNFmInujz1NdK66rldVdUzNVU8zM98y+xv= PXsjcWv39QvVT1Jq6tmjnsooju4/z/a+KgAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANwAGQAAAAAAAAAAAAAAkx2kE95DGJNjhQZAAAAAACT= PDxXpz3XGVlRt7Bu82rNXOTNM99Uf1f2f5w9ovf8Ov/AMstU9z/ANItR/tNf8Ukj5wDEAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf/9k=3D"= width=3D"818" height=3D"1049" alt=3D"Imagen que contiene Interfaz de usuar= io gr=C3=A1fica Descripci=C3=B3n generada autom=C3=A1ticamente" st= yle=3D"margin-top:-35.43pt; margin-left:-70.9pt; position:absolute" /></spa= n><span style=3D"color:#ffffff"> </span></p><p class=3D"Header"><span>=  </span></p><p class=3D"Header"><span> </span></p></div><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:18pt"= ><span style=3D"font-weight:bold"> </span></p><p style=3D"margin-botto= m:0pt; text-align:center; line-height:115%; font-size:18pt"><span style=3D"= font-weight:bold">Consumo de energ=C3=ADas renovables y su aporte al crecim= iento econ=C3=B3mico: un an=C3=A1lisis comparativo periodo 2000-2020</span>= </p><p style=3D"text-align:center; line-height:150%; border-bottom:0.75pt s= olid #5b9bd5; padding-bottom:1pt; font-size:14pt"><span style=3D"font-weigh= t:bold"> </span></p><p style=3D"text-align:center; line-height:150%; f= ont-size:14pt"><span style=3D"height:0pt; text-align:left; display:block; p= osition:absolute; z-index:6"><img src=3D" JRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ= EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA= QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAAxADADASIAAhEBAxEB= /8QAHQAAAQQDAQEAAAAAAAAAAAAACAAFBgcCAwkKBP/EADQQAAEFAAECBAQEAwkAAAAAAAMBAgQ= FBgcAEQgSITEJExQiFUGhwTVRcRYyQmF0dbO04f/EABwBAAEEAwEAAAAAAAAAAAAAAAgBAgMHAA= QGBf/EADARAAICAQIEBAQFBQAAAAAAAAECAwQFBhEAEiFBBxQxURMicbEIFRZhgWJyssHh/9oAD= AMBAAIRAxEAPwD3P8bVdXbcf4m1tRfXWVplM9Y2E2TIOSRLmzaqLJlSTPUvdxDHK8jl9E8zlRqI= nZEkd3ExWeqbG8ukrqyoqYh7CysJsokeJDhxRuMeQcxDtYMY2MVznKvt7d1VOqw4vuPl8bYEaOX= 7MbmWJ6r6I2mhNT09O3t+/f36oTxXw5fJOezfFYbmZTxdZdwnWEiK5FQ4Y0yM2NGlj8zVNEWQVJ= LxI5vmJHC7zfZ5V5/UeqsDpDGjNajsT1MSt/F0J5q9Z7c6yZbJVMXWEdaI/EmJs3IgVQEhSzbEK= RxL5DNZFLlbT9KLIZgUb9mjTnsJTgsS06k1rklsy7JFGRCeZyQB2I3BAn80fE646ydoeuwGNqps= EL3jDeamdOiuskY5zfnwKSI5ZyRX+ijLJIErkVEfHE5ey/Bw/wDFBwWmtwQN3h6kVcUg2ntspYW= BZVcNzkYsiRSWD2yTRh+ZFI4BVKjUVGCKRUGvLf4l+ay2G8RsLE5WNGr6yi40xwIsEasQzxolh8= ydI8qIppMw3zTypCtVxTuer/VyJ1H/AIdOco9d4q8VnNJXR7WitqDfQ7KDKYwgSANibxjXIi91Y= UJlEaOZnYgDsGYT2PG17efk8U6y6zGmk01QfDjKJi/N+at/mxVpUiNxZRL5YSAtz+WNYoSBGXXc= ODMofgDuXfwtt47yeNuq4vEQ+H1rX4wCYTTreH8UtXHzZNdNtjjV/O3rsIhRbLHNCzuxtrUJ2rc= eufMrg9dR1ukzz6+2pbiKObXWESSUgJMcqI5r2K03oqL3aRjuzxkRzHojmqnWrX0lLEyujlw4zY= 0uLR2siNIDIkDMA4IJyCKIjTI4ZBka1zHtVHNciKioqdc7/BXfWeD13NnAsuwPOqMHolsswQ5Fe= 4NfNmSo0obfVWDYXyQJaCZ9qSDy39kc93c59hcq/JadquX7qC4aiovui18hPb/P9f16svJV1oXJ= K6v8SPZJIZNti8M0aSwsR2JSRQR0+YEbewGaQzz6kwVLKTV/K22exUyNRWMiVshQsyU7sSOQOaM= TwO0RPUxGMt8xIFNcd2qswOKYrm/ZlM+339u1VFT19kT2/T+fUM5bbLKKj00DsSVnJzZDmonm8g= lKEzCuaiL3YI4Bo/v7MI5yq1EcvUdxVq4eOyrPMqIzPUzfz9PLXx0X8/X/AMX2XpgrOceLtDPLS= VfIGPtrFZ7qV9ZFvq2TJJYuFZFdXJHZIc4pnCp7ZVG1H+ZK2enr9IdGVf4haPh19pDNaWltvQbI= V4Xp5GJQ8mNydGzDexl+NCRztTv1q85QMvOkbJzLzcwsDT+ZOAzFPKpAthKsjrPXfcJZqzxvXs1= 2IBC/FryypzbfKWB5WA24D3lvwN53xb+JyJztudi6v4+rMnmaluQoZDwaa3tKtZpJsWznuY1tRU= o4wx+eL8+ZPGpEG+I3yndIMp4M8t4avEHQc68f33fDVddq2T8TZHWRexJVnnrGHAj5yW7v+KgNL= MEHyJzxSIrHNKWXIY0j2E/Ny1Z9QSXVWZqZ/fzkQJWqIaPX0VOxRPExy+qIr1b2+1rUT0RtranO= WEidKmaVL91PKNEsGfVjcOFKiiEeRGnOQxiDKIJglIJ7xOYMg3ETyvb1R9SDxfquKcnhLpm5qkZ= CK5Lr5tZQRabs245EIy0mKSP9QxQuBzyYeCFFLEothTtKpIr48Z+LT8unavilmamh5NGWtEfoRM= Asgjwduk9OSAFycbLlFEhePOyS+aVx13g3rsx+E2o0J7rlPmLWVxqiy5Fv3srq+Wx45EashSpRy= uVpGtd8l0g4ooVVrXESApU+wjVUt9VbKuY0SK5vrSWrff8AnBOn7+qdv26qPP7TPX1NX2+Zt6q0= oZsVkissKmZHlVsqEqqwZ4ciMR4DRl8vYZQucJyJ9rlTrPQ26vz912J3a6psOytXuio6IVE7L37= Knr379/6L0Vdi7bvtHZuiulpoKyTJVEi1Y3igjiZKwlZpFhBQ/DEjM/LtzMTueA505g6mm8ZDia= c1izFHNbne1aEYs2rFy1LbnsTiELEJZZZnZhGqovyqoCqOKXz9owuTqITjPG0lDCjOcNyNIxr4A= xK5jk7q1zUVVav+FyIv5d+gVm8JVsaq4/x/JvKfFj8nw1ErKumrX5yHS2tlQ0nH+6qYMzY2U28K= X8TdVTG30sUNkamd/Zy3tGxESSqVhL1N7HiVcCJIkMAeLEjxjAKQQyhKATRkEUb1Qgyie1wyDe1= Hse1zHIjkVEF/mzgCg5amai7jbu3o7e9zljWBrWkojZxbmRithhoN1OaapPcqsKp2dm76SLZhiG= kCilKB/kI0uspCk9up7EgenTbb6djt29j7q9Dt7ncdCR1IAHQEfx/ziqzcb0eVjUlnd+JrHbFb6= 1wlHXQbZbK5iclz0uaDKDp9hAq9R9Vd0kC8Ix1ecbpL6QjxnnObDjWYZ9w8XwOMcDtNW6z55xOu= ByfgdFGk0hisLR0sTMRMzW30qhmyby1DXVskc8RtLW3E+dYWzW00hs4g6eW8rLN8MWGnS5NhI5H= 2S2Fzoc5ptXMC7EAJpbTI6WHp8454xZdA0Aa6bBCF7MuOmWfGRfrnnkOcdWKL4Q+NwQ5UU3Ieyn= PmDnskSpTsWpzPmswZGFKg8ywBSR7LjfL2jlIFyT5ArANmkyJZSY6vDKehZuu2+yj9iOnKe537d= D07DhxIB6kdR7H03H9P0P7/AMjfVlvDbm5iZ7C0HOmLsotfncwd0OiQ6ae/zdZWYmDIopg4WoLH= TCySUEq/gBBF+oDbXySXyXtZKLa9K59hGg5uZXw2sjw4tPIhxY4mtYMEcMN4ghG1P7rBja1jE9k= aiIidvToIOPeC8JxvsqvZ0eotfq66nk1kiAMGSqINweYFAyLC5/AKCqk2D0VFkRokg74cSU9TRx= MRoxsIew0UU8CYEckTyFinGxjTDc57iDc1rGtRfM5zlVGta1PMqr2RFXphILDYdOnbbqSv7dunX= v09+E3U+xPr6H2Hcj6d/uNzt0P8ZuP9ymf9knTH0ul1MfRvq33Xhqeh+v8AocZu9mf0/ZOsOl0u= sT0P1X78SH1/hfsOF04VX8Shf6qP/wAzOl0ulHqf7j/knCcf/9k=3D" width=3D"48" height= =3D"49" alt=3D"Interfaz de usuario gr=C3=A1fica, Aplicaci=C3=B3n D= escripci=C3=B3n generada autom=C3=A1ticamente con confianza media" style=3D= "margin-top:88pt; margin-left:403.5pt; position:absolute" /></span><span st= yle=3D"line-height:150%; font-size:12pt"> </span><span style=3D"font-s= tyle:italic">Renewable energy consumption and its contribution to economic = growth: a comparative analysis for the period 2000-2020</span></p><p class= =3D"Default" style=3D"text-indent:36pt; text-align:center; line-height:115%= ; font-size:14pt"><span style=3D"font-style:italic"> </span></p><table= style=3D"width:396.3pt; margin-bottom:0pt; padding:0pt; border-collapse:co= llapse"><tr><td style=3D"width:3.25pt; border:0.75pt solid #000000; padding= :0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:= center; line-height:150%; font-size:10pt"><span style=3D"line-height:150%; = font-size:6.67pt; font-weight:bold; vertical-align:super">1</span></p></td>= <td style=3D"width:171.95pt; border:0.75pt solid #000000; padding:0pt 5.03p= t; vertical-align:top"><p style=3D"margin-left:7.1pt; margin-bottom:0pt; te= xt-indent:-7.1pt; text-align:justify; line-height:150%; font-size:10pt"><sp= an>Carely Jamilex Cuenca Pindo</span></p></td><td style=3D"width:10.5pt; bo= rder:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:150%; font-size:10pt"= ><span style=3D"height:0pt; text-align:left; display:block; position:absolu= te; z-index:3"><img src=3D" QAAAAUCAYAAACNiR0NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJR= EFUOI21lEtoXVUUhr+197n3nNzbJN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIR= QUGd+KDY+Jp25ouiGCOxElqjhba0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/= 83NNOPr/VWHunqO5OVNuNlQVjmZCGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqF= M1IvNiGXWJvD/9x8yXB/efizYU/Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWC= L59dp/fWSsfzOXNkShKacvfgnMRlXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH= 700v0N35OAroutW0rxDF6rUUvddaJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmA= kDygiEBTsTxq6hx65fWTOy7l0exjKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wv= g+y+IEVXaGibsbOO5hGBSkbUUQdRT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0Y= teeC7we4LinSI9Z03dBNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqa= yNkiM0tjqDrag67mDCi0ARiB6gaTsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYd= eBPAU+cY59zxCkFlXjHiI2GY1pZbtRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb= +klbQ/G1zDYvQntXgWFC5VJ9hSGmRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/x= bwZ1lwewGmCIIhYnCZXjKvDaQNrfIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2e= nC0uV6bkfUNUd8P1ury3ktQADO05UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327= igzP3trY2ONCyyQ6FtbRLUw2yZ8p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9e= gX4dY01U0iVK2R80nMaELy42O7R39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" wid= th=3D"20" height=3D"20" alt=3D"" style=3D"margin-top:0.45pt; margin-left:-0= .3pt; position:absolute" /></span><span> </span></p></td><td style=3D"= width:166.35pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-a= lign:top"><p style=3D"margin-bottom:0pt"><a href=3D"https://orcid.org/0009-= 0009-2968-6556" style=3D"text-decoration:none"><span class=3D"Hyperlink" st= yle=3D"line-height:150%; font-size:10pt">https://orcid.org/0009-0009-2968-6= 556</span></a></p></td><td style=3D"border-bottom:0.75pt solid #000000; pad= ding:0pt; vertical-align:top"></td></tr><tr><td style=3D"width:3.25pt; bord= er:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:150%; font-size:14pt"= ><span> </span></p></td><td colspan=3D"4" style=3D"width:370.7pt; bord= er:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p style= =3D"margin-bottom:0pt; text-align:justify; line-height:150%; font-size:10pt= "><span>Universidad T=C3=A9cnica de Machala (UTMACH), Machala, Ecuador.</sp= an></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:150%;= font-size:10pt"><span>Carrera de Econom=C3=ADa</span></p><p style=3D"margi= n-bottom:0pt; text-align:justify"><a href=3D"mailto:ccuenca8@utmachala.edu.= ec" style=3D"text-decoration:none"><span class=3D"Hyperlink" style=3D"line-= height:150%; font-size:10pt">ccuenca8@utmachala.edu.ec</span></a><span styl= e=3D"line-height:150%; font-size:10pt"> </span></p></td></tr><tr><td style= =3D"width:3.25pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vertical= -align:top"><p style=3D"margin-bottom:0pt; text-align:center; line-height:1= 50%; font-size:10pt"><span style=3D"line-height:150%; font-size:6.67pt; fon= t-weight:bold; vertical-align:super">2</span></p></td><td style=3D"width:17= 1.95pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top= "><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent:-7.1pt; tex= t-align:justify; line-height:150%; font-size:10pt"><span>Darwin Ramiro Zamb= rano Erreyes</span></p></td><td style=3D"width:10.5pt; border:0.75pt solid = #000000; padding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:= 0pt; text-align:center; line-height:150%; font-size:10pt"><span style=3D"he= ight:0pt; text-align:left; display:block; position:absolute; z-index:4"><im= g src=3D" AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJREFUOI21lEtoXVUUhr+= 197n3nNzbJN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIRQUGd+KDY+Jp25ouiGC= OxElqjhba0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/83NNOPr/VWHunqO5OV= NuNlQVjmZCGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqFM1IvNiGXWJvD/9x8yX= B/efizYU/Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWCL59dp/fWSsfzOXNkSh= KacvfgnMRlXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH700v0N35OAroutW0rx= DF6rUUvddaJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmAkDygiEBTsTxq6hx65f= WTOy7l0exjKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wvg+y+IEVXaGibsbOO5h= GBSkbUUQdRT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0YteeC7we4LinSI9Z03d= BNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqayNkiM0tjqDrag67mDC= i0ARiB6gaTsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYdeBPAU+cY59zxCkFlXj= HiI2GY1pZbtRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb+klbQ/G1zDYvQntXgW= FC5VJ9hSGmRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/xbwZ1lwewGmCIIhYnCZ= XjKvDaQNrfIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2enC0uV6bkfUNUd8P1ur= y3ktQADO05UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327igzP3trY2ONCyyQ6Ft= bRLUw2yZ8p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9egX4dY01U0iVK2R80nM= aELy42O7R39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" width=3D"20" height= =3D"20" alt=3D"" style=3D"margin-top:0.45pt; margin-left:-0.3pt; position:a= bsolute" /></span><span> </span></p></td><td style=3D"width:166.35pt; = border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p sty= le=3D"margin-bottom:0pt"><a href=3D"https://orcid.org/0009-0005-3661-6274" = style=3D"text-decoration:none"><span class=3D"Hyperlink" style=3D"line-heig= ht:150%; font-size:10pt">https://orcid.org/0009-0005-3661-6274</span></a></= p></td><td style=3D"border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt; vertical-align:top"></td></tr><tr><td style=3D"w= idth:3.25pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-alig= n:top"><p style=3D"margin-bottom:0pt; text-align:center; line-height:150%; = font-size:14pt"><span> </span></p></td><td colspan=3D"4" style=3D"widt= h:370.7pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:= top"><p style=3D"margin-bottom:0pt; text-align:justify; line-height:150%; f= ont-size:10pt"><span>Universidad T=C3=A9cnica de Machala (UTMACH), Machala,= Ecuador.</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line= -height:150%; font-size:10pt"><span>Carrera de Econom=C3=ADa</span></p><p s= tyle=3D"margin-bottom:0pt; text-align:justify"><a href=3D"mailto:dzambrano1= 3@utmachala.edu.ec" style=3D"text-decoration:none"><span class=3D"Hyperlink= " style=3D"line-height:150%; font-size:10pt">dzambrano13@utmachala.edu.ec</= span></a><span style=3D"line-height:150%; font-size:10pt"> </span></p></td>= </tr><tr><td style=3D"width:3.25pt; border:0.75pt solid #000000; padding:0p= t 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:cen= ter; line-height:150%; font-size:10pt"><span style=3D"line-height:150%; fon= t-size:6.67pt; font-weight:bold; vertical-align:super">3</span></p></td><td= style=3D"width:171.95pt; border:0.75pt solid #000000; padding:0pt 5.03pt; = vertical-align:top"><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-= indent:-7.1pt; text-align:justify; line-height:150%; font-size:10pt"><span>= Galo Rodrigo Moreno Sotomayor</span></p></td><td style=3D"width:10.5pt; bor= der:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:150%; font-size:10pt"= ><span style=3D"height:0pt; text-align:left; display:block; position:absolu= te; z-index:5"><img src=3D" QAAAAUCAYAAACNiR0NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJR= EFUOI21lEtoXVUUhr+197n3nNzbJN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIR= QUGd+KDY+Jp25ouiGCOxElqjhba0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/= 83NNOPr/VWHunqO5OVNuNlQVjmZCGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqF= M1IvNiGXWJvD/9x8yXB/efizYU/Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWC= L59dp/fWSsfzOXNkShKacvfgnMRlXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH= 700v0N35OAroutW0rxDF6rUUvddaJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmA= kDygiEBTsTxq6hx65fWTOy7l0exjKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wv= g+y+IEVXaGibsbOO5hGBSkbUUQdRT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0Y= teeC7we4LinSI9Z03dBNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqa= yNkiM0tjqDrag67mDCi0ARiB6gaTsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYd= eBPAU+cY59zxCkFlXjHiI2GY1pZbtRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb= +klbQ/G1zDYvQntXgWFC5VJ9hSGmRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/x= bwZ1lwewGmCIIhYnCZXjKvDaQNrfIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2e= nC0uV6bkfUNUd8P1ury3ktQADO05UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327= igzP3trY2ONCyyQ6FtbRLUw2yZ8p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9e= gX4dY01U0iVK2R80nMaELy42O7R39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" wid= th=3D"20" height=3D"20" alt=3D"" style=3D"margin-top:0.45pt; margin-left:-0= .3pt; position:absolute" /></span><span> </span></p></td><td style=3D"= width:166.35pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-a= lign:top"><p style=3D"margin-bottom:0pt"><a href=3D"https://orcid.org/0000-= 0001-9390-0275" style=3D"text-decoration:none"><span class=3D"Hyperlink" st= yle=3D"line-height:150%; font-size:10pt">https://orcid.org/0000-0001-9390-0= 275</span></a></p></td><td style=3D"border-top:0.75pt solid #000000; border= -bottom:0.75pt solid #000000; padding:0pt; vertical-align:top"></td></tr><t= r><td style=3D"width:3.25pt; border:0.75pt solid #000000; padding:0pt 5.03p= t; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:center; li= ne-height:150%; font-size:14pt"><span> </span></p></td><td colspan=3D"= 4" style=3D"width:370.7pt; border:0.75pt solid #000000; padding:0pt 5.03pt;= vertical-align:top"><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text= -indent:-7.1pt; text-align:justify; line-height:150%; font-size:10pt"><span= >Universidad T=C3=A9cnica de Machala (UTMACH), Machala, Ecuador.</span></p>= <p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent:-7.1pt; text-= align:justify; line-height:150%; font-size:10pt"><span>Carrera de Econom=C3= =ADa</span></p></td></tr><tr style=3D"height:0pt"><td style=3D"width:14.05p= t"></td><td style=3D"width:182.75pt"></td><td style=3D"width:21.3pt"></td><= td style=3D"width:177.15pt"></td><td style=3D"width:0.3pt"></td></tr></tabl= e><p class=3D"Default" style=3D"text-indent:36pt; text-align:center; line-h= eight:115%; font-size:14pt"><span style=3D"font-style:italic"> </span>= </p><table style=3D"width:436.35pt; margin-left:0.25pt; margin-bottom:0pt; = padding:0pt; border-collapse:collapse"><tr><td colspan=3D"3" style=3D"width= :156.4pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:= 0pt; text-align:right; line-height:150%; font-size:10pt"><a id=3D"_Hlk92186= 133"><span class=3D"Hyperlink" style=3D"text-decoration:none; color:#0000ff= "> </span></a></p><p style=3D"margin-bottom:0pt; text-align:right; lin= e-height:150%; font-size:10pt"><span> </span></p></td><td colspan=3D"2= " style=3D"width:258.35pt; border-top:0.75pt solid #000000; padding:0pt 5.4= pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:right; li= ne-height:150%; font-size:10pt"><span style=3D"font-weight:bold">Art=C3=ADc= ulo de Investigaci=C3=B3n Cient=C3=ADfica y Tecnol=C3=B3gica</span></p><p s= tyle=3D"margin-bottom:0pt; text-align:right; line-height:150%; font-size:10= pt"><span style=3D"background-color:#ffff00">Enviado: </span></p><p style= =3D"margin-bottom:0pt; text-align:right; line-height:150%; font-size:10pt">= <span style=3D"background-color:#ffff00">Revisado: </span></p><p style=3D"m= argin-bottom:0pt; text-align:right; line-height:150%; font-size:10pt"><span= style=3D"background-color:#ffff00">Aceptado: </span></p><p style=3D"margin= -bottom:0pt; text-align:right; line-height:150%; font-size:10pt"><span styl= e=3D"background-color:#ffff00">Publicado:</span></p><p style=3D"margin-bott= om:0pt; text-align:right; line-height:150%; font-size:10pt"><span class=3D"= label" style=3D"background-color:#ffffff">DOI:</span><span class=3D"label" = style=3D"background-color:#ffffff"> </span></p></td></tr><tr style=3D"= height:6.55pt"><td colspan=3D"3" style=3D"width:156.4pt; padding:0pt 5.4pt;= vertical-align:top"><p style=3D"margin-bottom:0pt; line-height:150%; font-= size:6pt"><span class=3D"Hyperlink" style=3D"text-decoration:none; color:#0= 000ff"> </span></p></td><td colspan=3D"2" style=3D"width:258.35pt; bor= der-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:top"><p = style=3D"margin-bottom:0pt; text-align:right; line-height:150%; font-size:6= pt"><span style=3D"font-weight:bold"> </span></p></td></tr><tr><td sty= le=3D"width:37.8pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"marg= in-bottom:0pt; text-align:justify"><span style=3D"font-weight:bold"> <= /span></p><p style=3D"margin-bottom:0pt; text-align:justify"><span style=3D= "font-weight:bold">C=C3=ADtese:</span><span> </span></p></td><td style=3D"w= idth:1.55pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bott= om:0pt; text-align:justify"><span style=3D"font-weight:bold"> </span><= /p></td><td colspan=3D"2" style=3D"width:358.55pt; border-bottom:0.75pt sol= id #000000; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-botto= m:0pt; text-align:justify; line-height:150%; font-size:10pt"><span>DATOS RE= VISTA</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-hei= ght:150%; font-size:10pt"><img src=3D" NSUhEUgAAAjcAAABuCAYAAADbNjK4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlS= sOGwAAIABJREFUeJzsvXd8VFX+//+8M5OeTHpCegJJSEJCCIYuXYqCgEoRFUUR3HUX9iOuurYPo= lhgEQRRAZUiorA0USCUQIBAIAQIqYSQTnqftMm0e39/xLmfEIpl3d2f+82LR4Dce+5p71Pe592O= IEmSRDe60Y1udKMb3ejGfwkU/+kKdKMb3ehGN7rRjW78luhmbrrRjW50oxvd6MZ/FbqZm250oxv= d6EY3uvFfhW7mphvd6EY3utGNbvxXQfWvL0K65X/Cj39Lktjxr9DxUpBAFECSRAQEFMKP6QUBJK= EjQaccutGNbnSjG93oRje64t8gufmRMZEEBElAACQJRAlEQYEkCAhIIIq0G0XKG9o4lVVGbYuuI= w0iJkwgGDuyk7oZm250oxvd6EY3unFn/BskNyAJEoLZ41wEBAEQEZBQSAJGk4TBZOJqRRPr47K4= dL2eYRGe/PGBPvTysEepEEAwISEiofyv06VJkoQkSYiiKD8TBEF+LgjCTWk7o/M7AIVCgUKhQBR= FOa1CoZC/NT/v/MxchkKhQBAEOc/O77o+65y/+VtzueZ3nfME5Od3Kr9rGZ3baM7fDHNfCYJwS7= 6dy/w94nZ98p8s19zXd+r/ruPs15Rxt3x/bT/crt6/FuYxb67Lv3t8dZ53giCgVCr/reX/s+g67= zs/+y1o3XnN+E/Q51+N33Isd94D7tRPv9UaZB6z/4k1WfiXx7mROtRMEhKSaGZpAEFEQIFSMtFq= lEjMreDdby9S1WoFggUKwYifvZHXHhvEkGA3rJUSgqAA4fe9cXWFKIoYjUaMRiMajQZRFLGwsMD= CwgKDwUBbWxsqlQpLS0uUSiVtbW23DEwbGxt0Oh0GgwFHR0ccHBwwGAw0NTUhiiKOjo4olUq0Wi= 1tbW2IoohSqcTKygqtVovBYEAQBNRqNfb29iiVSkRRxGQy0dTUhFqtxsLCAgCTyYRWq6WhoUHOx= 1wHR0dHTCYTtbW1mEwmlEolLi4uqFQqRFGkubkZnU4nL86WlpbodDr0ej2CIODg4IBKpUKj0WA0= GuV0CoUCe3t77O3t5T5ra2tDEARsbW1pbGyktbUVQRCws7PDycnpdz1GzH1lY2ODpaXlLe/gt1n= kuuZrNBppaWnB1tYWCwsLeWFrb29HkiRsbGxkZlKr1dLa2oqzs7NMP/P7u0Gv16PX67GxsbllwZ= Mkiba2NgwGA/b29phMJtrb21Gr1b+YnpIkodPpMBqN2NnZ/eT35mXwTgu60WikoaEBGxsbbG1tf= 7NNBn4eLU0mE62trTQ1NeHg4PCr+uQ/AfPm1nl+KhSKm2jt4OCAXq/HZDL96r7V6/W0tLRgZ2eH= hYXFbz4/fgv8GobB3H+NjY3Y2Nj8rDnW9VDcNX1bWxs6nQ61Wn1bpkOSJHme2tra/mJGujPz1N7= e/k/R9Z+B8q233nrrX1mABJgk0EsSGoNIfpWG3NIGyuta0YtgbWNJdaOWzUczyC43gGCJgIQkCD= TrBFKuV4BCIsTLCQulUra2+T1M7J+CKIoYDAZSU1N57bXXOHLkCHZ2dmRmZrJ06VJsbGx46aWXO= Hr0KIGBgdTV1bF48WJOnTqFo6Mj5eXlbN++HaVSSU5ODrNmzaK6upqhQ4diNBrZt28fGRkZBAcH= c+3aNRYuXMi1a9cASE9P55tvvqG6uppnnnmG+Ph4BgwYgKenJwqFAoPBQEZGBs8++yyTJk26ibE= oLy/n9ddf57PPPsPe3p4DBw7wzjvv4OLiQkBAADt37uSJJ56gurqae+65B4VCwbp163j//ffR6X= S0trZy+vRpDh48iCiKTJo0iVOnTjF48GAuX77MkSNHWLt2LQcPHsTBwYEjR45gMpkICQmRmcA33= 3yT+vp6+vXrx4ULF1iwYAGJiYn06tWLgICAu46PO/Hzt5vkP4XOp87b5fNLzg7mvEwmEzk5Odjb= 22NtbX1THhqNhgsXLuDn53dLfX9tuQAGg4FPPvmE9957j8GDB9PS0kJeXh49evSguroajUaDk5O= TnHbJkiX8+c9/5vnnn6empobm5macnZ1/spyWlhbKy8tRq9WoVP8nOJYkifb2dt5++20SEhIYNG= gQOp2OwsJCevTocce+uhuqq6upra3Fzc3tlm+7QhRF6uvruXr1Kk5OTjIzb4Zer2fOnDm0t7fTr= 1+/uy7UnSWQd4IkSZSVlVFTU/Oz+s1gMBAfH89TTz1Fjx496NOnz203yV9zVr1bHl37+ZeWZzKZ= SE9PZ9GiRdjZ2REaGopCoaC+vp5ly5YRFxfHuHHjqK+vp66uDmdn59uO658qJycnh+TkZHx9fW9= hAH7q21/S/p/K405pJUmirq6OpKQk/P39bxk/d6qDKIqcPn2a2bNnc9999+Hq6vqT/dPc3MzFix= fx8PC4hXlpb2/n7NmzVFdX33YNMaOqqoqKigrc3d1lZvRO5XVtf0pKCkqlEltbW8rLy2lpaZHp+= nNocbfx9kvwm6ml5OqYT0BIiKKE1mCisLaN4+mlnMkopbiihTaTCgkBB0u4J1jNg4N6suihgdjZ= pHM8Q0ObUQFIiAqBqiYFnx/Kp7K2jWfHh+OptkbBj2ougR9tiwUkhN+dmbFeryc+Pp433niDmJg= YNmzYIEtNFAoFkZGRWFpa8tBDDzFq1ChSU1MxGo1MmTKFUaNGUV1dzdSpUzGZTGRlZTF//ny+/v= prJk2axIABA+jTpw9eXl6kpaXx+OOPM3/+fF555RXs7e1pbm4mJCRE5s4fffRRYmJiUCgUGI1G8= vLy+PDDD7l69eotA7JHjx5YWVkRExPDrFmzZFXQV199RWhoKN7e3vj4+DBt2jRcXV3561//SmJi= ImvWrGHkyJEoFAqqqqooLi6WT/wPP/ww0dHR+Pj4MHToUOLi4pg6dSozZ86UNxrzBrR+/Xr27Nl= DdHQ0giDQo0cPNBoNL7zwAkOGDLnrhNDr9TQ1NXHhwgUsLS2JjY0lOzsbS0tLvL29cXd3R6lUUl= 9fT25uLs7OzlhZWZGbm0tkZCQAxcXFWFlZUV9fz7333ktrays5OTk0NTUREBBAWFgYSqUSk8mET= qcjNTUVURRxcXHB19eXc+fOoVKp6NOnDzdu3KC5uZmgoCBUKhUFBQX07NkTQRAwGAzyQuXs7Iyr= qyu7d+/m2LFj8u/p6ekAhIeHExgYCHRsKMXFxbS3t9PW1kZrayve3t4UFhZia2tLr169uHbtGn5= +fqhUKvLy8ggNDeW5557j3LlzVFZW8s033+Dp6Ym1tTXW1tay9K2uro4rV67Qt29ftm/fjiiKtL= e3Y2FhgV6vJyMjA6VSiZOTEx4eHlRXV3P16lWsra0ZMmQIWq0Wk8mEwWCgqKiIpqYmmpqasLW1p= X///kyYMIFz587JUhuVSkVbWxupqakEBASQmZmJn58fwcHBlJaWcv36dSwsLIiJiQEgMzMTSZLw= 8/NDkiSUSiXt7e1cuXKFuro63N3dCQ8Px8HB4aZxotfr2bFjB6dOnWLhwoWyNNXJyYmGhgbUajV= z584lJCSEtLQ0ysrKcHNzo7m5GTc3NywtLSktLSUsLAxvb2+MRiOJiYkoFAr69++PyWTi0qVLCI= JAcHAwWq2W1atX4+bmxh/+8Adyc3OxsrLCxsYGjUbDoEGDSEtLo6WlBWtrawYPHoynpyf29va3H= d+dmeLS0lI8PDxQq9U0NDTQ0tJCREQE169fx9nZGX9/f2pqauTx3bdvXywtLeW5n5KSgiRJBAQE= 4OjoKDN9jo6OREREyNLdlpYW0tLScHd3Jy8vD29vbywsLKioqCA0NJSqqiqam5vp378/I0aMoLK= ykhMnTuDg4ED//v0ZO3Ysp06dkiUF5nFRWVlJRkYGtra2REZGolKpuHTpElqtlpCQENzd3WXGEC= AyMpJr166hUChobW3FwcEBS0tLJEnCYDBw8eJFNBoNvXr1kueBKIrU1NTg5uZGnz59UCqVCIKA0= WgkOTkZW1tbvLy8cHJyori4mKKiIiwsLBg8eDCtra1UVVXJEuOgoCD8/PyoqKjg+vXrWFlZERwc= jLOzM6mpqQiCQENDA99//z3W1ta4ubnRo0cPeW2NiIjA3d1dZvYbGxvJzs6mqamJiIgIoqOjiYq= KkteEgoICiouL8fT0JDQ0FK1WS3Z2Nq2trQQHB3PixAkuXLgg0z0/P1+mJ3QckKytramvr8fCwo= Ly8nJUKhVFRUW4uLgQERGBTqfD2tqa9vZ2qqqqyMvLQxRFBg8ejEKhICsri8bGRpycnOjTpw+2t= rYIgkBhYSErVqxg5MiRTJ48GYPBgFKpRK/XU1lZydWrV3F1dSU4OJj6+npaWlpoa2ujvb2d2NhY= BEEgOzub+vp6goOD8fPzw8rK6lcxOb+RnEgCJEQJkCQkSURvFGnSmdidUsLijWdYf+QGmaUqmkU= HRKUtosqSBtGChGvt/O83WWw9nsNzU+9h4aRg3GwklAgoEDAJCjQmS3YllfHi56dJLWnAKIEJER= MgmY2V+eUnlv8kJEmiqamJvXv3YjKZWLVqFSqVCqVSiUqlYtasWZSWllJVVcWAAQMQBIHKykpKS= 0tZvXo1jzzyCMeOHZMnZWZmJn/+85+ZMWMGzz//PK2trTQ2NuLm5saSJUtwcXFhwYIF2Nvbo1Ao= UKvVDBgwgIsXL6LX6xk3bpw8eQoLC9myZQuxsbG4u7vfYn9hNBrJzMykV69eqNVqJEnCaDTS3t6= OTqdj165deHh4EB4ezsWLF9mzZw/jx49n2LBh6PV6NBqNfIpLTEzE0tJSZnqcnJwoKyujqamJkJ= AQeWCbTCYqKyv5+9//zsSJE3F1dcXKygqTycTVq1ext7e/7Ymoc38bDAZu3LjBU089ha2tLd999= x0XL14kJSWFU6dOsXXrVlkdZmVlRUpKiixd2rdvHwkJCUybNo1nn32WixcvsmPHDi5fvsyZM2c4= dOgQSqWSGTNmYDQaZXHyq6++yuLFiykpKUGtVvPMM8/Q0tJCTk4O69evx8nJidOnT9Pe3i4znQk= JCcyfP5+ysjL27dtHdXU1a9asIScnR97gXF1dWb9+PSUlJZSVlbF7925ZZVlQUMCLL77IjBkzuH= r1Kvv27WPx4sU4OzuzfPlyCgoKiI+PJykpCUmS2Lt3L5mZmbJtk52dHWq1Gnd3d7RaLQsXLuTAg= QO0t7ezZs0aDAYDpaWlKBQKCgoK+NOf/sTRo0cpKyvj5MmTxMfHs23bNrRaLW+88Qbu7u5s27aN= kydPsnTpUj755BNOnjzJ9OnTeffdd7GxsWHp0qUkJCTIqpqamhoeeughtm3bxqZNm3j66ad55pl= naGpq4rvvvqO5uZnXX39dpk1iYiJPPfUU77//PgaDgYqKCp544gmOHj1KVlYWn376KWq1mv3795= ORkXHL+FAoFHh7e+Po6Iirqyt1dXU89dRTfPTRR3zwwQeUl5fz8ssv891331FfX8+TTz7J22+/z= bFjx3j00Uf5/vvv2blzJ+vXr6e2tpb/+Z//4eDBg1y8eJEtW7awY8cO4uPjyc/PJyMjg/z8fOLj= 43FxccHBwYHjx48ze/Zsvv76a15//XUOHz7MihUrSElJYcGCBWRmZt5k59YVJpOJpKQkDh8+jIe= HB/Hx8WzZsoWWlhaWLFmCQqEgPT2dffv2UVBQwKJFi3B1dWXz5s0cPnwYk8kEQFpaGllZWWRmZr= J27VrS0tJ45plncHV15YcffmD//v3y+N6yZQtz5sxh27ZtmEwmPv30UxoaGvjss8+4du0a9fX1f= Pjhh7JaJSMjA1dXV5YsWcKpU6dk+yGNRsPcuXPZt28fJSUlzJ8/n4CAAHbt2kVycjLHjh0jKSmJ= xsZGli9fzq5du5g+fTrXrl3Dx8eHvXv3UlZWRlVVFRs2bMBoNMp98sknn3Du3Dm0Wi3vvPMO27Z= tY8aMGaxcuVKmqdFolPs2ISGBwsJCvvnmGw4dOsSNGzfYsWMHAQEBpKSk8Morr7Bq1SqmT59Ofn= 4+oijy2muvkZiYSFxcHIGBgfJ8feutt3jmmWdISUkhMDAQDw8P3N3d0el0bNiwAVEUqaqqYunSp= TQ3N8uqum+++Ybr168jiiLz5s2jrq5OVjUlJyfzxRdf4OrqymuvvcbBgwfZvHkzbW1tVFZWsmbN= GlxcXHB2dsbX15f58+fz/vvvy2r/VatWERERgVarZerUqezfv59HHnmElStX4uXlxZIlSzh79ix= /+tOfOHjwIFevXuXrr7/G0dGRuLg4Dh8+zD/+8Q80Gg3+/v4cOHCAf/zjH5hMJrkMBwcHvLy8qK= io4Mknn+TMmTNkZmby0ksv4ebmxqZNm9i8eTNTpkzhxRdfpLa2lpdeeonCwkK2bdtGRkYGbm5uP= PPMM5SUlNxig/lz8RsxN0KH6zYSkgQGo0hhXRvL96by0Z5MSjQdojGlhR4nO5G+firGhDsyJMAO= ZysjbSYj+1NqeHdrMkE91Px1eiShHkqUogkLRCRAr7DgSrmJt7+5zKHLJTTpjBgls6BI/JG9+n3= BfNry8vKSbWzMuk6tVktOTg4BAQE4ODig0+lIS0sjKCiIXbt2sX//fsaMGSPbrBQXF+Pk5MS8ef= MICgritddek+1etFotlpaWuLm5YTQa5TJaW1vJzs7G1dUVPz8/dDodWVlZ7N69G6VSybFjx2htb= ZUHl5mJSUlJobW1lbCwMPR6PXl5eZw5c4ahQ4fi4OBAcnIy/v7+uLm5yVIdFxcXRFHkzJkz9OvX= j8mTJ5OUlERycjKOjo4EBATI+V+6dIkePXoQEhIiMyWVlZUcPHgQKysrtm3bJtv16PV6Ll26hJe= XF76+vhgMBtrb22VGy2AwyEbOLS0t/OUvfyE0NJSkpCTuvfde+vfvT11dHQaDgaioKJk21tbWOD= g4IIoilpaW2NraYm9vz7Jly4iJieHRRx/FxsaGgoICQkNDcXZ25vDhwzQ1NckbBcDSpUvp3bs3s= bGxct9duHCB8vJyfHx88PPzo1+/fhQXF5Obm8uQIUMYP348Q4YMwWQyER0dTU5ODpGRkXh4eNCj= Rw8cHBxwdnZm3LhxaDQaTp48SUNDg7zpBAYG8uCDDzJ37lzuv/9+rKysmDFjBuHh4Xh5eSFJEnZ= 2dkiShKWlJdbW1hiNRkwmE6IoYmtri6OjI+7u7kRFRTFt2jSUSiVFRUVkZmYydOhQRo4cKUtIJk= 2ahFKpxN3dXaZJnz59uHjxIt7e3kRERLB+/XpGjx7N7NmzcXd3JyYmhqeeeorx48cTFRXFE088w= dmzZ2Vaubi48MYbb2AymXj88cfx8PBg9erVeHh4UF9fT1tbG1OnTuXy5ctkZWXR1tbGsmXL8PX1= pW/fvgwYMIBnn30Wo9GIh4cHgwcP5vjx4+Tm5sq2OF2N7n18fHB0dMTFxQUXFxecnJyYMmUKhw4= dYsyYMbK9kZ2dHaIoct999+Ht7Y1Go2HOnDnY2NhQXV1NQUEBe/bskU/fNjY2TJw4UT5h+/r6Mn= DgQJRKJa6urtjb26NWq+nduzd//OMfOXPmDGPHjmX06NGydKu4uFiur1ki2N7ejl6vlyUfFy9ex= M/PT95I9Xq9rEo0262Z51dDQwO7d+/Gzc0NBwcHebwGBQVRUVFBQ0MDgwYNIicnB51Ox+7duxEE= AU9PTzntww8/THBwMIsXLyY2NlYeU1ZWVvIYMx9MHB0dGTduHOHh4Tz99NPk5ubKBwAHBweeffZ= ZTCYTGRkZREdH4+fnx4oVKxg1ahS9e/fG2tqaxMRE6urqGDVqFDNnzqRfv34yvdvb20lOTpbtFs= 15HzlyhKysLJKTk/Hz8+Phhx9mypQpzJ49m9DQUK5fvy7PG4C+fftSWFiIu7s7QUFBHDhwAF9fX= /z9/Vm0aBEHDhzgoYceYubMmQwfPpxBgwYRHBzMDz/8IB+whg0bhrOzM3PmzMHHx4fhw4fTs2dP= 3NzccHV1xWAwkJ+fz6FDh8jMzOSee+6Ry29vbyc9PZ0zZ86QmJjIuHHjMJlMMt2zsrIoLCxk9+7= dxMTEYDKZaGxsJCwsjNmzZ/Phhx/K49fb25s333yTwMBAIiMjyc/PB8DPz48HH3yQnj174u7uzv= Tp05k/fz7+/v40Nzfj4+PDAw88gMlkoqKiAlEUCQsLY/ny5YwePZqysjJcXV3p2bMnkydPprm5W= baBNDM3Pj4+REZG8sQTT2A0Grl8+TLNzc3s3r0bZ2dnIiMjWbRoEQ888ACjRo1CFEUKCwvJycnh= 3Llz7Nmzh4kTJ/5ThvO/CXMjmf9IoDeKFNS38eHuy+w7X4sWKwSlEkuVkWgfFX+fG8PmRSNZO28= wG/50LyueGUiUjyUKTKQUtvHBzosolAKvPzmAfn7WKEUjKsnQQVxUXKsWeW9nGv84W4De8H9eMt= LvjLURBAFnZ2fuu+8+ysvLOX36tCz+XbBgAbW1tZw7d04W+dXV1ZGfn09ERAQqlYr29nYyMzN57= 733+O6772S9vb+/P++++y6ZmZm4ubmhUqlYtGgRJpOJuLg46urqqKur44EHHuDixYsUFxfLC+/x= 48e5cOECixYt4oUXXqB///6ySLGzYeD58+ext7fHw8ODo0eP8thjjzFw4EBefPFFcnNzaW5uZvj= w4QiCwKBBgxg/fjxHjhzh8uXLuLi4oNVqefTRR/H09OT69euMHTtWlsI0Nzezb98+PDw88Pf3Rx= RFysrK2LJlC6NGjeKVV15h8uTJqFQqdDod9fX1HDx4kJ49e2JhYUF9fT3z5s1j9erVjB8/ngMHD= sjSAK1WS0VFBQsXLmTYsGHk5+dz5coVefNJSkqivb1dpo9KpaKkpISamhpu3LjB+vXraWlpkfMy= Go1otVqOHj2Kvb09c+bMkY3ozIuVTqeTjbO9vb3p06cP3t7eLFq0SGacevbsyfXr16moqECtVmM= ymWQmITExkUGDBhEUFMSZM2dQKpUYjUZaW1t58803GTFiBFOnTsXGxkY+sZrLMzPLRqNRNk43/1= +lUnHjxg2qqqrIysri22+/lRkkg8GAQqFAp9PR0tKCwWDAYDDg6+tLfX09iYmJskh9zZo1MsNcU= lJCa2sr06ZNY//+/fTr14/09HTS0tJobGxk+/btGAwGmZEyL9ZNTU3Ex8czefJkuXwzk2pWe0HH= wm8uq7i4mDVr1vDkk09yzz33YDKZaGtrk/MVRVFu+7Fjx9BoNMyaNUtmyBsbG2lubr7Fs89MU7P= hOyB7AZpVjXq9HpVKJZdjVn2Z22W2ibG1tWXu3LlUV1dz5MgRRo0aRWhoKMePH5cN6s1tNfe52Y= 7miy++4MyZM3h4eMjpzPRtb2/nvffeY8qUKbIaztLSEk9PT44fP05VVRVWVlZy3SsrK2loaCAvL= 49Nmzbh6uoKwMSJE3nssccoKSmRJZ5Xr15FrVYzadIkWU1RUVHBAw88wKxZs+QDU2dPyHPnzlFc= XIyzszNeXl5YWlpSXl5OXl4ehYWFrF27FktLS4xGI01NTezcuZMxY8bItDQf0IxGI2FhYZw4cYK= MjAyKi4s5fvw4O3bswN/fnylTpmBtbS3PPfPBZcuWLfTr148JEybINDQbtI4ePRqtVsuiRYsIDA= yU1zGj0YhOp0OSJLRarTxfk5OT6dmzJ4MHD+bs2bP079+f/fv3U1paSlpaGk8//TQWFhaUlZVRW= VlJY2MjRUVFjB8/nu+++47GxkYqKyvx9fWVVYh6vV6mhdmQF2DUqFEsWLAALy8vmbbW1tZ4enoS= EhLCn/70J3r16iWPU51OR1hYGNbW1sycOZOZM2ei0WhobW3lypUrNDY2smfPHpkJb25uRqvVymM= 8JiaG7OxsLl++TENDAw0NDfTu3Vu2/TRLfs2HQr1ej7OzMxUVFeTm5lJXV0dycjIWFhYcO3aMxs= ZGGhsbZWmyed00H6jNB0yTyURUVBR1dXVMmTKFhx9+mJaWFnmuarVa+Vvzuv/cc88RGxtLc3Pzr= /bY+s28pSRJxCiKVGp0rPkhjbjUOgySNQgGfB1gzpgQpg4KwNmmw35CAgRJxCgpKKxt4csjGey/= VIMBC9xsJR4d7s+kQb34x6nrfHe+lAadCkHRIalRmEzYWpgY39+T/5kSTQ87CxRKfrS6+f1Y3pg= Zs/T0dPLy8gBQq9UMHDiQEydOyLY3UVFRpKen32JoZWdnh4+PDyUlJQCMGDECe3t7JEniypUrRE= REYG1tjclkIjs7m9zcXKBjko0ZM4YLFy6g0WhQKBQEBQVRUFCAv78//fr148aNG1y5cgVJkggKC= qJfv36yWLS8vPymesTGxuLn58eNGzdIT0+XJ3D//v1laZFZWmFeFPv06UNJSQmNjY2oVCpZMnH+= /Hmamppkm6NevXrJpyLzJnb69GkkScLCwkI+gXeuj42NjXzSmDdvHvfcc49sy5SVlcX169dxdXU= lOjpaPi3W19cTERFBSEgISqUSSZLQaDScOnVKVlMFBweTkZEhM6YajQaDwUCfPn3IzMzEysoKvV= 6Pn58fsbGxiKLIuXPnqKmpoVevXvTp0wej0cjBgwcB6NevH0FBQeh0OjIzM/Hx8cHd3Z3i4mLS0= tJwdnbG09OTsrIyWlpaGDt2LIIgEB8fL9s9FRYWyh5l/fv3x9vbm6amJi5duoRGo6Fnz57k5+dj= aWmJWq2mrq6OHj164O/vL9sCmaUGxcXF8sLs4OBATk4ONjY28gYwZswYqqurycjIQK1W09LSwvD= hw0lJSaGtrY0hQ4aQnZ2NRqMhLCyMkJAQCgsL5T4bM2YMmZmZVFVVERUVxQ8//EBtbS0xMTGEho= YSERFBcnIyNTU1REREyLZQVlZWtLS0oFAocHd3p7Kykl69etHQ0EBtba3c7+YNLSYmBgcHBxITE= 2X1Z0ZGBgaDAQsLCxwcHGhqaiI/P58///nPsq2DRqPh7NmzqNVqWltbaWtrkyVSKqKFAAAgAElE= QVQDxcXFZGZmypIQs+eUlZUVjY2N2Nra0tbWhkKhYNiwYVhZWclqtpEjR1JbW0ttbS01NTUMHz4= cR0dHLly4QFVVFYMGDSI5ORlJkujXrx+BgYEUFRWRnp6Ok5MTTU1NqFQq/P39ZdscNzc3vvvuOy= ZMmCCrdLVaLRcvXqSsrIykpCSsra156623OHfuHM3NzVhbW+Pn50dISAhlZWWkpqYCMHnyZNmur= ba2ltzcXLmPIyIiqKys5NKlSyiVSoYOHSobtVZWVjJ37lxeeOEFWlpaiI6OpmfPnpSUlHD58mXs= 7OxQKpWMHj0ajUZDamoqGo2GAQMG4OLiQmpqKtXV1YSGhlJUVIROp2Ps2LHU1NTIqsMxY8bIdmd= KpRKDwSCvg35+fkRHR1NSUkJWVhYqlQqDwSDPK/Mmb5b4+Pj4oFarycnJwcnJCZ1OR1tbG15eXg= wcOBCFQkFZWRnXr1+nvr6e2NhYfHx8yM3N5dq1azg6OjJy5EiuXr3KV199RVhYGE5OTgwbNgw3N= zfy8/PJzMzEwcGBmJgYbty4QVFREW5ubgwYMIDKykouX76Mj48P/v7+XL58GYPBQO/evQkNDZWl= FBqNRmZAfH19cXd3JzU1FRsbG8aMGcO1a9fk/WLy5MnU1dWRmppKe3s7YWFhuLu7k56eTmNjI1Z= WVrS3tzNkyBB69OhBZWUlFy5cQBRFJk+eLK/Znp6eNDc309LSgqurq8ycDBkyhIaGBnJychAEga= FDh6JWqzl//jz19fX06NFDtsMxMyDp6enk5+cTEBBAUVERdnZ2DBkyhJqaGtLS0rC0tCQyMlIeI= 2b7RWtrawYOHEhWVhZ1dXW4ubkxdOjQmxwPfgl+G+bmx0263WjkSGYV736TisZggVIp4ekgsGBc= CA8NCsBSJYCgQMGPwYYlAVEAUZJoNYp8dTybnaeLqG0VcLY08tSoAKaPjuSHCwV8GZ9LVaslZhm= NUhCwlfQ8MsSLBfdH4WFvjfD74m1kdNUp/lwL/c5pu3K3nV0BO7u5/lQZt/MyMOd9u3y6vu/8Td= dy7tam23kb/FR77gS9Xk9cXJy8aHXum65ukrdrZ+fnv9Zzomu779RHd8qzc5qufWrO7+fQ4W51v= F1f367cu6X5qbre7r0oitTW1vLBBx/g5OTEwoULcXJyusUr49fiduOmc76iKLJ27VrZ0LVzzKXO= /96p3T+3/Dv1RVc6/VS/dc7X/E1CQgI6nY4JEybIkhRz25qamli5ciWlpaUsW7YMLy+vm+Zj1/y= 7zo/O9bxTWkmSuHz5MgsXLuSDDz5gwIABWFtb33EduFv7f07f/dy1qmt7zO/uNq67tutu7Zckie= PHj7Nz507mz59Pv379ZCnZ7erdNa/brWO3q2/X93ebc13H0p365E51/CXr8p3adbd18+eWdbf2/= Rr8RpKbDs+oVp2JFfvT2HmmDEFljZVCx5OjA3hufAT2lgqQFB1cjWD2bJJ+tJVRIJokdCYTZ69X= s+XgZSICPXjm/r6421qgNZg4nFbG8p1XaBatEAUlgmRCgRJ3ayN/mRzGlMFBWCoV/Mp++H8anUX= zt2MEzEPEvPmYDQH/U8HyzHWAm5mo2zEwnZ/9M0HYurb719TZrDs3i27/lX13uw3GZDLdEqjx5+= Tzz7T7Tnm2tLRQVlaGSqWSvbIAWQp1J3Sm+6/tP7Pa7vca8LHrRta1/jqdjoKCApRKJZ6env+ym= DjV1dWyx01gYOAt9hFdJap32gA7Bx39OfPTPCbN4+TfQb/O9llmTymzDY253f+KufJzYbbz6xo0= Ff47gxr+HPwmcW4kBJBAbxI5nFpGbnkbSpUFdkodf5oaRYCTDQISoqBE8aPxsdmPWxB+DGQlKLA= QJPxd7bg30pfhUV64WINSUKESILCHI7XNWjJuNCGhQIEJUKA1Shh1bQzo7YmDdYdo9f9FQv4zMB= gMnDhxgqqqKnx9fW86yZpMJr7++mvZ8NlkMnHs2DGysrIICgq6JR7IbwnzJgS3ngyys7Oprq5Go= VCwf/9+IiIibloYbzeh09PTaWpqum2siLtBkjoMnU+cOIGFhQWOjo6/6vujR49y4sQJqqurCQ4O= /pcugJIkya7Ijo6OiKJIQkICFRUVd41v0RlmPX9iYiIALi4uv0ndBKFDzefq6oqTkxM5OTkcOnS= ItLQ0QkJCsLS0vGP9ioqKKC4uluNv/FKYabF161Z69eolSxv+/wTzxt81mrgZtxvjnRl+lUqFu7= s7rq6u/9L22dnZ4ebmhouLy21p0dTUxKlTp+TQBp3rWldXR05ODs7OzqhUKsrLy0lKSpJtdu5UZ= 0mSaG5uJiUlBTs7u58V1O6fhSRJZGZmkp2dTWBgIGq1Gg8PD+zs7ABkD8uGhgaOHj1K7969/23M= jSRJckgRg8GAi4uLzIQVFRXJHmXw/96++NsE8ftR9mOSJHLKGkgrakRUqLBGywODg/BU24BC0XH= 3pSDebBsjdESpQRAQFQqUggI7KwusVEoUghIExY/PwcrGkrPppWiNSszMkYQCrd7IPSFu+LnaIQ= i/HyKaFyTzT9dn5kHaOU3nn84i7a7fwP+JMzsbWZrTmqUI0GGguG7dOiorKxk2bJhcpslkwmg08= txzz+Hq6so999xDZWUln376KX/5y19QqVQ35Xe7k0LXNnZtU2fpUNf26XQ61qxZQ2xs7C3fmF1o= p06dyunTp3nyySdvK3Hq3GZXV1d5g76dW23Xfuws8o2Li2Px4sUMGjSIgICA26a7E40NBgOHDx8= mLS2N2bNns27dOiIiInB0dLypvnei8+3GiLm/7/RMkjo8mRwcHJAkiZqaGoqKihgxYsRNYuzO6b= ter2A0Grly5QqzZs1i8ODBhIaG3rF/blf+7cZl53FoMpnIy8tj586d3H///ezYsQO1Wk3gj/F6O= tPR/L3ZkN1sQ3W3uXKn+fPOO++wYsUKHnvsMZycnG5Jb65b53l0t/nauU0/Rcvbvb8d/VpbW4mP= j8fOzk72QrpbGUajkXPnzslBCwVBuCn/zt92bVPnsu/Uztu1oTP9b7eGqVQqevbsedNcMP+YDWf= NRtoFBQV4enri7u5+xzqYn69atYqtW7cyZMiQ287nu/X1r6FfS0sLFRUVhIeHy55gnem0detW+v= bti62tLcHBwXL/3mmN60yDrnTt3E9d09ypXTk5Obi5uREQEEBJSQlJSUkEBQWhVqvx8fG54x7Re= bzdTvLddc/o2r9d+/p2c6Vru8z7Tue8zHPtTnvFr93PfxvmRujwyRYECQsrS9Lyq2jQihhQode2= EhHoiqO1JYofL1+QhA71lCCISCgQpB/lOYKIIEhmmQ4dnEpHwD5JkqhtFjl+uZJmvciPFsQoJVA= ooG+AI+E+jih+RyI4o9FIQUEBq1evZvfu3djZ2eHp6cmuXbv47LPPuHTpEr6+vqhUKl5++WUEQW= DVqlXY2toSHx/P/v378fHxwc7OjlOnTrFixQoSExOJioq66VTx5ptvsm/fPvLy8ti8ebPs5r1v3= z58fX0pLCzk0qVLREREYGNjw7Jly9i/fz9VVVUUFhZiMpno1asXoaGhbNq0iZqaGtLT0+nVqxd7= 9uxhw4YNFBcXs337durq6oiMjJRVWGaPmLfeeovk5GSCgoKwtrZm/fr1bNmyhRs3bhAREUFhYSE= JCQmcPn2arVu3olKp2L59uxzzwdramv3797N7924kSeL69es0NDTw+OOPs337duzs7NiwYQO+vr= 4kJSXxww8/YGdnx+rVqzl37hwDBw5kz549sufCtm3bOHDgAGVlZXJwPr1ezyuvvMKePXuorKwkO= DhYPhkGBgaSm5srBzHbuHEjW7duJS8vj9jY2Lu6LObk5LBy5UoyMjLIzc3ljTfeYPfu3Wzfvp3i= 4mL69OnDmTNnOH78OJs3b0aj0ZCVlUVubi7r1q2jtbWVs2fP8vnnn9O/f3/a2tpYv34927Zt4+r= Vq8TGxlJZWcmyZcs4cOAAAL6+vnz66ad4eHhga2vL9u3bOXnyJBcvXpQDaH3yyScYjUZWrFiBp6= envBCKYoen0QcffMC5c+dQq9WykeaGDRvYtGkTlpaW+Pv7y5tTUVERK1asoKioiC+++IJevXqhU= qlYtWoVp0+fprS0FH9/fxYvXszBgwdl9+e1a9eSkJBAdnY2S5culeP/NDc34+/vL0u78vPzCQ0N= 5fz582RlZREYGMilS5d49913OXDgANHR0YiiyMGDB8nMzGTjxo3U1dURFhbGwYMHWbduHQkJCfj= 6+jJlyhQ2b97M448/LsdC+eabbxBFET8/PzZu3EhiYqJ8EjZvaC0tLXz77bds2LCB69evEx0dTV= ZWFh999BHfffcdSqUSLy8vtmzZAsDq1aspKCigurqatWvX0t7eTkBAAF988QWNjY38/e9/p6qqi= uDgYFpaWnjrrbfYt28foaGh/P3vf5fj1PTp04f169fz1VdfoVAo8PDwYPfu3eTm5rJz504KCgpo= bGxkyZIlnD9/np49e1JXV8c777xDamoq0dHRVFZWsmrVKhobGwHkqM2i2BFx/NVXX+XYsWP4+/v= j4ODAP/7xD9avX096ejqxsbEUFxdz7Ngxzp8/z+bNm3F2dsbb21v2APrf//1fEhISCA0N5cCBA8= TFxWFpacnRo0eJiooiNTWVzz//nPr6ehwcHKioqCA5ORlPT09aW1vlsebi4oKjoyPHjx/n6tWrb= Nq0iRMnTjB8+HD5WoWePXtSXl5OaWkpO3bsQKvVcu3aNbZs2UJMTAyffvop58+fJyAggG+//Zaa= mhq2bt1Kfn4+ra2trFq1CoPBQEBAAHv37uXjjz8mLS0Nb29vysvL2bFjB1lZWWzcuJGRI0fK4SZ= cXFxoa2tj5cqV3LhxA51Ox0svvURcXBz29vbo9XoOHjxIVFSUHAT1+++/x9nZGVEU+fDDD9mxYw= cVFRX07dtXDjponsvh4eHk5+ezefNmPD09ZcZNo9GwceNGtmzZQlVVFR4eHuzcuZOEhAQOHz6Mt= 7c3+fn5FBYW8sorr5CRkUGvXr3Izs6moKCAwMBAfvjhB9atW0dycjIhISGUl5ezdOlS4uLikCRJ= DiIKHZL8tWvXsm3bNnQ6HWVlZXz99deysfTy5csRBAEvLy++//57Pv74YzQaDcHBwXIeJpOJt99= +m+zsbJRKJQ4ODpw7d47ly5dTUlIiM2JvvfUW+/fvJ/BHT7Z9+/aRlpbGpk2bsLKykve/X4N/mr= mRJAm9UaSuVc+Za2W4ONrh627H9ZJaNDqBoupmKuuaCPRyxNHWGoWg+DGeMICAJAgdEh0zMyNnz= I8Mj4BJBIMIJzJLiE+vwCRYohBEftSGYaWSGBDsQpS/8++GuRHFDqPKL7/8kunTpzNmzBj27dtH= c3MzCoWCRYsWYWFhwfbt2zl8+DD79u2jR48eDBw4kPfee4+pU6fS0tJCdXU1SqWS/fv3s3LlSlQ= qFW+//TaPPPKIvOE2NTWxYsUKwsPDaWlpYeXKlTz00EOcPHkSpVLJvffey9atW2W3wZycHGbOnI= nJZKJ///688847cgyPvXv3sn79enbv3k1aWhqjRo3ivffeo729ndDQUL799lvmzJkju8rm5eUxb= 948vv32W2pra2lqaiIxMZGQkBAWLFggBzpLSkpi+/btTJw4EU9PT65du8aECRPkIFerV6+mvLyc= N954A2tra15//XWCg4Px9fVlx44dTJs2jdDQUNatW8e8efNISUkhNDSU4OBgPv/8cyIjI1mxYgU= REREcPXqUI0eO8Nxzz/HAAw/I3lEpKSlotVruvfdekpOTCQwMxMvLC+iYrEeOHCE8PByA69evM3= 78eBYvXszs2bPvqqpycnJCkiSCg4NZtGgR8fHx9O3bl7lz57J//34SEhJISEigrKyMlStXcuHCB= datW0dQUBAPPPAAb7zxBlOmTKGiogKNRoNKpUKr1TJ48GA2btxIWFgYX375JQsXLmT48OEcPXqU= wsJCvvjiC0aPHs3ly5dRq9W88MILGAwGNm3axJkzZ/j+++8JCgqiZ8+eFBUV0b9/fwRBQKfTsXT= pUoYMGcKUKVM4fPgwffv2lYOlDRs2jBUrVjBjxgxsbGxoaWlh2bJl7N69m7lz5xIUFMS2bdu4cO= GCHJBw+PDhLFiwgOXLl3PvvfeyZMkSYmJiZMZy0aJFpKSkcOjQIWbMmMGyZcvw9/eXvciSk5MZN= GgQf/3rX7G3tycwMJBVq1axdu1aPDw8ePnll1GpVKxcuVJ2y//ggw+47777OHnyJI888gjFxcWU= lJQQGxvLhg0bmDZtGlu2bMHCwoJRo0axZs0a+QTr5+fH0aNHGTlypBwH6IcffkCj0fC3v/2NTz7= 5BB8fHzIyMnjiiSeYPHkyH330Eenp6ezatYukpCQWLFjA7t27sbW1Zfr06Xz88ccIgsDGjRupqa= nh9ddfZ8eOHXh6evLiiy/Sv39/HB0d2bp1K2+++SYlJSX84Q9/YN26dWi1WgYMGMC2bdtobW3l4= 48/RpIkJk2axJo1a3j++edpb2/n/vvvJywsjEceeYS5c+eSnZ3N1atXaW9vx87OTp4XZlVFa2sr= EyZM4NNPP8XJyYkbN25w48YNNBoNL730EgUFBXz55ZdkZmaybds2xo0bh7+/P6dPn2bUqFFy4FE= 3Nzfa29uJiYnB398fHx8f9u/fT1JSEpMmTeLEiRN4eXkRFxfHwIED+fLLLyktLSUqKopXX32V99= 9/n3vvvZeXX34Ze3t73n//faqqqnj11VfZuHEjAwYMwMPDA+i4wmPnzp307t2bkSNH8tlnnzFnz= hxOnTrFyJEj6dGjB4cOHaKlpYWNGzdSUlLCtGnT2LZtG7a2tkyYMIG9e/cSHh7O+vXrWbx4MXFx= cSiVSpYvX86VK1eYPHky2dnZqNVq8vLy+Oqrrxg8eDB79+4lIiKC9PR07rnnHiIiImhtbeWxxx7= jww8/pLS0lMjISPbu3StHtD5z5gyiKOLl5SX/HhoaKgci9fb2lr8zx7CKjo6WQwxs2bKFwMBAnn= /+eTZt2kRlZSWff/458+bNY9KkSXzzzTcUFRXx6KOP0trayrhx4/Dw8ODNN9/E1dWVpqYmCgsL+= etf/0p9fT06nY4LFy5w3333oVQqSU5OZuDAgdja2mI0GtmwYQMeHh4sXLiQffv20d7eTlRUFMeO= HePJJ58kOTkZg8FAeXk5e/fuZdasWSxfvpywsDBZ6pqSkiKHJCgvL6e5uZl33nmH+fPn8/333wO= Ql5dHTEwMWq2W/Px8UlJS+OKLL+R14fvvv2fChAm33K/3c/HLFIMS5ljESJIJkyiiNZgoqmtlxd= 5LLPk6g/e+TsFDbc3L0/sS7GxCb1JyIrORNzaf5UJBNXpRRKTjcvAOd3BQdOimZInN/4nIBCQJj= CYTZc3tHDyXh16y+DEasYAkdnxkpQR3J/ubmaPfAVpbW1EoFPIAf/XVVykrK5PjNwQGBuLt7c0f= //hHrKyseOqppwAYOHAgsbGxcmyT1NRU2a5iyJAhVFZWAjeLgW1sbBgwYACiKOLs7ExUVBQmk0m= +pNIsHhwzZgx/+ctf+OSTT+QomaIoyvf8mCUyjo6OlJWV0djYiCRJDBo0CBsbGzm4nlmkWFZWRn= h4OKIo8sgjjzB69GgSExOxtbVFFEWmTZtGXl4e06ZNY8qUKbK7d319vZyHOQhdREQEdnZ2BAYGM= nXqVPm9ra0tw4cPJyoqCp1Oh0KhkFVq5p/w8HBZvTVz5kz69+8vqzfMYluVSsXBgweprKy8ycix= sxjY3FeZmZnU1tbeIkK9HTq/M5lM5ObmyuHhZ8+ejSiKjB07liFDhqBSqRg7diyTJk3i/vvvR5I= kevfuTXR0NM7OzrIrbEJCgiyFampqki8kdHV15YUXXmDWrFn4+/uj1+vJz8+XY39EREQQGNgR5M= /f35+5c+ciiqI8DiSpI0rq1atXiYmJwdbWFl9fX1kCFxERQa9evfj4449leyt7e3vmzZuHh4cHA= wcOJCwsjMbGRhYvXkxAQAB+fn40NDSQnp6Og4MDrq6uDB8+nKKiopv6qKSkhLCwMJydndmwYQOx= sbFMnz6diooKcnJysLOzk5nuS5cuyRe1RkdHY21tTUREBFOnTmXixInypawtLS1UVVURFxeHra2= tHP/HHF/DHJnY2dmZFStWMH78eIYOHSpLQ5qammT6NTQ04OrqiiiKbN26FTs7O6qqquT1auTIkU= RERNCnTx/+9re/4ejoiKenJ/fddx8uLi4YjUZGjx5NWFgYc+bMwdnZmeDgYMrKysjLyyM4OJgRI= 0awZMmSm4xUr127RmRkJKGhobz55pvMnDmT++67jwceeABXV1eqqqpkNRFAfn4+Xl5eMn1nzZrF= 8OHD8fb2pqamhoqKCrlNpaWlODk54ejoyKhRo3jwwQc5d+6cPD/Hjx9PdnY2Dz/8MJMmTWLQoEG= IYsfVBZ0N5AMDAzEajVRUVHDhwgUiIiKYPHmybN82btw4FAqFfMB58MEHcXR0pKamhqysLOzt7X= F3d2fEiBHyHJ02bRpqtVq+hsRcnnltHDRoEEqlkurqark9neMkDR8+nL59+/LEE0/g7u6Oo6Mjj= z/+OEqlUr4AtbGxkUOHDqFSqVCr1fztb38jMjKSYcOGyQfQ2NhYOWDe008/jYODgxwR2dx+d3d3= Hn/8cXkuKZVKLCwsiIqKYuHChSiVSj7//HMcHBzk9cmsCvb396dHjx5cvHiRU6dO0a9fP3ldMrf= F3t4eURRZs2YNDz30EIMGDSIkJAS1Ws3EiRNxc3O7SbUcGhrKI488gih2REG2sbGR1+Bhw4ZhaW= nJ2rVrb7oMVxQ7LsStqanBy8sLURTl0CJmmOtjvqKnd+/eODk5sW7dOvr06SOni46OZsSIEVRUV= FBdXc3169fp27cvTk5OLF68mFGjRmEymTh69Ki8/s6cOZMxY8YwcuRIVCoVlZWVN+0lvxS/SHIj= CSaQFAggMx2Xi+r46Pt0TmU3oRNtqG2RyC6sINhHzaxRYTQ3NlFar6WySSApuxQLlUSQhxor2bP= pDpIWocOTymSSqGzV8/nRDE5dbQGFdYc6S+q4nkGFSICrioeGBeJub/W7srlRqVRy9Mzi4mLy8v= IICwsjLi6Ompoa+ffy8nKOHTtGQECAHG/D29ubEydO0NjYyMSJEzl06BDl5eXk5OQwduxY2cAWY= OfOnaSnp+Pt7U1JSYl8IVpKSgoqlYrg4GD27duHhYWFHIvD09NTvtcmPj4eNzc3pk2bRlpaGm1t= bWRkZPDQQw+h0+lISEiQ9edpaWmyXYogCDg5OXHo0CHy8vK4evUqer2e6Ohodu3aRW1tLTdu3OD= hhx8mMzOTlJQUvLy8OHnyJNXV1fTq1Yvk5GS0Wi1XrlwhPz9fZtB27NiBwWBgwIABXLt2jcbGRs= 6fP8+UKVMIDAzk/PnzcjyI7Oxs3Nzc5NgRgiBw9uxZQkJCCAwMlCf3qVOn0Ol0WFlZUVBQgIuLC= +Hh4QiCQFFRkSxZs7Kyori4GHt7e1kEHBkZecdxV1lZyd69eyksLMTe3h4nJycSEhIoLS2ltLSU= IUOGcPnyZQoKCoiNjSUnJ4eEhAR8fHw4c+aMXP8LFy7Q0NCAwWCQmbicnByCg4ORJInTp09TUlJ= CQUEBGo1GDi44aNAgjh07RnFxMfn5+fj5+dHY2EhSUhIBAQGkpqZSUFDA4MGDcXJywsrKSr5fqq= 6ujosXL6LT6ZgxYwZ79+7F1taWvLw8mdmEDg+SrVu3Ymtry6VLlxgxYoR8HUNERATh4eEYDAYOH= jxIRUUFzc3NPProo8TFxXHx4kVEsSMeTHx8PG1tbdy4cQNbW1t27dolqwPCwsI4fPgwRUVFTJ8+= nTNnznDt2jWuX79OeHg4rq6uHDp0CCcnJ7KyskhJScHNzY3q6mo8PT2prq6msrISo9HI8ePHCQ4= OpmfPnvLJ+saNG9TX13Pp0iVsbW0xGAxER0fL6gGTycSBAwcoKSmRL2ksLS0lIyODvLw8LCws8P= Ly4sSJE7S3t6NQKDh9+jTu7u78f+ydeVxVdf7/n+fu7PuigAgIiBvuYpqlpuUyY5pZWTpm2jQto= 7Y7TdMyM32nJmf8lppNZmpqampZLoiCgooLsrmggCiCIMi+Xbjce8/5/XE9p8MN25vvND/fjwcK= 53zO5/P+vD/L+Zz38npnZmaSkZHBkCFDyMzMpKKigoKCApqbm5UcbAcPHkSn01FUVETfvn0VPKS= EhAS2bt2Ku7s7hYWFGAwG9uzZg9FopKqqisOHD9OjRw8FcXzQoEGK47XFYqGiooLi4mIKCwuVl7= qc/NPHx4eMjAwyMjIoLS2lrKyMhIQEPvnkE+rr6yksLOTee++lqKiI48eP07VrV1JTU7ly5QoJC= QnK4cVgMFBfX8+nn37KxIkTcXNzIy0tjSNHjhAeHk5aWpqSjToyMpKCggIyMzNJSEjAZDKxd+9e= rly5QnNzM+PHj2fbtm0KEnNSUhLh4eHExcVhMBg4efIkiYmJ+Pn5kZ2drZjOzp07x7Vr18jNzeX= EiRO4urqSnZ2NVqvFYrGQnp5OUFAQubm55OTk4Ovry8mTJ+nfvz+FhYXU19dTUlJCcXExfn5+pK= Wl0dzcjK+vL/v378fT05PExETlZSvj5nz55Zf4+/uTmZnJ2bNnGTFiBBcvXiQ/P5/8/HxKSko4d= +4cPj4+tLS0UFhYSGhoqGK6FQSB8PBwli1bRvfu3YmPj1dMMVqtlrq6Ovbu3UtpaSlZWVlUVVWR= np6Or68vkZGRHDp0iIyMDOLi4igrK+Ps2bO4urqSnJxMY2MjI0aMYP/+/Vy7do0zZ87Q1NTEwYM= HGTp0qILF079/f4KCghTnbvkdlJeXpyCVr169WtH0XLx4kXnz5ko3oRcAACAASURBVJGSkkJLSw= tXrlwhKChIQbBOT08nKSmpA9ZRWloajY2NXLt2DVdXV/bu3Uu3bt0UudfX13Pq1CkCAwPJysqio= KCAoUOHKolzv+97/XuGgotIksMxWBIlWtvtvLI2jT15LbRjQBIAwQaSBneNnekjgrn/9p5sTSvg= 08NXaJNc8dI3Mv+OcO4b1RdXg47ODjcSgCRhE23Ut9lYd7CQtfsu0Sa5IAEaJETBjqTR4CJYeWB= 4F56cHI+bUe9IqvkLOdzIPiny6VSv13dwxJJDhuUystZE7WilDjuUy8gLRm5DRk5VX5NJjS3iLD= fn8rITp91uVxafs8OnzI/Mg3P7cqiv1WpV2pfrUTsOOju3ydfUCe40Go0iH/mrRQ6FVIP7ydfUT= qJyf9R8qh2v5bbUTtNyVIR8GJL5kn0BbhQhoU4BIbenDt1U978zXp3HS92+zKc8/urwYPW4yeMg= y1/txCfLTqvVKnXJ46wOmZZB0mQ+5fJy5uf58+eTnJyM0WhUEm2q+wwo2iFZrnK/BUHogPqrjgZ= Szx2Zb7ms3Ee13NTycp5H6r+dZSHXI88F2eSiHiO5/85zUT2WN9LkyfL43e9+x5w5cxg6dChGox= G9Xq/ML/VYyH1Rrzs1L2pnbnmMZN7U2gH1mMp8ylo3Z42kej3I5Z3HRW5Tr9d/DWNHPVZyneq5K= I+JPIfVZZ15VTuiynNNfk5eizIv8j11dKX6vjOptRzqfUfNoyxjNf/qPVjtX+Jcr7pP8tyU55Vc= p16vV2TX3t7OsmXLFFBJtQ9fZ3u4uo/OY+vsjKvmWS0rddoJ9VyX5Svz5OLiwvz589Hr9R32LfW= +4rxfytfV9YNjL1SvbWeHcef5od6jv+97/Xt66nyFT4Mg4KLT8PR9CQQdusDmtBIa2zVoRA0SWl= okDZvSyqmsauX+MTFEBnvwSXIeYwZFMTEhGhe9vOE5H2yuC8Zuo67VzgdJ+Xx+tJw2uxFJawdBQ= pQ0gBatIBEV6Mod/cNwN2odWptfEIqfvKF/m8OUPImcDxvOg91ZWLb8VaXeDJ3vf19S8/JtJC9i= Z97UwFffVndn/VXLrDNn3s7stPIznfGuHgtnHuQNQr2Rd/YCvRGpXyRy2W8bc/mg2xmfN2r/28L= y1YcMdfudyVx+mTjfc5arJEm0tLSwbds2qqurSU5OZsqUKcphyJk6Gyt1G53dV/fr28ZdHj/oHE= BOTd80Fp3JRF5LznSjPqmfkzf8tLQ0ioqKWLduHf369VMg+tUHyxvV67wHdPa7mr6LI6a67W9a1= 53tQc5lnQ/43wcm4pvad77e2Vr8pjXQ2VjIvzvf/6ZyN6IbraVvmhdymba2Nnbu3KlonTvDebrR= HvpN9E1rQD3vOysnr92LFy+SkpKCt7c3U6ZMISwsrMMe0ln/5bp+6FpR8/J93jOd0ffS3EiICNe= B+CQJJBFERFraRXZnFvNe4nkqmjSIaJEEDVrJhk6wEdfFhccm96ZnqDd+biZcNJJDywOO3N+qDt= hEEYtVpOBaE//aeYrUvAZsGhOSIGMTC0hIGAQBH0Mbj0+OY9rwKFy0AoLw7wVOukk36SZ9pZGQt= R2/RGC8fxepQ66/DbDwJv33k7P28j9p7fzS1/UPRCgWka7HPAmSHbtdoF0UOV3RyD+2ZXPqUgt2= jR67pEHAjl5jx99Fy5xxPZh2SySeOscBSQOOaCkEJFHCZrdT12ojMbOEjamFlNSL2DAioEEjSI5= 2BQcIoJfGwpw7Ipg1NgZXvRYtWq678NykH0iyKtFms31N5XyTbkxq06LzF/iNvkRlla2s3v+uLz= m1k/M3mcK+L6nNNrL6XP5C/i7POvP3f7VRq02U31WVrTZ/yCYm2QQnO3DLiS7/nWtCHgc5Uafaj= PF96YfI5eckSZKUfGBqLaXa9CQ7zMugfv/XPP//RLL8ZY222nT8Xej7aLZ/LvqBoeDCVzjDgmOx= 6DQCAe4GBvQIoM3cxpWqFtpF0AggSXpa2zVkF5ZxqbIeo1GPyaBDo9PQLko0tlkpqW7hYF4FK3a= fZXtGBbWtejSSw9SEIF6P0JLQCxIBJpFZY7sze2wc7nqdI9oKgV/i3JdP7eoXi7PNXn26v9FzN7= qmBqtS1wVfR/2VwbR+85vfYDAYiIuL+8byap7UbTu31ZkPgjOf34d/Z98ctT3Z+cdZZp31xTni6= UbP3ajPjY2NrF69mn379jFs2DAaGxuprq5WMuU625RlOc+fPx9XV1diYmI6+At8E7+S5IieOXv2= rIIz0tkYOPfD+Xfn8ZGTmwYHB1NdXc3+/fuJiorqAJbnXK/8vM1mUxwm5ezyrq6uHSItbsRLZ32= V+6u2x6u/bp3HXV1XcXExWVlZhIaGKrzfaC3J/587dw4PDw/MZjNbtmzh6tWrhIeHs3HjRlasWM= GyZctob29XMm/LY+jM/43mjPP4yWutM57U/QfIzs5m8uTJ3HXXXQpeSmcvjs7Wmrq++vp60tLS8= PHxUZKhdiaXG+0/6nXpbM7pbN45H3idy1dXV/Piiy9SWlpKv379OHLkCG1tbUrUz7Vr13j22Wep= rKxkwIABnc6PG8mvs9+d9xPnOpz3LvW1b+pzZzLq7L6zjJ157Oxv+XdnkLsb1aXeN79pXtyon/J= zoihSVlbGI488QlNTE7GxsXz44YcMHDhQMR/eqG+ypufChQuKb1dn6TW+q0ycx+n70A9Dx+mMBA= mjFnr4ufLcjIEEBZxn9d5CLJILkiRgFzQ0YmTnqUYSc04S4q4lsqs7Op2eq9XNXL7WTLOoQ9Lo0= GgcGcDt121XIqBFRK8RCHQReXRyLL8aHImr9qtkDpIg8n0j2/+vSX6pyF/xsm+M/LUoTw41kqQc= Yuj8nJwxV54csr3TYrF08BmR65E1M2oHSovFgp+fH/7+/h1CqWW7vMFgUMrLIZd2u72Dg5o8eTt= zjJXbEwRB+SpzdmBU8y9JkvL1IGsp5PpkRzPZcU/tYAgdkT3ldmUnZGeHyvb2dsVZTy0PZ/mrHf= PUTp4Gg4EePXqQnZ1Na2srK1euJD4+Hn9/f4VnjUaDwWBAFEWsViv+/v54enoqoclyH2S/H/WGI= /dT7lOPHj2UCKm2tjZFvs78Acr4yPNK7Zipdr49duwYK1asYPXq1fj4+DB58mRFZu3t7Qo/8mal= dgy8fPkyb7zxBitWrMBgMDBu3DhljEVRVOai7NAszx+1X45cv9qZUpaL2nFTrVFUz1F5XYSEhBA= SEtJB86KWoTMq6+nTp9m+fTtPP/00rq6uTJgwAU9PTywWC7t37+bll19WAM7UYy5nGFf3R15X6n= kqf+2qHcGtVivt7e3K82rUVnley33u06cPRqNR0Q6qHboNBoPiNyGvR3k81c7FBoMBd3d3Ro8ej= U6nU2SmdnRV/8jX1PuD3D/ZWVzteKpet+oABXmNyXuQ3De73Y6LiwuBgYFKX0aMGKHIx2634+bm= RkBAQAcnf7ms2v9Elqfa0VVe97Js1AEQ8rzV6/Ud9h61XNXXZPk5OzPLPMl9UjtPqwM85OfVaL8= yybKWn5f3NbXZUj3X5D1W7cgvr0F5nsu8yuMjrxHneSHPH1kzKK8RvV6P1WrF09OTsLAwbDYbRq= ORefPmKX2S90uZJ+f5Y7fb+d3vfsf//u//Eh4ejtFoVPgzGo1fc1yW56J6v5bH9vv6GqnpJzncC= Io9SINGI+BtFJk7Npq4EB/e/eIsF6raQdKCpEESNIhaPaVmOyUFjThQbjQIgiuCTrhu7HKEeouC= Fo0oor/eRp8QPY9O7ENCdBAmLQiC/boP0C/LkRgcA9fU1MQnn3xCa2srVquVq1evMnHiRD777DN= iY2M5c+YMEydOZO3atZjNZiZOnEh2djYzZ86kqalJCbULCgpizpw5vP/++3h6epKcnMyCBQtoam= oiOzubwMBAjhw5wgMPPMCFCxcQBIHc3FxWrVqFRqOhvb2djIwMkpKSCAwM5Ny5c4wdO5akpCSOH= DmigJU988wzREdHI4oiKSkppKSkEBoayq5du/jtb3/LRx99RExMjIId4unpyVtvvcXEiRPp2rUr= 58+f58knn+TIkSPKoj19+jTPPvsszz33HJIkMX78eHbu3Mmbb75JXl4eBQUF+Pn5cenSJby9vdm= 4cSMLFiwgLi6OW265RQlL3rRpE5Ik4ebmRmxsLHv27GHOnDl88cUXFBQUsGjRIjIyMpAkiYsXL7= J06VIALl68yIIFC/Dy8mL8+PHEx8croH/Hjx/nySefJCkpCW9vb7Kzs3nmmWdYvnw5t9xyC0FBQ= Tz00EPs2rVL2WRkrUpzczOhoaEsXLiQadOmkZWVxZNPPonZbCYxMZHQ0FCKi4sRRZHc3FzS0tII= DAzk8OHD3H777RgMBqqqqqirqyMwMJBHHnkEnU5HTU0NTz/9NPHx8bi5ufH2228zadIkDAYDnp6= eTJkyhTVr1jBo0CCmTJnCihUr6NOnD2fOnMFkMnHt2jU8PDwIDAzEarVSUVGhYOSUl5cr6MwXL1= 7kr3/9K0lJSeTl5WEymdiwYQPvvvsu586do6GhgdbWVmw2G4MHD6a8vJytW7ei0WjYvXs3r7zyC= qdPn2bnzp0sXrwYSZLYvXs3CQkJZGZm4ufnR05ODuHh4URERFBeXk5DQwN6vZ6FCxei1WrJz8/n= vffeU8AEX3rpJebMmcOgQYMQRQfY5EcffURcXBwbN25kyZIlbNiwAaPRyNNPP80777yDRqPh6tW= rxMfHU1ZWxr59+xg3bhylpaUMHjwYo9FIQUEBW7duxcXFhfT0dBYuXMjJkyeprKxk//79BAYG8s= 477/DnP/8ZQXDACHTr1o3Dhw/z1FNPcejQITw8PKivr6empoY5c+bwzjvvEBMTQ0VFBY8++qiSz= ystLU2BVigsLCQyMpKPP/6Y3r1707NnT5qbm1mwYIGCFi0fxiVJIiUlhb179xIZGcn27dvZvHmz= grvzwgsvsG/fPu677z6ys7NxdXUlNjaWzMxMli9fzqZNmzh16hR//OMfWb9+PX5+fpSUlNC/f3/= WrVuHTqdTACB79+5NcHAwtbW1PPHEE7z55puEhIRQUlLCxIkTmThxIkajkWPHjrF48WKCg4OJi4= vj7Nmz9O7dWwlnf+WVV1i5ciXdunXj6tWreHl5MWzYMD7//HPi4uLIyclh5MiRpKamsnr1aubPn= 4+3tzebN28mOjqaU6dOERQURF5eHsuXL6dXr17s3LmTHTt2KBFmly5dYunSpcTHx1NSUoK7uzsh= ISEcOnSIRx99lE8//ZSioiKee+45EhMTlVxmt99+O1OmTEGn03H58mU+/fRTAPLz81m0aBGffPI= Jvr6+nDhxgjlz5jBmzBh0Oh2bN2/m3XffJSEhAS8vLzIyMrj33nv517/+xejRo4mNjaVLly6cPX= sWT09PDhw4wLhx40hKSqKyspKJEyeSlZWFi4sL/fr1Y8OGDfzzn/9kxYoVTJgwgcjISJYvX8706= dOprKykuLhY0VzccccdbN26lX79+jF58mQ2bNjAgAEDOH78OAAnT55k/vz5jBkzBoPBQGpqKq+9= 9hqRkZGEhoZy8OBBxo0bx+XLlxk0aBAPPfQQ//znP9FqtRQXF3PLLbfQvXt3Dhw4QLdu3cjIyKB= bt25s2LCBNWvWsH37dpKTk8nOzlY+2Pr378/y5ctJSEggLCyMjIwMHnjgASXPVkxMDFlZWXh5eZ= Gdnc3UqVO56667MBqNCkq6Xq+nrq6OhIQEdu3axWOPPcauXbvIyclh/fr1/7eHG+A6sJ7ocOqVN= Ljr9YzpHUxXHzeWfXma9KIGWiUdGtGOBg02QQ8au4MFQUKQbGgkAUlyOCMLSOglK1qNgK8rjOsX= yLyJ8QS66dEIjgMQ18PSBUfL6oxV//Ekq2YbGhqYPn06YWFhiKJIfX09bm5uvPXWW5jNZoKCgrj= lllswGo3MnTuXxMREsrKymD59Oq2traxZs4aoqCguXLiA2Wzm2Wef5fHHH6ehoYElS5Zw8OBBPD= 098fLywmq1UlJSQmRkJAsXLlS+COx2O7t27WLs2LEMGjSIo0eP0tTUpOCteHt74+fnR3V1taIxS= ElJITk5WcmKGxQUxBtvvMEf/vAHoqKimDNnDhqNhs2bNzNv3jzCw8N58803SU1NZf369aSlpSFJ= EitWrODUqVPcc889tLS08NBDD3Hs2DFycnI4duwY586dw83NjeDgYMaNG0dycjJz587FZDIpJ3x= vb2+KiooYOXIkI0eOxM3NjfT0dNzd3Rk0aBD5+fl4eHhw/vx5hg0bxpw5cxTNWPfu3bn77rsRRZ= GZM2eyatUqDh06RFFRkQIQ5uHhoSCABgUFKZg2gwcP/ppKOC4ujn79+jFgwACioqJ4/fXXSU5O5= sSJE7S0tPD+++8zd+5chg0bxvHjx2lra+PEiRPEx8czduxY7rzzTv785z8zduxYDhw4wMMPP6yY= BwE8PT2ZPHkyZWVlTJs2ja1btzJ//nxKS0vZsGEDkZGRjB8/nra2Nmw2G0OGDEEQBA4cOIDVakW= n05GQkIC/vz+rVq1i9uzZ9OvXj7KyMk6cOMH06dPJy8ujqalJObB5enoSGhpKUFAQw4YNIyIigg= MHDrB69Wp69uxJnz59CAsL44EHHqCyspKSkhIEQeBXv/oVbW1tWCwWGhsbWbBgAZs2bSI0NJRp0= 6YxefJk3nrrLSIiIkhLS2Pq1KnEx8crsuzVqxezZ8/m5MmTVFVVMXr0aAYMGKB8Qefk5NCrVy9m= zpzJ7NmzAbj99ts5c+YMpaWlrF27Vknu6urqyuzZs2lpaeHhhx9W8GqmTp3KpUuXmDFjBo2NjVy= 5cgWNRsO9995LUlISEyZMUNJAWCwWcnJyGDNmDMOHD+ehhx4iIyMDi8XCI488gtFo5H/+538oKy= vD1dWV8+fP8/DDD+Pj46Os+71795KcnKyYh+68806ioqJ49NFH8fPz4/3338dsNne6X8THx2Oz2= Vi5ciWVlZUdNCIPP/wwNTU1PPLII7z//vtotVpmz55NXl4ekiQxbtw4KisrkdM3pKen8/DDDxMd= Ha0AEc6YMYPU1FRmz56tpGBobW3ld7/7Henp6Wzfvl2Z84IgMGjQIHr27Mn999+Pn58f9fX1TJ8= +HT8/Px599FHy8/M5fvw4GRkZaLVahgwZwkcffcTkyZOZOHEi5eXl6HQ6+vfvT79+/QD46KOPGD= 9+vPIS1mq1hIWFMXXqVLZs2cK5c+eUtSCKIps3b6Zfv37MmDGDDz/8kPb2dvr27Utubi6enp4MH= jyYwsJCMjIy+PLLL/H09ESr1dK3b19Fw2IwGCgvLycmJob58+eTmZnJ9u3bFQ1gSUmJotH59a9/= zfHjx3nggQeIjY3liSeeUA6G99xzD5GRkaxYsYI777yTXr160b9/f9avX68ADt533300NDQQHh7= O1KlT2b17Ny4uLoSHhyv7UUhICHa7nXfeeQcvLy9cXV3x8fHhscceY/bs2WRmZqLRaBg6dCgDBg= wgKCiIjRs3cuHCBSoqKpTxGTFiBLfeeisjRozAz8+PDRs2sGDBAgVrqri4mPXr1xMSEoJer8fHx= 4fy8nKGDRvGbbfdxpkzZzAajYwcOZI9e/YgCAIJCQm0trayfv16AgMDmTNnDqNGjeKhhx5ScICi= oqLw9fVlwoQJ5OTksHnzZiUhamlpqSJ3jUZDZWUlvXr14q677sLNzY3Dhw/j4eHB4MGDyc7O7tR= 94bvST2LHcRxrHOHZoEHSCGg0WnRaLTFdvfjDzME8Ni6KQH0rWkBCj04ErSigFUEQJUQEbIIWUS= OAVoNWBx46C7fHefDX3wzm6an9CXLToxWuIxqjRdRoQHD8aKRfzsEGHOpqd3d3ysrKOH/+PBaLR= cmlkpqaypIlSzrYmvPy8rDb7Zw/f57o6GiWLFkCwGOPPYanp6fyJXbx4kVsNhupqal06dKFcePG= sW7dOl599VXq6+sZO3Yst99+O+vWrePixYvAV6F/R48exW63k5eXR1JSElqtlttvv53169fzt7/= 9TXnZCYJAREQEt912G6tWreL1119XgPZ+//vfExgYyIsvvkhDQwPg+Bqqra1FEAT69++PIAgcOn= RIyUk0fPhwoKP91d3dHV9fXyZNmsTmzZt5+umnO9iR1bbb2tpaxo4dS1xcHK+++ioajYbW1lbMZ= jMFBQVcvHiRL7/8kl//+tcMGDCAd999l8rKSqUueTw0Gg2xsbGEhYXx7rvvsmTJEkwmE1arlTlz= 5rBr1y7Onz+PzWajrq6OS5cuIQgCq1atUtTncl12u53c3Fz+9re/MXXqVMaNG4coOtChDx48SH1= 9vQKjLsOhNzQ0UFNTQ0hICPX19bz++usYjUZWrlxJa2urwq+sblabENRq+4EDB5KVlUVycjKDBw= 8mICAAX19f/vrXv7JmzRrGjBlDaWkpf/nLX3B1dWXr1q20tLQAX2GVyPW5ubkRHh5OSEiIAuq3c= eNGwsLCeOWVV5T+Ah1MFLJKuU+fPqSlpSlqcBk4rba2VlGrt7e3s3DhQrp27cq6deuU/EdarZb4= +HglfciECROUjVEQBIKDgzl69Cg1NTVUVFSQmZmpjGdAQADdu3dn4cKFbN68maioqA7rTy0ztTp= drcpXy0FWl3t4eJCenk57ezuVlZXU1tZy5MgRKioqqKurw9/fHz8/P+rq6njhhRdYv369ss4Aws= PDGTRoEJ988gmvvfYaAQEBHfxBbvRjsVjYvn07xcXFrFy58mvlnX091PNENrnIfTx9+jRvvfUWx= 48f58iRI18zK8jl7HY7NTU1zJgxg+HDh/Ob3/ymgx9TZ/4S6p+AgABMJhPPPPMM69atY/To0QQG= BvL555/T2NhIRUUFa9eupaqqqsMzO3bsUO5/+OGH7NixgxMnTrBw4UIllYk8d/z9/dm5cyc2m01= B25XnlNlsJi8vjwsXLigfdevWrWPZsmXExsYqY2I2m0lISGDkyJEsWrQIFxcXBg8ezNKlS9m0aZ= MCVCjvlS0tLVRVVVFdXc3Zs2fp27ev0q5sYsrJycFms1FSUsLAgQM7xUCSx0fuS0NDAy0tLeTm5= nLw4EGio6MZO3Ysn3zyCQ8++CAmk4moqChFCzpw4EAqKyv54IMPmD59OhMnTvza2HQ23+UyQUFB= REVF8cILLygHEFmrbzabyc3NJSUlhdLSUsU0uXbtWry8vHj88cc7HXNnXx5vb28GDx7MihUr+PD= DD4mIiFBkKaOLjxo1iqeeekoxg7e2tip5sdLT0zvU+X3oJ0mc+ZXGRFClUbj+whDAw6Clf4Q/I3= p3wdVgo93ShtjeDpLkyL8gSGgECZPWjrdRJMJXz+29fHj0rl7MGh1Lj0B3DFrt9YgpRzuCIKBBd= aD5JZ1scMjGZDIRERHB/v37SUxMxGg0MmrUKHJzczl06JDi+Hft2jWam5s5fPgwffr0YcKECfj7= +3PgwAGqq6uVidqvXz+2bt3KwYMHmTJlCkOGDKGkpISdO3dy+fJl7rrrLs6fP09KSgoxMTGMHz9= eWXR9+vQhNzeX3bt3M3r0aO677z6mTJmiPF9SUsKkSZMwGo0IgkBUVBT19fV89tlnSsbcI0eOMH= z4cM6dO6eg6J48eRI3NzdSUlIYPXo0I0aMYNasWXzwwQekpqYyZ84cgoODlaSWVVVVtLa2otVqm= TFjBnl5eezduxez2YzVasVgMHDp0iWGDh2q8N7c3ExGRgYnT55k1qxZREVF0draSmJiIv7+/gwZ= MoSJEyeSkZHBkSNHGDVqFAkJCQCUlpaSmJiITqcjKiqKuLg4goOD2bx5MxcuXGD69OmUlpaSmpp= KcHAwkyZNokuXLiQlJXHt2jXCw8N55JFHyMvL48qVKwQHB+Pu7s6BAwfo3bs3lZWVnD17FpPJRF= lZGYsXL+b48eOcOHGCHj168MQTTzBmzBgqKirYunUrNTU1LFiwAIBt27ZRWFjI1KlTiYiIQKPR0= NTUxM6dO6murqakpASDwUB1dTU1NTWKHbxPnz5IkoTFYiE+Ph4/Pz9iYmLYunUrGRkZREVFKUi6= BQUFjBs3jpiYGAoKCjh58qSSskCv13P16lWOHTtGQUEB6enp2O12unbtyoEDB6ipqcFkMilpLL7= 44gssFgtXrlzBbrfTv39/vLy8uHTpksJHt27daGpqYsuWLeTk5PDKK69gtVpJS0sjKyuLsWPH0r= t37w6HmLa2NsLCwpSErPKLJDAwEJvNxqeffkpGRgZ33303aWlplJWVER0dzf3338/mzZtJS0tjw= oQJpKWl0dDQQFtbG0VFRYrfR1NTE4mJidjtdi5fvoybmxsbN27Ezc2NiooKrl27RmNjI2azmWnT= pnHp0iU+++wzysvLmThxIsOHD2fVqlVkZWVxxx13EBcXR0VFBXv27FHMp/KLNz4+nqqqKrZu3ao= c+M1mMxcuXMButytpDWRNxv79+5WPgNGjR3Ps2DEFot9isdCrVy8APvzwQ+x2Oy0tLVy7dk3R0o= qiSH5+vnJY8PPzIyQkhM2bN+Pl5UV0dDTZ2dmAI1WKJEmcPn1aGceAgAB69+5NSkoK7e3tVFdXM= 2DAADw8PMjKyqKsrIy8vDzAgVJttVrZsWMH3t7edOvWjVmzZrFp0ybS09OJjY1l1qxZFBYWcuDA= AXx9fZk7dy4Wi4Xc3Fx0Oh1z5syhqKiIgwcPEhAQwLx58xg+fDipqakUFBQQHh5OeXk5gwcP7iD= Pzz77jIMHDxIWFsatt96q+EzJ2sbf//73eHt7s2HDBgoKChg2bJjiEyeKIseOHVNykE2ePBlPT0= +2bdtGWloa06ZNU3LHWa1WZT88ceIEb7zxBpWVlcpHj6zNys3N5fPPPycsLIyEhASysrK4fPkye= r2e/Px8rFYrmZmZuLm50d7ezq233kpGRgZHjx5lpdMzdwAAIABJREFUyJAhTJkyhfnz53PixAkS= ExPp0qULvXr1wsPDQ/Elk7OU19TUkJycjLu7O42NjfTo0QNvb2/S09PJy8ujvb2d8+fP061bN86= dO0dNTU0HjcmWLVs4dOgQM2bMICEhgfz8fHbt2sWIESMYN24cDQ0NNDY2UllZSXx8PCkpKdTW1q= LX6ykoKFD2Zvmd5eXlpZjB5LQh27dvJzMzk7Fjx+Lr66v4pcnzeebMmfTq1Qubzcbu3bvx9fVly= JAh3HPPPT84SvAHhoJ/d5KQQJIcmDiCAEi0tIuUNJg5f6WBC5fKMLda8XR1oWdEF6JDPAjxccVF= p7mOagNa4brTsAKO88tBIf4xJDtvLV++HJPJxG9/+9tOQZT+E0kUHXlKpk2bxtKlSxVfnF8C7zf= JQa2trfz6179WnIyvXLlCXl4eU6ZM+U4h4j+WZIfiL7/8kpEjR9K1a9efvc2b9Mski8XCsmXLsF= gsPPXUUwo44k9Jdrsds9nMSy+9pJhzf2hSx5v089NPFy11AxJkbBqtBq3kSJ7gYRToFehBr0B3G= BDaQfsin7Q0Ag6UQADheqpMQQ4/+2VFRf1QEgSBmpoawsLCsFqt1NbWKplxfwl06dIl7r//fk6e= PElsbOzNg80vjAwGA2+99Rb79+8HwMPDg6lTp/5bDjbgMDcmJibSv39/AgIC/i1t3qRfJtXW1tK= 9e3caGxupra1VYBh+SpKj6wYOHEhra+vXwqFv0n8W/Rs0N3JDjn8k2fVX1sLcyJ6kXL4OhSwISG= iu55b67yDZZqn2ZXG+r7al/zs1H+qQa+cw0e8CHOf8TGf9+yaSNw5njAm1j8zPLQtnu7VzHqjvK= oufg6+fq33ncZOvAR3GUV3um+blN/EqSVxPt/KVCVtNztgY33e8JeWfr/6WAzsF1TVRvB4mK/xw= rCxRkhCl61rmb6jDLjpw1jWCOl/R12M9JclR543uq8vZJQcgqvAN5f7b6YfsUT+E1DgsNzXR/9n= 0s+/M111qlN1EQKMcUiQERxJOQerw43jgK/8aBEcYOcqT/z107tw5Pv74407vyY5zMubEv2shSZ= LE5cuXWblyJW1tbYiiSFFREa+99hoVFRXfqQ55g1Fj23zXtu12O/n5+Xz88cfU19d32LhWrVpFR= kbGj+ne9yJJkhS7uoynIUkS+/btY//+/T/Y2e2HkuzkuXTpUsrLy3+WNs6cOaNkZVYnyFRjgNhs= NrZu3cqHH354wy9Yu91OWVkZy5Yto7i4+Gv3rXaRI4WNrD5UQYtFBipzHADabRJ2SUASNAoa+vc= lUZQ4W95CUVUrNlEi63ITOaXNHQ48SHCsqInXd1xGTvDyfUkCzpW38uau0hs+L0lgEyVWpV5l07= FrtLbbef/gVbJLnPi5Xp/5+v1TV1qw2yVsooQoduRPksBql3jmkyKOXGh0rJEfwP9/AznvNz8Xy= aH5N9Hb//PpZzdLddyTFLfj62kUOi10w3r+275LRFEkOjqamJgYBcRJDbZks9mUSI9hw4Ypz8lf= DXId8BVonfoFpC4vl3F+Ro04qX6+a9euzJs3D71er0SG/P73v8fDw+NrgFTOLz75gCKTul31l78= zf3LZ9vZ2du3aRVFREWPHjsXV1VXp78MPP9yhfmfNl9y+vPnIkUtqftVfdmrtgDoSRM3j888/j8= 1mY/369URFRZGQkMBtt92mOMWpx0zdHzUvncldHTWglr+6rFyvGsTw+PHj7Ny5k0mTJn3tWXVKB= nUeIzWInFqTIstHLZu4uDh69uyp1KEGOJSvlZSUsGrVKgYOHNgh67m6XxaLhaNHj5KUlMTtt9+O= M5nbRT44eJUQXyOt7XaMOgFJgoziJnbn1vLchDBSztWh0wqM6+2LTnlnObQjjqAFsF+PlNQIX2l= nNIJAq1WkvK6d7v4m7KLEofwGnhjbFZvYUTM1qLs7gyPcESWQxK/GTri+R4kqFZD2unpJdLgSOm= QrQHSQiafvDEUUJUThujZIDnq4zuOFSjPbs6q5NdoLjUZg7q3BCDg0L5L4laZGAAw6DXNvDcYuS= mRdbubTk1W8fnd3NBpJhi1FEASSztayP6+O23p6OzRH1zmVNUkOrdhXMpf/FlTlkBzaIY3wzVqi= m3STfkn08x9ubkD/vy8g+QWdmJjIhQsXeOSRR1ixYgUWi4Vdu3bRv39/Jk2axIIFC3Bzc+Pll18= mLCyM559/nqamJk6dOsXhw4fZuHEjp0+fZsiQIezfv5958+YxY8YMpk+fzqOPPqqEALu6uirh32= lpaRgMBpKTk3n77beJj4/n73//O2vWrGHKlCm8/vrrHDlyhOPHj/OnP/2JzMxMZs6cCcDy5csZP= Xo0y5cvp6WlhZSUFCIjI1m1apUCrGW1Wlm6dCkrV65k9OjRvPPOO5w4cUIJJf34449xc3Nj165d= tLa2smnTJh599FGKioo4cOAAubm5jBw5ksbGRubNm0dRURGLFy/m3nvv5amnnuKxxx4jMjKS115= 7jS+++ILg4GAlnHnu3Lnce++9Co6EVqulpaWFVatWUVFRwa5du/D29ubTTz/FZrPxq1/9irq6Oq= ZMmcJrr73GuXPnWLRoEXfffTd33nkn0dHR3HfffYwdO5YlS5ag0Wh44YUXsFgsdOnShcbGRv7+9= 79z//33M23aNB566CEWLVqEh4cHb775Jk1NTSxZsoTx48ezaNEiioqKWLhwIYMGDaJr165KNNyr= r77K7t27mTt3Lo8//jivvvoq48ePZ+HChYwZM4a3334bPz8/dDodgwYNonfv3kiSRGVlJbNnz6a= goID58+fz/PPPYzQalWipQYMGceedd3L33XczdOhQ3nrrLT766CNiY2NZt24dbm5uLFu2jJUrVx= ISEsKePXtITU3lypUrPPjgg+Tl5XHfffcRFBTE/v37sdlsvPPOO6xevZq7774bcKQ8WLhwIadOn= VLgASorK5XICBkXyJlcDVqmDw3gi+xqJv7zNC0WkYdHBrMts4qLVW18dNiB2aHVCDw4PIjKxnZs= dsfLPj7MjZW/iWHPqVqWp5QzNMKD6UMCSM2v52pDO3+ZGkFjq42GVhvh/kaSztQRHeSC1S7x2uf= FbD1ZRXd/E8tmRXO4oIHMy00sfaAHn2VV87ddJTS22tjyeG9K69o4eK6eerOdU1eaefnX4dzV15= ffb7jAwXP1DIn04C/TIjhW1Ej6hUb+PiOS13Zc5tOMa3T1NvLKlHBGxnjx1IYLnCptvm5Gggazj= T9/cZl7BvszNMKTAa9m0m4VkYBhUZ7884Eo3thZgkmvYUdWNW1WkbZ2OyE+RlYfqkCrEXjt7nAm= x/vRxcvQwaRnlyQKK1uZufIcDa02Hr41mLkjg1mRUk5OaTMXKlr5w6/CSTpTy+GCBuwSRAWaWPp= AD+LD3BCc7YM36Sb9AuknCQW/ST+MGhoalBd8UFAQn376KRERETz99NP84x//YPHixVgsFh577D= HGjBnDE088QXx8PB4eHmzdulXRTKxatYp77rmHiIgIunXrxuDBg+nTpw/BwcG899579OvXD71eT= 3p6Om1tbeTm5jJv3jzc3Nxobm7mxIkT+Pj4sGzZMoxGI926dVPMDd27d+f999/nyy+/5L777uOD= Dz7A3d2dXbt20aVLFxYuXMg//vEPHnzwQVxdXbHZbGzfvp329nbef/99TCaTcggYPHgwbW1tlJa= WAnD48GFmzJjBuHHj2LBhA6+//jqNjY1YrVYFT2Tx4sXMnj2brVu3YrVaSUlJYcSIEWRlZdGrVy= +WLVtG7969WbNmDWazGQ8PD2JiYujWrZuC8lpTU8O6desIDQ3l3XffRa/Xs2vXLrKzs1m2bBlPP= vkkV69epbS0lKNHjxITE0OPHj3o3r07qampZGZm8uKLL1JdXc1LL73EqFGjFMC82bNnExUVRVhY= GCNHjqRnz57ExsaSn5/Pm2++ycKFC9mwYYOCa3PHHXeg1+vp1asXBoMBq9XKe++9R1ZWFqNGjWL= 37t3odDoOHz6Mt7c3y5YtU8K35bxGLS0tpKWlMWzYMOx2O126dKFr167s2bOH2bNnK7DzycnJWC= wW+vfvT0hICMnJyQQHB7N8+XLCwsJ444038PHxoaqqitWrVxMcHIxGo+Hw4cNYrVZCQ0OZNWsWt= 912G5IkkZaWpmBzfPjhhyQnJ2M0GomLi2PkyJGIokhVVRW+vr787//+L5s3b+aOO+4gPT2dESNG= KPzLZBeh6ForJ4ubeGdmNIWVrUQEmBga6Ym/h56Nv43DpNfwq/7+DI30YHtmNcMiPXljegR7z9R= xpdbC5RoLQZ56ooJcSIjyZHxvX+7q64tOK5B0to5QXyPBXga2ZFTxmxHBbD5ehbtJy/tzYujub6= LVKnKooIGGVhs9Al3465clxHVxxaDXkJJXh0GnIaekhSfGdMXdqKO5zU5aQT2+bnpWzI4mxNuAq= 0HL9sxqLFY7Q6M80QgwoocX+RWt+Lnr2Xz8GtHBLvzt3kjyys34uOkQJThU2ED/bu58erKKcD8T= r03tTlmdhT/+KpzzV80cvdDAfcMC8XXT0SPIhcWTw2m3SQyL8uRyTRt6rcAt0V5sPn6NoZGexAS= 7ohEErHaJx9cVsnZeT357exfWHankcrWFnJIWxvX2YfmsaAx6DbmlLSybFU1OSTPTBwdwV19ftJ= pfZo6+m3STnOm/xTf3F0lubm7ExMQoB4o+ffoQGxur5PyQgdXAoekJDg7mueeeY926dSxdupT+/= fsTFBSE0WhEr9cTERFBZWUlhw4dUpCE+/bty4svvsgHH3zA3//+d+Lj44mJiSEyMhK73U5zczN1= dXU0NzdjMBi45ZZbABg1ahSiKFJbW0ttbS0tLS14eXnh5eVFcHAw/fr1IyYmBldXV+x2O01NTQq= vTU1NCujcbbfdhiiKJCYmkpeXx4gRIxBFkZiYGHr16kVkZKQCbhcaGorJZFJMdCEhIXh7e2M0Gg= kICKBfv34EBARgtVqpqamhurqa9vZ2wsLCcHFxYejQoSxcuJCUlBQFN0cQBDw8PBgwYABdu3ZV0= JTNZrOCDyOni5AkiZkzZzJ9+nQ++eQTcnNzmTBhQofcOZIk4eXlRWxsrGK66NGjB2VlZezdu5fb= brsNm81GeXm54q8UGRmJl5cXzzzzDD4+PmzcuJGSkhLFFGQymZgxYwYvv/wyycnJTJo0SQFJlDU= wFotFaV8NznbhwgW2bNlCfHw8rq6uHfyT+vfvz4IFCzh16hT79u3jypUrXLt2DZvNRrdu3bBarb= S0tChpFCZMmEBAQACxsbHo9Xra2toIDAzk5ZdfZv369fzxj3+kpqZGmZ+BgYHU1dWRkZHB4sWL+= cMf/kBwcDB1dXWKCUv216muru7gsyT3xS5KRPibcDFosIkSbVYRUZKuOxt/ZW7tE+pGqI/joOLn= rsfHTYdWI/DIqC4M6u7BuiOVHCpowCY66my22LnW2M7AcHfSCxsYFuGJTiNgEyWqm61Y7RJDIz3= oGexKdKALADa7RJivkafGhbDpsThWzI4hrosrEQEmeoW4OviziTS3iTS12THpNQwI9yDU18iQ7h= 7YRKhusvKv1KuU1FoY1N0DUZKoarLiqtei0wq4GDRUNVkZ0M0dbxcddlHiwYQgTpU289zmiyREe= dLF28DAcHe8XHWKs7NdgoZWG58cv8ap0mbG9PRBlBw820UJu4jim2MXJSob2rnW1I6rUUuorxGT= XkNsFxe6+ZrQagQCPfSY9Bp+u7aAYC8DD90S9DWH7pt0k37JdFNz839IVVVVrF27ltTUVARBYOv= WrdhsNvbu3cvly5eVF+m2bdsUcLalS5eSmJiIXq9n3759HDlyhISEBLp27Yq3t7cCrjZmzBj8/P= woLCxk9erVJCUlYTabSU9P5+jRo7i5ubF582bOnTvHs88+y+eff86WLVs4evQoI0aM4Pnnn6e0t= JTx48fj7+/Pn//8Zw4cOKCgYL733nu0tbVx6NAhLl68iNlsVhImRkRE8OWXX7J27VpSUlIYN24c= mZmZnDhxgkuXLnHq1ClOnDjBmTNncHV15aOPPqK8vJwrV65w7Ngxzp49y8SJExW/jqSkJGbNmsW= VK1fYsWMHBQUFzJw5k8TERNauXcuxY8d46qmnyMnJYfXq1dTU1DBgwAAGDhyo+AxlZWWxb98+du= 7cSVlZGX/605/o3r07L730Ert378ZgMHDvvfeyatUqEhMTkSSJkSNH8q9//Yvc3Fz8/f0B2LJli= 2Lay87O5qGHHsLLy0tB3R02bBg+Pj6UlJSwcuVKvvjiC2677TaCgoL4+OOPSUlJwd/fnzvvvFOB= gvf29ubzzz9nw4YN7Nu3j6CgIDZs2MClS5eora1l9+7duLm5MWjQIDQaDcnJyaxfv566ujoiIyP= Zu3cvxcXFXLx4EZ1Ox9ChQwH4/PPP2bZtGwUFBYwaNYpp06aRmJjImjVrKC4u5rnnniMmJoaDBw= +yatUqdu7cSWRkJF988QUHDhxgzJgx9OjRgz/96U/s37+frl270qdPH7Zt28amTZuUVCFBQUEUF= xcrsvXy8iIwMJClS5dy9OhRzGYzQ4cOJSUlhezsbAYOHIggCDRZ7PxpezG5pc20WERSztVdPzRo= SS9sIPNSE/3C3Fh9qILaFhvl9RZyS5r5MqcGH1c9D94SxDv7y8i41ERjq515o4LZe6aOlHP15Fx= uZlCEB129jSSfq+eO3j4YdQJBXga2Z1bzybFrJJ+to6HNTsq5evLKW4gKdMHLVceawxXsOlVLcX= Ubp640c+JiEyDwWVY1pTVtPJAQyLbMavacruXA+Xq8XHS8m1xGeX07Hi46Ll5r5Wp9OwUVZkpqL= TxyWxfe2FnCsaJGzpa1EOxlpLSmjcTTddgkOH2lhUtVbXi56rhcY6HNKnHiUhN7T9chSuDhoiPx= VC2XayzUtdgoq2vnQmUrl2vaOH/VTFZJM5UN7UgSbDtZxYBu7nT3N/G3XaXszKkhJtiVW2O9WJF= czoXKVibE+1LZaOXj9ErcjVpa20XOlZu5vaePw+fm5iHnJv0X0M8WCi7KYXkyarHw7Y5qzrDR0n= VHvs5CQX8uT3Xn8OWfi+QvcFlL0RnJ7TuH5DqH6cpZetXyUzsKqx1OncOb1f1UO5rKTqTqTOLqc= XCG2lZneJajadRhmc5Oxurn1I628v/qZ9RZZNXOu/J958ziapkIgkBjYyP/+te/CA4O5u6771Yy= 08p8yvWpsz535vjcWQi0us9qh2y1o686q7VcjzqqQw3Drn5ePf/kttSam87GQp1VW+1QrIaGl9M= 0yD/yNfV8UJeRZSS3L8tdHQWnDvlWy06d5Ve+Lj/XbLHzZXaNw6FWkmXM9focjrqCIGAXJax2iT= WHK+gT4sbQSA8MOs1XTrGihCA4nH3F6xofDV89L0qO+5rrv4uiI3JJcayVnWwFh0eyhMMZV83LV= 3OgYxi57IwrXXfglbUfotwfOt5Xh6I7eId9Z2u5vae33AIHz9cxro+v4jCttCep2nUiuX9ftenQ= 6kjX+QNV+0C92calqjZiu7giCHC1rp2ZwwOJCDAp9dykm/RLph/tUCxd3ywQRDSCHQeKsI7qllY= y8gsICQnH38cdP4MGvWTHLujQCgI6FdjEV7lQJJqbW8jPz6eyotJRLyIarYaAAH8GDhyAzebY1I= 1GIzqdDCamijX/OoeAyFcWOLns1zFlRNGOzWan3WJFq9ViMBqvf8n89F8z8gvupwREcz6M/Ri8B= /mFDHxvHgVB6BS584dkd1U/0xkf31anJEmUlZXx7rvvEhAQwNixYzsAfDnXqT6w/BjqrI4byVE+= RKj7cqN+yWP6XXjsrExn9X6bDH+I3L8LGXUa7urr6/gQ+oZyoiixLLmcvHKHmXbG0AD6hLj9V0Q= liKLEpepW/rDtEja7RKivkVUPxxIRYPrZ2pQkyL9q5h97r1BvtiEI8Ld7I+nmZ/qvi0i9Sf//0o= /W3IiSiIiEIDkwa+ySA6avpLqePy7bSGWzK95ePsR28+HWvoGM6heFm9aATqX+lDUYWVm5fLJxE= 9euXcNuF3GEfEpotBr69u3NrFmzeOedd3Bzc+Pxxx9zQuv9NrRI+UAjY+h0BBGUJBG7aOf8uXxW= r/4ISRL5059extvb8UXV8eBwcwP4JZGzxucmPsV/Bkl01IrcuNRXodeKNkNWgfzSSZIQuQ5oKH3= VN83P2j+HRkcdKq4RfhyI4U26Sf9p9KM+Ue2iRHldM0cvlBEV5Euglxs+rgZ0ej02QJRcMLcbaa= wVKamr4tylIvpGhODha+iwbkVRpLq6hjVr1lJf14CPrzeDBw0kJCTEoerXCvj4+GIymbj11lsxG= g2YTCbsdpH29nba2tqw2ayA4yvTaDTR3m7pYPIRBA0uLiZMJuN1s4sNS1s7bZY2RSWv02nx9PTg= 1pG3otVp0Wi0NDY20d5uRd5kNRoNJpMJk8n0o7QuoijS3NzM5cuXEQQBT09PQkNDfxYAKtmMUFd= Xh4uLy9egydUmlZ+b5INsVVUVrq6uuLi4UF5eTnh4eKfmR2dqb2+npqYGvV6vJGD7Nvq+/ZLlVV= 9fj91ux9/fv9OxFkWRlpYWiouLO5hpDAYDISEhuLm5AdDW1kZ1dTU+Pj4YDAZqamrw9fVVtB/fx= QQqiiLFxcWEhIRgNBo78Gqz2aipqcFoNCp+POAwS1ksFsrLy2ltbcXV1VXxHZKTcAYHB/9gE6zN= ZqOsrIyQkJBOtUSyfEpKSrDZbIqpymg0EhISgouLw5G3uroaLy8v5e+ObTiSSfr4+HTot5pfWQa= VlZV4enri7u7eweRns9mUZJ5ms1l5XhAEfHx86Nq1q2LmrK+vx2w2ExgYSEtLCxaLpUPm7m+Tky= RJmM1m6urq6NKlS4d5I9+rqqoiJCREMU1qVPebmpqoqakhNDT0ZwSkc2jNNSpso5aWFhobG5Ukq= M7U3NxMc3MzAQEBP3n6DVEUqaurQ6/X4+Hh8bWx/b5uAvJ68/LywtXV9SfhVzaxXr16FTc3NyWR= Zmc8yWXlzOEajQY/Pz80Gg2+vr5IkkR1dTUA/v7+P4mmuDMezGYzly9fxmKxKNphnU5H165dFTn= /kHXvjJv2TeXkPfS77tU/Jf0oh2K7XaKwvIFX1mWQdPIyKZn5uOps9OrehWqzhX0Zl6i16LELGi= RBwMdkZ+LQOLxcTR1syVarjazMHA4fOoKrqwuTJk/g7rt/TUxsD6J6RBIVFUmXLl1obm7m8893U= FNTQ69evWhvt7Fly6ds3/YZKSkHSU09REbGSTw9Pdm1cw/bt3/GoUOHOHAglbTUw+TknsLPzw9f= Xz9yc0+xds06EhOTOHgwjdTUNAoKC/H29iU19RClpWUMHDCQxMQkNm78hIMH0zh4IJW0tEPk5OQ= QGhqKj4/PD9YCyBvZli1blAzSgYGBHfxfnH0m5OfUviVyWedU984/oihSU1ODTqfDZDJ1KG+xWN= i+fTs9e/b8Wt3OG41z5JD6d2c+1WXla1arldTUVJ5//nnCw8MJCwvj4sWLBAYGkp6ejsFgwM3Nr= UOf1GB3+fn5zJo1C0mSGDhwYAd+1YunMznJ19URO2pe5bYkSaKwsJDFixdTWVmpOOg6pwOQN5Av= vviCzZs3ExERQWtrKwUFBcjRbaIocuLECWbNmsWQIUMIDAzk2rVruLi4UF9fz4EDB+jRo4fSvxv= xJYoiFy9eVDZDuawkSeTk5LBw4UL8/PyIjo5W/IksFguLFi2irKwMHx8fioqKWLJkCcHBwfj7+1= NTU4Ofn18HWd1IJur+y9fkA5e/v//XfH/kZ5qbm9myZQv79+8nLCyMuro6Vq1axY4dO5g0aRKS5= MDqcXV1xWAwKOMu+yfJhxYXFxfMZjNHjx4lNDT0a/MvKSmJRYsWKSH8so9Wc3Mz//znP2ltbcVq= tfLRRx8hiiJGo5ErV65QVFREnz59AAc0w5IlS9ixYwd33nmn8kJ3d3dn3bp19O7du8NcVPvAqed= 6c3MzVVVVykFSLtvW1saKFSt48803efDBB7/md9XS0sKSJUt4++23mTVrVoex+KY9QD1nnPeFb7= p//vx5Kioq8PX1xWw2U1tbq+xp8t6j7lN9fT3e3t7K/W/bI+T7nc1rdf3y3iQIgnLAlZ+32Wxs2= rSJnj17fs3n7UZ7xP79+3n++efp1asXXbp0+dpcdpajzJ+z355z+SNHjjB37lxCQkKIiYm5Yb12= u53t27fz/vvvExERQW1tLR9//DHnz58nISGBqqoqMjMzMZlMiryd21XPLVke6r3WeW9TvytkMpv= N7Nu3j1WrVhEREYHVauX8+fMKzMON5pG6Xuexamxs5PTp05hMJgVPq7M9Vi5fV1eHxWLB09Oz03= XT2fPO4/pD37E/6sgoATZJQ6vogmSx0Gpto6S2kTZAlAQQJEQMiOjRYkVAQNSolTYO05MkiTQ3O= 0KJTSYXwkJDMRqN17+EHSXtdscXWF1dHdZ2K62tbez4fCcpKQfo3r07Q4f2x2DQYzAa8fX1o6Gh= kbraOvrF9yM0NISzZ/IoyM9n/74UJElg9YdrqW+oJ7pHD6Kje2Aw6PH28UIjCNTW1l3nTaJHdBQ= GoyMk0263U3ypmLNn81j94Tr+/JdXfrDwNRoNXl5eREdHK7gn6kXX2trKnj17kCSJQYMGERERob= xAmpqaOHjwID4+Pnh7e+Pv769EQPXr14/Tp0/T3t5O7969sVqtFBYWMnz4cJqbm/l/7L15fFTl2= f//PmeWTDLZF5KQhCQkZCEJ+y4EBBQLioC4gPjU6kPpD9dW61Ifv49LLVWoiri0BaxFq1YEZRVk= kX3JQiAkkJ2sZE9mJpksM3PO+f0xOYeg1mqhrfWZ9+sVaWfOnHPf99mu+7qv63P5+PjQ0dHBwYM= HiYyMJCQkhE8++YQtW7YQExPDgAE0RMpmAAAgAElEQVQDKCgoQBAE0tLSSExM1I7b3d1NdnY2zc= 3NJCYmMnToUE6fPo3FYiE1NZWQkBB8fHwAtzptYWEh5eXlREZGMn78eLq6ujhx4gQtLS2kpaVpM= +nOzk6Ki4t56aWXuPbaa7n11lvp6OigqKgIRVG4+eabkWWZ06dPU15ezrRp05AkCZvNxsmTJ+nu= 7iY6Oppx48ZpLzWbzUZZWRmyLFNbW0tCQgJDhw6lvr6e7Oxs9Ho9I0eOJCIigvz8fGw2GwDXXHM= NBoOBuLg4pk+fTnt7Oz09PZSWllJeXo5er2fu3LnaiykoKIi0tDSqq6uZNGkSsixjtVqJjo7WHr= QtLS2kpqZqL+2WlhYt40wVA4yOjiYvLw+Hw0FiYiJJSUmcPXsWl8uF1WolOTlZ81g1NTWRk5NDT= 08PGRkZpKSkaArW/R/Yf/7zn2lsbGT16tWa4TBy5EhaWlqw2+04HA7NuDhz5gx2u53MzEzNE9Tb= 20tDQ4MmOVBQUMCFCxeIiIhgxIgROBwObDYboihSUFBASUkJvr6+jBo1SjPUAwMDGTJkCIIgMG3= aNARBYPz48SxbtoxVq1bx4IMP0tXVhSy7vbBZWVk0NDQgyzJms5kpU6Zo3o4//elPVFZWEhAQQG= hoKLm5uYiiyKhRo8jMzGT//v2XPaQdDgefffYZgwcPZs6cOdr1N3z4cEaMGMGFCxc0yYSWlhYOH= TqEv78/nZ2dmhRDZ2cn27Zt49lnn2XAgAGMHz+eCxcuUFtbq0kMGAwGLQvOx8cHf39/XC4XTqeT= c+fOUVFRgcFg4Nprr2X27NmcPHnyKy+Trq4udu3aRUREBN7e3kiS22N15swZuru7ue666/D399f= uxdraWqqrq+np6cFqtTJnzhwaGhqoq6ujpaWFjIwMHA4HhYWFeHt7M336dOrr6ykpKSEhIQFRFH= n11VcxGo389Kc/xc/Pj56eHgBqamrIzs7WAsQnT55Md3e3JkdQXV1Nbm4uBoOBCRMmaMYtQGtrK= zk5OYiiSEREBAEBAWRlZeHv78/w4cMJDg7mxIkTNDY2oigKPj4+TJ8+nY6ODs2rmZWVRUxMDEaj= kU8+cU9Qo6Ki8PX11cYlOTmZ2tpa2traCA0NZeLEibhcLvbv309rayvJycnavXbs2DEAxowZQ0x= MjGb8S5LEF198QXt7O0lJSaSkpJCdnU1ISAjV1dWEhoZeVvl7/PjxmkSG3W4nKysLm81GaGio9t= wAKCsrY9u2bTz66KMkJyfj5eXFhAkTOHjwIE6nk4KCAlpbWwkKCsLhcFBeXu5+t/SVKElNTaWws= JDk5GTi4uK4ePEip06dQpZlMjMzkSRJyy4dOHAgPj4+FBUVAXDdddfh6+urZWEOGzaMrKwsJk6c= qMmFxMTEoCgK+/fvp6OjQ/OaV1dXM27cOKqqquju7mbKlClcuHCBs2fPAnD99dezadMmDh06xI0= 33sjs2bPJy8ujsbGRyMhIRo4cSVtbGxUVFbS3tzNkyBAATTri5MmTNDQ0EBkZybBhw2hsbMRms9= HR0YHdbmf69OlYrVZOnTpFV1cXw4YNIz4+/h+O77tiP5GCiFPU49KLIILQ52bVKaBD7nN9KgiKh= I5L8uLCl4KABaFPuh4FRek/g1StV/XP/bPOzi7Ony/CYDDiZTLR1t5OY1MTVosVo8GIqBPR6w2M= HjWKW26Zz8yZ0wGwd9kpKSlxu57Dwli+fBmL77yDW29bwPTp0/D28UbBrRSq0+sIDQ2lu7ubxob= GPq0OF6Kop7W19TJr82qh3nTqg1ydbarZR729vSxcuJBf/OIX2O12TCYTt99+OxkZGdTX1/P666= 8zePBg1q5dq7nyIyIi2LhxI/fddx/nz5/nzTffxM/Pjw0bNpCdnU1ycjL+/v4MGTKEVatWaVb5a= 6+9Rnd3tzaDWrduHadPn2bYsGGsXr2aDRs2cO7cOXx9fVm2bBmtra2A+2F99OhRNmzYQGpqKq++= +ioffvghK1asQJIkJk6cyJEjR2hubmbRokW88MILBAYGEhYWRkZGBiaTifXr1xMSEsKuXbvYvn0= 7u3fvZu/evYwZM4b9+/cjSRKbNm2ivLyc2NhYPvjgA6qrqzUj7LXXXuPmm2/m+PHjREREsGLFCo= 4cOcJvf/tbzRD43//9X1avXs2CBQs4ePAgw4cP18oH9J9VV1VVsWnTJmJiYvjwww81Mbv+5+u99= 95j5MiRjBs3jhMnTuB0Ovnd735HY2Mj0dHRNDQ0IEkSP/3pT3nmmWdQFIXIyEji4uIIDAxk27Zt= REdHk5qaysqVK3n66ae56667eOONN0hPT+eNN95gyZIlWCwWNm/erHl/Hn30US2zqb9x7HK52LV= rl5Y+rrqkExMTCQsLY/ny5axbt476+nrWrl2rXX+zZ8/mkUce4frrryc7O5uamho2b97M9u3bee= +99xgyZAgff/wxp0+fZty4caxYsYLKykpefvllRo0aRVFREZ9++ulXZpEqoiji7++vpYavX7+eB= x54gOrqag4dOsSWLVsYM2YML774IgEBAaxdu5aHH34Yu91OSkoKAwcOJCYmhscffxyTyURrayub= N2+mu7v7K/FUFouFsrIyTUsK3LXcFi5cSEpKCo888ghOp5OLFy/yox/9iAkTJmjLeFVVVcyZM4d= du3aRkJCAoiiMHDmSkydPcuHCBSZOnEhNTQ3PP/88t9xyC8uXL6e9vZ3u7m6WLl3Ke++9x/nz59= mxYwexsbHs3buXffv2aWOgIstuRe+77rqL8PBw7UFvsVj4/e9/jyiKWK1Wli5dqpW5qK6uZvLky= Tz77LMYDAY+/fRTnnzySX784x+zcuVKhgwZQmdnJ2+99RYxMTHs2rWLFStWcPz4cQDmzZtHc3Mz= 0dHRDB48mIiICKZPn84HH3xAd3c3N954I7GxsbS0tFBSUoKXlxfTp0/no48+oqamhueee44JEyb= Q0dHBr371KxwOB5Ik0dbWxpIlS1i2bBleXl64XC5++ctfMmLECGpra1m1ahXbtm3jnXfeISMjgy= 1btmAymfjrX//K8uXLOXv2LCtWrCAhIYF169aRn59PfHw8oaGhNDU1sXTpUtauXcvw4cM5c+YMu= bm5pKen88ILL1BcXMyTTz6Jt7c38fHxnDt3DkmSeO6557Ql+Y0bN9Lb26t5BV555RXKy8uJiopi= 3bp1PPLIIyxYsIDly5djsVhYt24dPT09mgehf2kTVbcrPT2dDRs2UFxcrF3zdXV19PT04Ofnp2V= yBgUFMXfuXEpKSti4cSMZGRk88MADHD16lJkzZ7J8+XLCwsJ47LHHePbZZ2lubuaFF16gqamJjR= s34uPjw4ULF3j55Zd5/PHHNfFQX19fNm3aRFhYGEeOHGHLli04nc7Lrq/NmzczduxYRo8ezZEjR= 3A4HLz++utcvHiRyMhI3n//fVwuFy+++CK1tbVYLBY2bNiA3W7nrbfeIiQkhAMHDrBt2zbi4uIY= OHAgKSkp7Nixg7q6OiZOnMgbb7zB66+/zt13380LL7xAREQELS0t3HLLLXzxxRecPn2aVatWkZC= QwIYNG9i2bRvTpk3j/vvvx26389RTT3H+/Hk2btxIe3s7JpOJxx9/XDO4/xGu0iKYu2K3Trm0O0= FQQJHdhTBRQJDdn/UVp1O0AF/3RRMaFoIoCtg77eSdzsdqseFyufpSZGVkuU/YS3EfD+WSy87pc= ODodf85nU7kPuNI0UrhCSCIWibAJdefGtTozvhSFHVd3X1RtLa08ed3NrB/3wEsFiu9PU6cTtc/= zahRXXSSJDFq1ChsNhtHjhyhs7NT206n0/HGG2/g7+/P5MmTtbXlrVu3YrVamThxIuHh4cyfP5+= cnBzNy7JgwQKuu+469Ho98+bN49SpU0RERBAREYHZbMZkMmE2m5k9eza5ubns2bPnMnel3W6nrq= 6O8vJyPvvsMyZNmsTo0aPx9vbm5MmTzJo1C71er7kUS0pKaGhoYO/evUyZMkVbdoiNjSUsLIzJk= ycTGBjI888/ry2VeXt74+/vj9lsJiMjg8OHD1NZWYndbqesrIwRI0YwYMAAbrrpJhTFLVDY3t7O= 9u3bsVqt2sPFZDKxcOFC7rzzThYsWEBcXBwZGRl89tlnREZGEhwczPTp09Hr9SxYsIA77riDa66= 5hsDAwK9dn1fjofbv3099ff2XYrnchtCSJUvIy8vj+PHjDBs2jLa2Ng4fPsyCBQtISEggOTkZQF= sWMplM+Pj4YDabaW9v1+IdBg4cyPXXX09aWho33HAD8+bNIyQkhIcffpjY2Fj0ej1paWk0NDSwb= 9++r5USUNs0evRoCgsLv+L+b2xs5J577tG8eMXFxRw/fpza2loeeOABFi1axP33388tt9yCXu82= 5M+ePcvkyZNJTEzkpZdeYty4cXz66afo9XoCAgKYOHEimzZtIi8v728aNnAp1uzs2bNMmjSJefP= mMXnyZHQ6HYmJiVgsFv74xz+SlpZGdHQ0CxYsYMKECRiNRvz8/LQ4rXnz5pGVlcXJkyc1D9SXcT= qdOBwOzZsI7lnxxx9/TFFREc899xyiKJKdnc11111HcHCwJvYYHR3NE088ocWBGAwGAgICyM/P1= 0QlMzMziY2N5emnn9a8I2PGjGH58uXodDqCg4OJiIhg7969WlzW1933+fn5OJ1ORowYwYQJEzTv= UW5uLsePH8dqtTJ79uzL6r698sorZGZmMmrUKJYtW0ZNTQ0//elPufbaawkPD6e+vp7S0lIOHDh= AfHw8EydOJDo6mnPnzrFw4ULMZjM+Pj74+fnh7+/PqlWrtOzNxYsXs3btWs6cOcPgwYMxm82sWL= ECnU7H8ePHSUhIICgoiJtvvpnW1lbtfKv385AhQxg9ejQtLS0IgsCnn36KxWJh2rRpmkdp3bp1+= Pn5ERoayrx585g9e7Z2H+3atYuQkBCio6Px8fHBx8dHKyFy0003ad5SgE8++YSuri5N4yktLY1B= gwZpS9Y33HADhYWFnDhxQjNUVHJycqioqODkyZMMHTqUhx56iGnTpvHEE0+QmppKc3Pz115XiqK= QmppKd3c3mzZtwmq1XracFBoaiiiKdHZ2aven0+lkx44dREVFMWjQILZs2YLNZiMtLY1HHnmEBx= 54gJSUFAYMGMC9997L0KFDEUURo9FIYmIip0+f5syZM/j6+rJkyRIWLVrEwIEDGTBgAPHx8Rw5c= oSysjJtEqwiiiILFiwgOzubrKwsRo8ejSAIZGdnk5mZyfDhw3nxxRfJyMjAaDRqx1Rj0IYPH87h= w4cpKyvTPG1msxlfX18+/fRTBg0apD2fzp8/z8MPP8zkyZOJjY1l1KhR3H///eh0OqKiohg9erS= mhTV06FCeffZZ7rjjDqZOnYpOp8NisZCWlkZNTQ379+//RpmUb8NVj2T66rWg9PvvJfov5Oh0Ot= LTh5KYmEh5WTkHDxyivOwCERHhKIp7VhoTE8OoUSPdBooi4OvnQ3R0DE1NzQQEBDD12kxMRiMGg= wEfH28UWeIyb0/fQXWijsjISEwmL9ra2tn08SeMGOmesfv6mt3GiyyCotDd3UNTUzMmkzfTpl1L= YGAAFRWV1NfXf00/vxuqh6GpqYnGxkaKi4sRBIHz589rKraZmZnEx8dz6tQprFarFoymqsxaLBb= NxWw2mxkzZgy1tbUoisKMGTP4zW9+w09+8hOMRiPt7e1YLBasViv79+9n5MiRdHV1UV5eTlxcHN= 3d3RQWFrJ161Z+/OMf09jYyM6dO+nq6tKCkJOSksjKyiIzM1OLf3A6nVx77bUcPHiQ0tJSTcI/I= yODAwcOkJGRQUREBHv27KG5uZnDhw8zYcIETeL/mmuuobe3F6vVik6no76+ntDQUHbs2MFDDz1E= ZWUlVqsVgC+++ILQ0FBOnjypxbLMnj2b2NhY/vrXv2Kz2TRXuiiKVFRUUFJSoqntzp49m2eeeYb= JkydjMpkYMWIEiqLQ2dmJzWbTgoLVZUGLxUJbWxulpaXk5+fz4x//mLy8PFpbW7XZUVdXFw0NDV= itVioqKjAajVRXV1NfX09QUBCrVq1iypQp1NbW8oc//IHHHnuMrq4uTdG5ra0NRVEoLy/n1KlTx= MTE4HK5SEhI4NixY7S2tuJwOLBYLDidTiorKzl27BixsbEMGTKEvLw86uvrsVqtNDQ04HQ6MRgM= 6HQ6Hn30Ue644w6ef/557rzzTgRB4I033uDxxx+nuLiYjo4OBMGt4Dxo0CDGjx/P0aNHtaU1q9V= Ka2srHR0dTJgwgVdffZXk5GQqKytJSUnRVJhzc3MpLS1l8eLFuFwubDYbvb29eHl50dXVRVNTE0= 1NTRQXF9Pb28s777xDW1sbb731FlVVVdhsNtra2rQlueuuu047DzabDZvNhsViQa/Xa96YV199l= bfeeotjx47R0NBAS0sLVqvVvWztdPYlFnjh7e2tLTPV19fT1tZGXV0dfn5+iKLIn//8Z3x9fdm9= e7f2ItyzZw+TJk2itbWVzs5Ozcivqalh8ODB7Nu3j6SkJGprawkNDdUmJa2trQQGBmKxWLDZbOT= n53PhwgVuvPFGqquraWtro6mpCbvdrnn0RFEkMjKS9vZ2duzYQWtrK9XV1WzcuJG4uDjCw8PJzM= xk9+7dlwXcy7JMaWkp58+fZ+fOncyfP5+Ojg7a29txuVwkJycTHBxMQkICSUlJ7Nixg7CwMNLS0= qioqODEiRPaeDY2NtLY2Kgpi585c4ZHHnlEkydQEwA6OjoYMmQIL7/8MlOmTAHQJglqm9TlTIvF= wuDBg+np6SE6OprY2Fiam5upq6sjJSWFG264AZ1Oh5+fn3b+rVYrW7duZf78+VRXV1NUVERISIg= WtK+OX09PD4cOHcLHx4fx48ezZ88ebWnxs88+Izo6mqysLERR5PPPP2fVqlVueZHGRrq6urSQB3= Upc/HixRQXF9Pc3ExPT4+2/Gu322lqasLX19ety9TZqV1jW7duJTQ0lJEjR1JcXIzN5p6MG41Gh= g4dqtWFW716NXq9nu3bt3PNNddw+PBhent7ue6669i0aRPV1dW0trbi6+tLQ0MDDoeDlpYW9Hq9= lnBy4sQJZsyY0Zd400JDQ4OmKt/d3U1ubi633HILjY2NWCwW7d7r6enh4sWLdHR0cOHCBcxmMxc= vXuTo0aOMHj2aF198kfvvv5/a2lqSkpLw9fXl3Llzmur4xo0b2b59O7/85S+1eyc2Nha73U59fT= 1Tpkzhgw8+wN/fn/z8fG655Rbtfu3u7tbeOw6Hg3379mGxWJg7dy6lpaXU1dXR3NyM0+mkvr4ep= 9NJVVWV1pbBgwdTUFCAzWbDbDb/Q+EfV5QK7nDJZJe389M/5qBIPfgJndyWGc3P5mVS3WThqTe3= UNbuh0swohN6GBJoZ9WDC4gP8r8s5VAVMGtubuGTzVs4cyaf3t5eFEXRdGaGpg1l0R138PLLL7u= XQX72UxQFPnj/Q0pKyvpc8wK+vmbmzZvHkaNHqaioYNGi25kyZTInjp/knT+/S9rQFJYsWcz5om= K2fLoNm60DcB8nJmYQ06dfy6ZNnyBJTh5//DH2f3GAI0cOI7kkRFEVeXPhYzazZs0rl1VB/i7Is= ru0wenTp7VMEgAvLy+GDRuG1WqlpKREWx5JSEjQJPOzs7Pp7u7WAtva2trIy8tDEARSUlKIioqi= p6eHyspKQkJCCAoKoq6ujtLSUkJDQ/Hy8tIeZEOHDsVgMJCTk6MFt6nLS15eXgwdOpSwsDDthV9= YWEh7ezsBAQHEx8fT0NBAU1OTFn+grk/39vZSXl5ObW0tBoOBMWPGaHEwvb29hISEEBISorlwo6= OjcTqdNDQ0EBsbqxkW6v6GDBlCTU0NHR0dBAYGaplHZWVlSJKE0WgkOjpaCyYtLi5m3bp1jBs3j= rCwMJKSkoiIiKCpqUmLQ0hKSqKrq4uysjKCg4MZOnQoJpNbX6S9vZ2ioiI6OjpITEykqakJm82G= yWTCYDAwYsQIvLy8sFgs5ObmXpYt5eXlRXJyMnq9ntzcXPR6PXq9npSUFCorK7FYLMTFxWE0Gik= pKWHAgAFERERoru3Bgwej0+koLy9HlmVGjRqlLZWo6r/l5eVabarAwEAtJmLSpElaNpwaN5Kfn0= 9XVxeCIDBhwgQURaGwsBC73U5SUhIGg4HS0lJ6enoYOHCg9oCPiYmhpqYGg8GgGTPt7e34+vqSm= ppKTk4OkiRp58tqtWIwGLTx8fHxwWKxcObMGa0UBkBISAgpKSkYDAbq6uooKysjKCgIvV7PoUOH= GDx4MIIgcO7cOebOnUtVVRUDBgwgKiqK/Px8wsLCcLlctLS0aJ620NBQGhsbCQ0NJTk5GV9fXy3= mxm63M2fOHIqLi2lvb78sUDEiIoLExEQqKyupqanBy8uLgIAAYmNjycnJwWg0kpaWRn5+vnYOGx= oaaGhoICAggNTUVIqKirDZbISHhxMdHU1RURGdnZ3auFgsFk04Un1phYWFkZ6erglH1tbWUlRUh= Le3N6IoMmbMGNrb2ykpKaG3t5fk5GRiYmIQBAGn08nWrVvZv38/N910E8HBwSQlJXH+/Hnsdjsj= RowgJCSEqqoqSktLEQSB9PR0Ojo6qKurQ5Ikxo8fT0tLCxUVFYSFhVFfX48oigwdOpQ333yT8eP= HIwgCjY2NjBkzhsbGRnQ6HcOHD6e7u5uioiJ8fHxIS0vTModUJXC73c6gQYOIi4ujvb2dM2fOoN= PpGDx4sBYvNmjQIERRpKSkhLlz51JeXk5QUBDe3t60tbUhyzIpKSno9Xot3gTcnohx48bhcDg4f= /689hINDg4mODhYC+b38/MjLi6O1tZWamtrtXszIyND86y4XC5ycnK0uBkfHx+qq6s1r2pra6tm= wKhjcfbsWcxmM2FhYdTV1eFwONDr9dp1pD6vZFmmqKiIuro6FEXRYl1kWebEiROA25ujvn59fX3= x8vKitbVVe5l3dXUxcOBAAOrr67VJGqA960NDQyktLaW5uVk79rBhwwgMDNTiV9RsKTWTMykpib= CwMA4fPowkSYSEhJCUlERzczOlpaXapCA9PZ2ioiJaWlowGAxIkkRqairV1dU4HA7Gjh1LUVERr= a2tREVFERsbS0FBAR0dHaSmpuLj40NeXh56vZ7k5GQKCgq0sVG9mGazWXuO6vV6IiMjtXeG0+nU= EgT+Y42b/tHVsixjabdi6+hAlt0DIIoi3t7eBAUF0djYiCgKREZGotcb6O3tpb3dgr3TjqIo6PU= 6gkNC6OjowOFwEBoagq+vmY4OOy0tzXj7eBM+IKwv/bGHtrY2nA4HIOBl8sLPz6+vNo7AwIGRfb= ORNux298sBxS22YTDoiY2N/Zent3n4+zidTg4cOMDbb7/N0qVLyczM/KekW3q4ejidTn7729/i4= +NDfHw84PaK3XHHHf/wBEKNh/rDH/6Av78/ixcv/kHoHFmtVlauXElraytPPfWUlsp+pciyTHZ2= Nm+//TbXX389giBw8eJFli5depny9T+KJEm88MIL+Pr6ai+srq4ubr/99sviWTx4uBpcJeMmu8+= 46eC2zBh+Nm+q27h5YwtlFrdxoxd6SAi087sHFxDXZ9xckhXvi8VR/lbJgUvCe2pr1fS5/tv+Ld= zbqdu4s6Dcv1FF/eDyhTK+9Jl6fFHb35WkqHn456JmS/X09GAymfD39/c8OL/nqIG16qxd1QYxG= AxXdJ+pcRAdHR1XpO3xfULVelKXdUwm01Xrk5q+29PTgyAImM3mqzZuiqJoS6wulwtRFAkMDLyq= 7ffgQeXKp7NCv4IpSH1Bw2iCwGr9FZR+0S9fuY77Sh84ZYqLS2lqbrrsYhdFkeCgIOLi4/D1NQM= KNlsnvb0OzD5mfMzef/Plpd5QNlsHoijg42NGpxM191l8fDxRUVGI4pdLFchaQ1U32unTeXR395= CcnERISPBV8wZIkoTD4WD//v0kJSVpKXT9kWWZuro6tm/fTkNDAyEhIdx3332XaZpkZWURFRVFd= 3c3Fy5c0IL0/pWos+WNGzdSVlbG9OnTGTt2LN3d3ezcuZOKigoSExNZuHDh322b0+mkuLiYnJwc= lixZ8o0zeNX7l5ubS2FhIXfeeedl2grFxcXs2LGDrq4uRowYQXx8PImJibz55pvcfffdKIpCdnY= 206ZN+1oxuS8fq7a2ltLSUjIzMxEEgdraWnbs2MHSpUu/VUkINfV51apVxMXFcdNNN2mBpFu3bk= WWZe38vfHGG4SEhHDbbbchCAI5OTnMmDHje+eFUIC2TieHiq2Mifcj1NfA7oI2Ugf60GRz0mB1M= G9UKAbdV9usBjKGh4dfNnm40v6p+1Cvhe/TeP2jGAwGwsPDgW8nAPldUIXm1Ng19bOrgbosoi5z= X61z7MHD13F1p7NXeI26JBf79n3BH/+wnnVr/8T6dX9i/bp3WPvH9fz2t6t4/rnfUFxcgiTJbNz= 4MU899TT793/x9ZXk+tHc3MzKl1bxwgu/1TQFtm3bzttv/5n8/IK/m/3k1rhR2LplO39+511qa2= uvyg3Z/yW3c+dOVqxYQVVVlTaLVVM/1QdBeHg4I0eOpKqqiqVLl17WBlVzwuVy8cADD7B7924cD= nf2mCrC5HK5tAw0VYdDPcaX26V+31/Ayel0ar9XDT51n/2j9AVBYO7cuZhMJhYtWkRDQwNeXl5k= ZmYyaNAg5s6dq7VHTSP9sgiUGlPxyCOP8NFHH2lxWV8+Vv/f9Pb28tFHH7FmzRqKi4u1bVpaWti= 4cSPjxo3TVGeTkpJ47bXXePnll7HZbAQGBjJ9+nRtbVnta39ROYfDoR07IiKCKVOmaIGUTU1NzJ= o16zKdmS+PYf++HTlyhHnz5jF8+HAWLlyIyWSivr6eyZMnY7FYuPXWW/Hz82PlypU89NBD2O12d= uzYgV6vp6ysjHfffcxrmV4AACAASURBVFfTHVEUtOKSTknB1e9fV9/nDunS986+z9XtHK5Ln6nf= S7L7zyVfKmqpgLaNS1bcRSgVLv1GUth+uo1fb62iwepAEGBWRjAtnS6e+bSSnfltOFwyLsn9uy+= 3WVZAUgRkt6aEWmPBfQ8q/Y7dVxBSki/vq7o/h8v9J8n9a1YJSH1tVfvU//eXb/v9pn9a8j/DMO= gvhXC1PZ5q29X9ewwbD/8s/i2BCF8uc9k/AwDcdZ4SEhIZNiyjz2Nxkfz8szQ0NLDxo4+597/vY= WjqUPz8Ahg8eLC7vpXrq0qHguCedXh5eXHN5MkICAQEBLhf0C4ZWVKQpEsVll0ud4aV0uduUm9E= dxq6jKKotYmuzjjIslvOe/Xq1dTU1DB69GitnMTSpUvx8vJiyZIlZGZmamma6tr3l9VNOzs72b5= 9OyNHjuTBBx/kk08+YeXKldTX1/PUU08hSRJr1qxBEARmzpzJgAEDeOWVV1AUhf/5n/8hMTFRE8= CTJIkPP/yQvXv3MnHiRO666y63gbhyJXa7nf/6r/9i9OjRbNu2jYiICP7yl78QHR3NY489pmWhG= AwG0tLS+N3vfseNN97I6tWrtQBBURSpqanh7bffprq6mpkzZ7Jo0aLLql5nZ2ezevVq0tLSKCws= xOl0smfPHjZv3ozBYOA3v/kNQUFBl43BgQMHWLx4Mf7+/uzevZukpCT0ej2rV69m7969nDp1ime= eeYbc3FzOnz/P8uXLWb9+PZIkceHCBU6cOMHNN99McXExq1evRhAEnnnmGQYOHMjnn3/Oxx9/jE= 6n4/e//z1nz56lurqam266iZqaGt577z2am5u57bbbmDVrFp988gmRkZG8/fbbDB48mOXLlxMeH= o4sy1RVVbF582ZMJhMbN24kJCSEqKgoli1bxg033EBOTg5paWlMmjSJJ598kq6uLoYMGcKwYcO0= a2LNmjWcO3eOESNGgCCw7XQrW/NaGT7IF1lRyKvq5NaxYSgKbM5tRlHAz6RjwZgw3j3WwNCBZv4= 7M5JffFiOWlX7weuiWX+oHkGA/+/agWw93YokK/zqxkEoirvK9IZjjRwttRIf5s0js6JpsDr4/R= cXabQ5+a9J4UxM9ON4uR+yotDjlPnjgXpuyAhmzvAQTlbYeGrTBQRB4IGZUTR3ONlwtAEfo8jEh= AC8jSIfZTcBAk/PjWVQsBd6naAd+5XPaymqtxMd5MX9M6NwuBTe2FdHr0thSLg36VFm1h+u1yQj= 5o8OZd6oEBQEnJLMW/svklvZydjBfvxkcgQtnU5e21NHu93JkonhTE8NBMFTX8mDhx8CV27cfIf= pztcnhau417GEvmCcpOQhzF8wD0EAu93OX977kAMHDtHQ0ER9fQO1dXUUFpxjQFgYCQnxlJaVc+= jg4T51U/cxdDod8fFxTLpmAiXFJciyQkhoCJs3fUp1dR2SpPD553vJzspm4a0L6O11sn3b9r7fK= 33ZFJHMnHktg2IH0T/250pRs6VWr17NvHnzSExM5M4772Ty5MksXryYcePGYTKZePfdd4mPjycu= Lu5v7kvNnti6dSuDBw9GFEUqKyt56KGHOHjwIC+//DJtbW00NzezYsUKQkJCePLJJ3nttdcoLy9= n2bJl2kvW5XLxwQcf0NjYyK9//WveeecdOjo6WL16NY8//jiCIHD33Xdzyy238Kc//Yn4+Hheff= VVnnnmGSoqKhg2bJhmrOr1etLT01m/fj0vvPAC99xzj+at2blzJ3PnztXE1ARB4M4770SSJKqrq= 9mwYQMvvPACGzZsQJIkLTVx0qRJFBYW8tJLL/HrX/9aSxnu7e2lpqaG1tZWwsPDtf0nJCSwbNky= RFHk1ltvpbKyknfffZe4uDgtjb6zs5PPP/+cc+fOMXPmTAoKCtwZd0eOsGnTJsaPH092djYvvfQ= S77//Pjt37uTgwYMYjUauv/56PvzwQ+69915iY2O57bbbKC4uZsuWLRgMBjZt2sTKlSspLi5mwI= ABmghbR0cHL774Ii0tLaxevZrp06czcuRIZs2ahSiKbNiwgdjYWMLDw1m/fj3bt29n/vz5PPjgg= /j4+BAXF6cJKoqiyPXpwWw/04qXXmBUnD8ny21EBroL1N4xfgCtnS52nW0lNdKHtIFmzCYdsqIw= brAfU5MD+d2uGnyMIksmhfPW/osoChh0Ag9dF615OdYdaqCkoYv/d3Mcbx+q59zFLlZ/XsvAIC/= iQk38eF0RWx5MR+iLjXtz/0V2F7QxPsEfRVEoqu/iwZlRHCm1sfKzGkobunDKCmvuHIJBJ/DoX8= v5y7JUTld38t9vF/P+z1IZ4G9ElhXW7KtDFOCVRYlsONrI4x9V4G3Ucbq6kxdvG8ywaDP//acSb= h0bhrXLxeeF7VyfHtR3r7kNoy/OW5g3KpS/HG8k3N/IllMtLJ44AEWBExU2pqYEovcYNh48/CC4= Cp4bt+7MpX/7oyCgfGUmJHyDfdBPs1hLAzcavYgfPJgDBw7T09NLU2OTW6SqrJSMYekUFBSybt3= bdHTYCQ0NJSpqIO3tFi5UluPt401n56XihhMnjScuLpaiomKcTicDwsJJSIjD398fh8NFSmoqig= KyLHHhQiVHjx6lpaWZBx+6373kcOUD5h4ZRcFqtWr1RUwmE2lpaXR0dNDQ0MDChQsxGo3cfvvtW= o2ar9uHO11eZNasWZSWlmqu3hEjRpCcnKxpajz66KO8+uqrDBgwgIqKCiRJ0so+qOUD1DpD5eXl= pKWlERERwa9+9Svsdjt5eXmYzWbMZneqvdFoZM6cOUyaNAlvb29NQl5dQgM093N6ejq/+MUveP7= 55xk3bhwul4vS0lKmTp2Kj48PixYtIisrC3AbfWVlZZrA16hRozhy5Ajt7e2Eh4czceJEZs2a9Z= XiiNXV1aSlpREVFUVXVxd5eXnk5OSQmJiITqfDaHQXW50xYwYnTpy4zB3u6+urSX8DmgZDWFgYA= A0NDeh0OsLCwnj44YeRJAkvLy/y8/ORJIlz585x22234e3tzdKlS7l48SIzZ84kNTW1r8DrpYKN= 4Da64/qUiVXhPnVpbuzYsbS0tGiGkI+PD7/85S+ZM2cOa9asuWzpT22vIAjodbBkUjird9eSGO6= NXifw/vEmwgMM3DcjCklWWHvwIjmVHbR0Osmt6sTHoCMq0G2YpET6sDm3BZPB7ZmsaO7B1i2hFy= /V0apo7ibM30hEgJH/d3McXQ4Ju0Nm3GA/Rg7y5SdTIuhxyG6PqSCwdGok+TX2Pg+qwMhYP4bF+= NLc4eRiey/3zYxiU04zieHefJTdjMkgYtQLTEjwJ8BbR1VrL2F+BiRFoaS+i/QYMwadwJh4Pw6V= WPnFrBh+u6OayAAjXnqRR2+I5u51bhn6j5YPxahzC3fKKNS29TI8xpeZQ4OYlR6Et0HHO4frCTY= bGBPny5xhwVqcoAcPHv7zubLCmbJCfXsvO3IaEGUJAw7S4vwZmRKHrauH/VlFtPcYcIl6ECHY5O= KGcSkEeBv7jJ4+/WAFFNwxHafyTlNbW0Ny8hAyMjIQBHdAaFVlFXl5pzEaDaSlD3XrF9TUkJScj= NVmpeBsATExMfzi0YeZPn0qvr5msk5mER4RQWJiAnmnzqAAkyZNYMzYMZw5fQaLxcrM66Zz8803= EhgYiMsl0dFho7e3B1EEnU7PxbqLGI0Grpk8kRMns+my2xk7dgwREeFXtB6tLnmdPn2avXv3cvb= sWU6dOkVUVBSZmZmsXLkSi8VCVVUViYmJeHt7U19fz8aNGzl27BhNTU0cPXqUnTt3YrFYaGlp4d= NPPyUkJITU1FSys7MpLCzk/PnzLFiwgO3bt5Odnc2YMWMYPXo0ubm57Nq1i7Nnz5KQkMANN9yg9= Sc8PJy33nqLCxcucOTIERITEzGZTHz00UcUFhYiCAJjx47l/fff10TDduzYQXBwMKmpqRgMBrKz= s7WSCJMnTyYmJobAwEC6urqYOHEiNpuN7du3c+bMGTo6OliwYAGBgYGAW19n586dnDhxgoKCAio= rK7n22mspLy/n/PnzFBcX09PTo6n+ZmVlsX79enx8fBg9ejRms5mTJ0+yc+dOZFnm7NmzWg0ZQF= vaqq+v57PPPsNkMmG1Wtm3bx/R0dGcPHkSb29vamtrKSsrY+rUqeTn53Pw4EHy8vJoa2vjzJkzZ= Gdnk56ejre3N1u3buXs2bP09PQwfvx4TaArLCyMjz/+WBMN9PJyyw2cOXOGQ4cOcfjwYYYPH86C= BQs4efIkBw8epKCggOHDhxMXF8fvf/97jh49SlVVFfPnz9eKRh4+fFirQSUIbu3tgYFebDvdSrd= DZsnECLaebiEp3IcJCf7oRYE2u4vdBW3cNm4ALZ1OKpp7uG/mQAyiQKCPnt/tqmV0nB+ThwTw/o= km7romgmCznt0FbVy0OBgX78dHWc0U1HXxeUEbEQFe+HiJHCiyUmfp5fMCt4TCnsJ2XLJCo83Bv= nMWwgMMJEf4cKK8g+rWXoobupg/OoxPclsoa+phTJwv6VFmjpVZOVhs5VRVp7sdSQFszWtFJwok= DPDmL8ebqGt3cO6inbkjQzlWbuN4uY3kSB9igr14flsVIwb5Mjben7KmHryNIicrbFi7XaQONLM= lr4Watl5OVnQwMNALX28dn5xyt2F3QTvTUgIR8SxLefDwQ+CKU8FzyttZ9odcFKkHs2jj1qnRLL= 15KjXNFp5+fRsV7d5Iog4EhbigXl594EYGBfsjoqBDQlDcHh8ZBbu9i/Xr/8yxo0eZc+OPWLToD= gDs9i4+/PAjDnxxkOCQEO69926OHTvKsWPHmTt3Lg5HL7t37yE9PY0HH3oAb5OJrKws1qx5g2EZ= w7h+1vWsX/cOsiyz7Gf3kpycxIu/XUlFRRW3334r110/HUVReG31m5w+cwZ/P18MRgMup7smSVR= UFE88+SirX32DhoYGlt+3jOHDh10V3YcvBw2rnhdV5EgVgHPHBF0K3u0fjNffg6F6S1TpanXZRv= 1T9+dwOLSMCFXRVo17UoOHVa+Qun9VbFCn032luqu6DKXuR+2Xun9VNEtdslKDdRVF0Y6vtvXL4= 9JfAVU9lrpPVTxMlmUtFgnoJwIpXiYApo6DKp4mSdJlff9y/Jd6TtTzpY6HGqel7qf/ftU2XYrZ= kjXvkeoF+fL4q/tXj9s//kjth1reora2ls8++4xbbrmFAQPcyyptXS6sXa6+QF/QCQKqn9HQL25= F9Uy4twGdqPZXwSHJ7v+PgKQo6AQBnYgWbCsKQl/gr4IoCIiCO67NJYPbSyto3k21nwqgFwXtmO= BugiiCJIOsKHjp+8a3L0gZBO03AKJwKaBYPY5OdB9XVhSMOgFJhrUH6/mva8K137x/oom7J0cgi= u62SLL7WhUFAb1O0IKmAUwGkUEhJnSiu18ePHj4z+aKl6UUQBFk7UGqTXsUQJAQkBEUAyChKC5k= ZCTFvVyFIqIIAoogISsOQEaUFFAEzhUW8967HyDJMs1NzZqMfnh4GBER4X1HF9Dr9IRGBmM0GKi= urmb3rt3Ex8Vz4UK1e//9tHHc6d1o7XQHklZy/nwxQYGB7qweoxdTp04lLj6WtjYLmz7ezKU4oa= ubT9H/ZfxtUNVfv+2234SqxPtl+hdZ/DKqAua3QS1U+Lfa9Lf6rRpJ3yXN/uuO1b+e0L+DbxorQ= RC+dvy/TZ8tFgsfffSRtlwpCAKyonCxvZeq1t4ravN/Mi5J4VRVBx+cbAIgdaAPD8yIoqSh+1t5= Ygw6gdhQk2dVyoOHHwhXJVtK0QpSgiLL7pkZCjrZhU7pwSW4q4d3OwQq6q0Embzw99K5TQ1Zhyy= ISOhAkFB0IIju8utVVdWAe73eaPQiLj6OBQvmM2BAGDqdHr1Oh06vY/iI4ZSVXyAnJ5dNH3/SFz= MjYzAYtRbqdIAg9u3LwKhRI7lQUcnx48fIyj7Bf997D+kZ6Rw6eIgdO3aAoKAobgMoOCTQPQvXC= Yi6SwU7PXj4VxMYGMijjz56medOJwoMi/FlWIzvv7l1/z5kWWHO8GCkvltT9UrpPG4YDx7+T3J1= FIrXZoOrFzM2bp8Wzc9unkaLtZO/7NxHXauDVrtAU7MFp6MDg04kYUAI108ZydSxyQQaJXSKgII= Ol8vJxdp6rLYOREHQ/CQ6UUdgUAAhISF4ebkNlpqaWqwWG+ERAwgJCcLplOiw2WhpaUVWFM4Vnu= eTTz5l2LB07lyyiC57NzIQFRWBn6+Z3l4njQ0tWKwWRB1EDRyIt7cPjU1NWK3Wvtmeu9yCyWRi0= CB3nR2Hw0l0dJRWzt6DBw/fDzTBUADBExvswcP/Za7IuHG6ZPIqmnjwrf3IkoQRO8kx3kwblUSg= yYjJYMDb14zR2xuXIiPodFitnTS3WqlvaMbV20VcZAgjUxKJGxiKXhAQ+pxJ/V3JQt+TSo2HUOM= b3NsJWK02tm3dQXNzi/abuto6GhobueGGWcxfMBdvb5N7KUqR0SkSEiKSIqJDRkHG1uvCS29AQU= IniOh1AjrEvlpSYt+ymwunC0RBxKDXo9d5JP09ePDgwYOH7xtXZNxIskJrZxena5rQKwJGQUAUJ= CTJhVNREAUR2emku8tOb08Xok5EFPX4+Zvx9zERGBRMj1OmuKwck0Fg7NChBPuaEXXfXrlSURRs= Nhvv/+VDGpvUsg3uoMMhSUOYM2c2vmYziIK7qpTkpMHWwcHcQgbHDSQ+NAQvo4n3PzuA2RyEyaQ= jYWAYYQE++Hl709Xbg6PXwcCwEBwuF6eLSoiJCCcmIgKj/l9b2sCDBw8ePHjw8Pe5IuMGcKsDK6= 4+74rQLx7lUmCxoLiXmCT6CuS5nPQ4nLj6YnR0OhG9CK6eHnSI+Pn7aZkl8PfrwUiSjMvlvCwWR= hBE9HodgigioCALMrIs0Ot0se9UCfnnyrl+ynA6LFYuttlo6OjCbPJBkSQiQ3wJDwmgoqoRl+jO= 5ggye9PU3ERwcBjXDB+Kv48Jg6cYowcPHjx48PC944qDRtwaGzrNuBEEUFD6sqT6VLH6gvp0ADo= dJoMBP28FCRkZGZ2iQ1QEFLM/MjJKv5Tfb+PB0elEdLqvZsxAXzaXAsg6JEWmpLaJ8vpGRg6Lw2= yUaXQ5cSoiZlHE1yQgO3WY9CJBfr4IYos79drpwIUeWedFeKA/ZpMXOo8YhgcPHjx48PC95MqNG= wRUHVC3KaHr0yXW9+ldyCBcSsFWVCVjAXQK6HGng8sICIKCDgFJUbOvlG+9PPXNbVRAUBAVAT+T= CbMo4m8w4q03M210DAIKigyizq2nIQoiRhHiB4SgIIMioCAiCAoGnYheFBGvThUGDx48ePDgwcN= V5oqXpf6TcAciu5fSBEFA/DrD6cuf9R+ePiVYDx48ePDgwcP3l/9Txo0HDx48ePDg4YePR6jlX4= yaxq6WOfDgwYMHDx48fD1qGZv+wqXfBo9x8y9GURRcLhd33nknDofj390cDx48ePDg4XuLKIq89= dZbhIaGfifhXM+y1L8B1XPjwYMHDx48ePhm1Mzp7+K58Rg3Hjx48ODBg4cfFB4VOg8ePHjw4MHD= DwqPcePBgwcPHjx4+EHhMW48ePDgwYMHDz8oPMaNBw8ePHjw4OEHhce48eDBgwcPHjz8oPAYNx4= 8ePDgwYOHHxRXTcTPk1H+zVyNAqAePHjw4MGDh7/PVTFuXC4XTU1NdHR2IOhEBNSC2eoLXUHhUt= FJzQ4SQOxXilJB4cvFtt2fuOtZXrKfvmooCP1sK0X7+ut+665kLly2hfq/hcta87dQ+6b020a4r= K+X2q3IMhHhkfj5++Epu+nBgwcPHjz887li40ZRFCyWNtau+wMx8XGYfEwoXFLfFRS30QACisKl= atx9ngxFkdzGgKxoBbnVfy83Hvr+q6j7AUUQkGQZEQGdTkR2l/x2f6f+ts/q0UwPGQRBBEFEkWV= kRdHqVsiyhGbi9LOWFO0/7j0JfYaN3Nd/neg20WRZ7lNRVDRPVllxORlDM5h3880I4leNG7Ucgy= RJKIqiqTDq9Xp0Ot0/cEb+81DrbKl9F8Xvz2qpen4AdDrdN6pkKoqinUedTve96gd8P9snyzIul= 0u79tV78d/dNnWsJEkC3BLwf+/8fx/4sgf9u7RVVU5X69/9K64R9VjqdanK6/evvafX6/+hdqjn= T5ZlrS/qfr7P51CWZSRJuux+UMfJ5XJd1g/1/tHpdN94vtQx7n+vqeP6777X/llcJc+NhCyDt7c= PBoPuMqNEURRkSaHDaqOmuoa6uou0tbXhcDjQ6/UEBAQwcGAksXGDCAkLQfiGgZYlGafDRXVVNQ= Vnz9LY2IjT6QJFwWjyIjIikmEjhhEdE4Nep0MQQbVKFAUkWcJqtXC+4BxlpeXYOztxSRIGvQE/P= z+SU5MZmjYUP38/t6+p3/WvKAoup4uqikrOnMmnsbHR/dJTwMvkRWRkBMNHDCc6OhqdweA2fRTQ= 63V0dXVpF2f/m0r97PDhwzzxxBOMHj2agIAADh48yB//+EfS09O17RVFobe3l4aGBsLDwzGZTFf= 1BlUUhaqqKmpqahg/fjwGg+GyYzscDpqamggODsZsNl/xsdra2uju7iY6Opqenh7WrFlDeno6M2= bMwGQyXY0uIUkSeXl5jBo16u/ewIqiYLfb2b59OzNmzCA0NFTrf05ODq+99hpPPPEEGRkZXzvu6= ovh/fffZ+vWraxZs4aIiIi/uW1xcTGtra1MnDjxX/LCVNv36quvUlJSwtNPP83Ro0e/0tcrPUZh= YSF2u53Ro0d/Yx0YRVHo6upi8+bNFBcXay+g8PBwxo4dy7hx475zmxRFoaGhAUEQ8Pb2Zu/evcy= YMYOAgIBvvS/1BbJnzx6OHz+uGTfx8fEYDAbuuuuu7+2kQ5Zlzp8/z6ZNm/jVr36FIAj09vZSUV= FBSkoK7e3tSJJEWFiY1gf1uti6dSvXXHMN7e3tLF68mOeee45Zs2Z948uyuroaf39/FEXhxIkTT= J48GT8/v+983jo7O3nkkUeIjY3lwQcfRK/Xs2nTJvbs2cOtt97KnDlzvvLs/CYkSaKwsJBt27bR= 2dmJwWDAx8eH8PBwFi1ahJeX13dq39WmubmZgoICxowZg6+v71f6VV5ezmOPPcayZcuYMWOGdg6= KiopYvXo1cXFxPPDAA5hMJl5//XUOHjzIo48+yvjx4//m+ZJlmaeeeoqDBw8ydepUWlpaiIiI4L= 777tOeU980vq2trezatYu5c+diNpu/1fPU4XBQVVVFQkICW7duZcSIEcTFxf3LDMurYNwo2pKP0= OeREeh7SMgyjl4nJ48eY/uW7XR2dOLl5UVkZCS+vr44HA7OnDpNR0cHOr2Oa6ZMYvZNcwgKCerz= 5PQNgiwgywqyQ2bbp9s4cfw4s380m3vvvpeIiAgURaGmtpa/fvghr69+ncxpmcyafQMGLz06QUS= WFRRFprL8An/Z8BcC/QO55557yBiWQUBAAO1t7eTk5LB27Vr279nHnUvuJCY+xt0XQcAlyUhOia= 2bt5B1Iosbb7yRe39yD1EDo5BlmaqqKv760V9Z/bvVXDvjWq7/0SwM3ka3o0lxL1J9E6NHj8ZgM= PDzn/+curo6QkJCSEhIoLu7W5tBARw/fpyamhoWLlyIw+HQPAqiKOLl5dXnfXJb8k6n8zIvEIDD= 4dD2J0kSer0evV6vPcADAwMJCQkBoKury32B9H1fVFTEoUOH+NnPfobT6dSKfgqCgJeXl9ZGdda= hfm80GlEUBafTCbi9Hy6Xi3379hEYGEhkZCQul4v58+cTERHhvqL6HmT9+6J+rs6e1ZkNgMFgQJ= Zlrc9GoxFJksjNzSUnJ0czEp1OJ6Ioat+7XK7LPEYAs2fPxmAw4HK5tD+TycT48eOJjY2lp6dHm= x0bDAbNCFRfEgaDQXsAOJ1O9Hr9ZX1QZ2Ph4eHExMRo7ZAkSTuP/V886liq7VbbrM7W1GOrszan= 06nNeI1GIwaDQduXLMuEhoYSFRWFv7+/1leHw6HNcNXrSO27eg2o+1TH3mg0AmhtV6+lmJgYbSy= dTie9vb1an728vLTvXC4Xr7/+OoWFhbz55pta2w8fPkxYWBidnZ3adavX67WHpU6n02acX77Oe3= p62LNnDwkJCWRkZDBz5kwEQcBut2M0GrWxEkVRG3f1+lUrDkuSxPbt2/n5z39Ofn4+BoMBRVHYv= Xs38fHx/z97bx4fZZXs/797Saezd/Z930nIRghhCYQdBAUEAWURQQEFGRTGwRV1FHyJ3mEbQVRE= VgGRXSQQlCUEQsIWCCFkT8jenaSTTro7vfz+iP1MQGbGmev93vt7vab+MJg85zx1zqlTT52qT9U= RxmRZa7FYjF6vf0CGRCIRBoNB4N+ythYDzjKXlrWx7JWeXgsLr2azGSsrK4FfiUSCTCb7lYFlMp= moq6tjz549KBQKYT9s2rSJoUOH0tzczNGjRwkPD8fW1vYBL5TJZGLEiBGIxWLa2tqIioqib9++6= HS6B+bdsi/MZjP19fWcOnWK9PR0PDw8SEtLQyqVotPpBC+MRUa6uroEfo1GI9bW1g8YvnZ2dsyd= O5ePPvqI+vp6/P39iYyMJCQkhPj4eDQajaDHpFKpIOMWj4aVlZUg/2azmbKyMlatWsVLL71EUlI= SUqmUixcv4uzsLMiJ0WgUvB0Wb5WFP4u8WdbA8qxFdizr0nN8Fn4s82mRA0u7nrJmZ2dHYmKisJ= 976iHLu1NSUoiPj39gjcPDwxkwYABlZWWUlJQQHR3NkCFDiIqKIj4+Hq1W+yu91POA2q9fP9zd3= Zk/fz4SiYSVK1fy2Wef8c477zzgobaM0TIGi061GJkdHR0PHH4t35Ouri5BF5nNZs6dO0ddXR1+= fn4MGTIEsVhMe3u7IL9dXV0P7AHLWvbkRSaTIZVK/y2D6HcwbkQ9forA3B0SMpnNNDU0sXPbTmq= qqkkfncPaswAAIABJREFUks70p6cTFRWFi4uLsFFaW1spLi7mxIkT7Nu3jzsFhUycPImEpITuDY= gIs8mMVqtl21dfYyWRsmP7DhISEtDr9bz11lu4urqydOlS+qemcik7m4/XfMz+Pd/y9MynMUtFm= ExGruVe4/v93zP3ubnMmTMHhUJBe3s7R48eJS0tjblz5zJ27Fi2b9/Ozh07mTZjGmERYZjNZtQt= Lez8egc2NnZ88812EhMTqK6upqCgAGtrayIjI9mwfgNZWVmsW7eO7/cdYNqM6Yh+wwHPZDJx6NA= hbG1t+eSTTxg7diyvvPIKzc3NLF26lOHDhxMREYGrqytfffUVAwYMoKGhgfXr1xMQEIBer+fWrV= t89dVXgnLOz89n48aN2NjYoFaref/999m1axe2traUlpYyZMgQbty4gUaj4fXXX+fTTz9l6dKl7= N69G4CnnnqKZcuW8dhjjxEbG4tcLufDDz9k9OjRFBUVsWPHDnx8fNDpdNTW1rJ69WpsbW0FI2bF= ihX4+vpSWVnJpEmTkEqlfPPNNwwaNIi+ffty7949NmzYwKpVqzh16hRnz54lNDSUnJwc0tPTmT5= 9OtCtaIqKipg5cyb9+/fH3d0dqVRKamoqe/bswd7enpqaGtatW8e6devw9vamoaGBgIAAUlNT+a= //+i8GDhxITU0NX375JV5eXvz444+sXbuWH3/8EYPBgI2NDZ9//jlr166lra2NTZs28dVXX3Hu3= DmKi4vx8PCgoKCAfv36cfz4ccrLy/Hw8CAvL4/HH3+cxx57DOhWHs3NzXz66afMmjWLZcuWMWXK= FIYMGcK7776Lr2+3IfzDDz/w6aef8vnnnzN9+nTMZjPfffcdvXv35uLFi4JCtqzl6dOn2b9/Pyk= pKTz77LM888wzvPLKK/z1r39l+PDhNDQ0oFarmThxIrm5uXR0dODs7MyZM2d4/fXXiYuLE5R0U1= MTFy5c4IMPPuD8+fN89tlnbNq0iSNHjqDT6aipqWHMmDG4uLiQmZmJi4sLt2/fZuzYsZw8eZKYm= BgKCwtRqVTMnDmTgoIC6uvr0el0DBkyhGHDhvH++++TmJjIoEGD2LBhA/7+/rS3t6NUKvn4448F= xVdQUMC2bds4fvw4crlcUOqjR4/m4sWLzJw5k0GDBqHX6xkzZgyXLl3C09OTuro6xowZg1KpJCc= nh8DAQM6ePcvYsWPp6Ojg4MGDvPXWW+zfv5+TJ08ydepUtm7dyqZNm1Aqldy5cwdfX1/Onj2Li4= sLKpWK2bNnExgYCEBtbS3btm3jwIEDyGQy5HI5ZrOZJ554gubmZjZv3ozZbMbe3p7CwkJmz57Nl= i1bcHd3p6Ojg46ODlxcXGhpaSE2NhZbW1tOnjxJaGgo9fX1yOVyvL29ycrKYs2aNXz//fc4OjoC= UF1dzYQJE/jkk0+YOHEit2/f5v79+7z99tt8+OGHxMfHExkZSVpaGvb29oIOsXhCz5w5g4uLCx4= eHphMJo4dO8bNmzeJjY0lPz+fw4cPM336dA4ePEhTUxN6vZ5nn32Wrq4udu/ezfr169mzZw/u7u= 58/vnnmEwmevfuTW5uLs3NzXz44YesXLmSJUuWsHXrVpRKJUOGDGH79u2UlpYya9Ysvv32WyIjI= 6mpqcHDw4O4uDjWrFlDWloaer2eQ4cOkZGR8QD/nZ2dqNVqpk+fTk5ODm5ubnR0dODp6cknn3wi= hAStrKyYPHkyW7duRa1WEx0dzYULF3j++edJS0sTDIt9+/YRHR1NUlIStra2iMVi0tPTMRqNbN+= +ncrKStzd3bl69Soff/wxGRkZ/PTTT4SHh3PkyBGeeOIJGhsbBaNt/fr1REVFUVRURHR0NG1tbZ= hMJubPn09GRgYajYaWlhZCQkLw9PR8wMCcO3cu3377Ld7e3jQ1NbFy5UqOHz9OXl4er7zyCgcOH= ECj0eDg4MCePXvYsmULV69eJSAgAGdn5weMWLVajaOjIxERERQVFREeHk5BQQGJiYl88skn+Pj4= CLy98MILODo6CkaByWRi586dbNiwAblcjkQiwd/fn4qKCm7fvk1GRgZubm4UFRWRkJDAhQsXhIP= P6NGjuX//PmfOnGHWrFkcOHCApUuXIpPJuHTpEgkJCfzwww/4+flRWlqKtbU1SUlJvPTSS2zYsI= Fbt27xpz/9iTfffJNdu3YxatQoBg8ezNq1a5k7dy4ZGRnI5XKKi4sZM2YM58+fx83NDYVCwcCBA= 4W9+a8aOL97sM2MCEwiqsurWLfmL6gam3j77bfZtGkTY8aMISQkBIVCgZ2dHU5OTvj7+zN48GDe= f/99vtu/H093T3Z/s4v86/mIRRLMIjNdRgOZmaeprall1apVDBo0CJlMRkNDg9BXW1sb9vb2DB4= yhD+99idKikq4lJWNRCylrqae/d/uQ6fVUV9fT1lZGZmZmcyYMYM1a9awZMkSrl69ip+fHwtfXE= jf5L4c2HeAzo5ODF0GLpy9QEN9I+vWriMurjdff/01I0eO5PXXX+fVV1/lySefZO/evQwcOJBly= 5Zxr+ge+TdvIhaJhVl5FJlMJtRqNT/++CPffvstU6ZMwdbWFo1Gg1wu5+mnnyYxMZE+ffqgUCgI= Dw9n3LhxrF27lgkTJjBv3jwcHR2ZNGnSA27CwMBAampqGD58OJs3b2b//v10dnbi7e2Ni4sL6en= pPP3005jNZqqrq+nfvz/W1tZ0dXWRkJCAl5cXU6dOJS4ujqSkJLy8vHBycmLy5Mns3r1beLe/vz= 8DBw4UPkwGg4G1a9fi7OxMQEAALi4uhISEkJCQQFxcHGPHjiU0NBSRSMT8+fOxsbHhwIEDvP322= zz++ON4eXkRHx//wIlDqVQSFRXFihUrGDBgAFKpFD8/PzQaDdOnT2f79u1s2bKFAQMGsGjRItLS= 0igpKUEkEjF69GhmzJjBhx9+SFBQEJ2dnQwbNqzb01dVRa9evWhvb+fxxx+nb9++lJeXM3HiRIq= KisjPz2fBggWMGzdOOHlXVFSwePFiRo8eTWhoKGFhYQ8ojyNHjvDRRx8xd+5cYmJikMlkvPLKK4= wcOZK5c+diNpuZMWMGAHFxcbi7u/Pee++xaNEipk6diru7OyqV6oGTZN++ffHz8yMqKopvvvmGi= IgInJ2d8fHxob6+nilTpmBlZUVubi6dnZ0sXryY1NRUEhIS8PHxEfgzGo3s3r2bfv364eTkRHl5= ORMmTKCiooK2tjZeeuklPv74Y6Kjozl8+LCgKJ2cnEhOTqaqqoq7d+8yb948oqKiqKiooKCggBU= rVvDnP/+ZESNGYDKZ0Gq1REVFsXr1ambMmMELL7yAi4sLw4YNe+Bke//+fby8vPD29n4AB2F5xt= /fn6lTp7J8+XIOHz5MVFSUcFLWaDTs37+f1157jbFjxwqhLEdHR+bPn0/v3r25c+cOTz/9NOPGj= cPHx4eysjJaW1txcnJi7969pKSk0NnZiZubG35+fsI8NTc3Y21tTUhIiPBhsfB8/fp1Ojo6mD17= NhMmTMBgMGBtbU11dTUqlYq0tDRqamoYP3481dXVDBo0CI1Gg0ajYfz48ahUKnr16oVIJGLChAm= cPHkSLy8vnn/+edLT02ltbcXa2hqNRsP9+/cZO3YsiYmJwriCg4MZMmTIA2Fhs9lMW1sbW7ZsYe= vWrXz++ec4OTkJXo5JkyaRnp6Ol5cXkyZNYuzYsTQ0NBAVFcUXX3zBkCFDKCgoYPTo0SiVSuzt7= Vm5ciWTJk3Cw8OD1NRUqqurGT16NFlZWbi6uuLq6kpQUBALFizA19eX27dvM3jwYI4dO0Z6ejpT= pkwhNTUVvV6Ph4cHly5dEuRo/PjxD+gqs9lMa2srdnZ2DB8+nMOHD1NfX09nZydnz57Fz8+P115= 7jccee4yuri5sbGxoamrC09OT/v37U1dXR79+/R7QqS0tLQQHByOTyR54140bN/jxxx9Zvnw5s2= bNQqfTCd6D9vZ2+vfvT21tLY6Ojvj7+9OrVy/8/PwoKioiIiICsVhMfX09w4cPx9PTk/Pnz5Obm= 0t4eDharZaUlBQiIyMxGo1MmzaNP//5z6xbt4558+axePFiPvjgA8RiMc3NzURERHD8+HGamppY= tGgR8fHxJCcn4+DgQElJCaGhoQ9gjcxmM5cvX6Zfv3707t2bkpISrly5gqenJ+fOnSMsLIxp06Y= xdOhQDAaD4HWzUGZmJv369cPNzU3w0J0+fZqYmBi+++47PD09MRgM6PV6hg0bhslkwt/fn48++o= gxY8ZQXFzMCy+8wLBhw/D09ESpVFJUVERkZCQHDx5kypQpTJ48meDgYKKjo7G2tmbhwoUMGzaMl= pYWRo4cSXJyMuPGjaOmpobCwkJGjBjBkSNHMJlMSKVSGhsb6d+/PxMnTkShUDB+/HgCAgIEnfCv= 0u9q3Fi8LC0trRz87iCtLa2CkpPbyIUTpIUs/7a4WmNiY1mzZg1BQUHs37OXpoaGbs9Jm5q8K3n= MmPGMEGJob29nzpw5bNu2jc8//5xly5YJruJ+/VMZMGAgF85dpK1dQ+GdQmxtbNm4cSMymYwXX3= yRefPmUVZWxuuvv87q1auJjY1FLBbj6ODIU089hbKpe/FaWloovlfCvLnz8Pf3Izc3ly+//JJev= Xpx/Phxjhw5QkpKCu+++y7Z2dkkJiaSlJTE2Z/PCuGeR5HFbXzixAlGjhyJWCwmMDCQjIwMbt26= xdatWwkLC+P8+fPU1NRw7NgxQkNDqa2txcrKipiYGHbv3s3x48cfMAhMJhMZGRnMmTOH0aNHI5F= IyMrKIiQkBC8vL8HtJ5fLqa2t5eTJk6Snp6NUKtFoNHh4eHDw4EGSkpK4cOEClZWVbNu2jREjRn= D37l3c3d2JjIxk165dHDt2jJiYGMGNaTQaycnJISwsDBcXFxQKBdnZ2dy+fZuUlBS+++47mpube= fvttxkxYgTZ2dmMGTOGtrY2/vjHPwLg7e39wAd5x44dgicrLy+PCRMmcO7cOZ5//nkSEhIQi8Vc= uXKF4OBgsrOz2bJlC4sWLSIvLw8HBwdsbGy4fPkynp6e9OrVi9bWVlxdXYmPj0en05Gens5bb71= Fa2srFRUVjBgxguvXrzNw4EBycnKYMGECAQEBlJeXk5SURFdXF7NmzQLA19dXkOPGxkaqqqpITk= 7m559/RqVSAd2egN69e/PZZ59x9OhRRo4cye3bt3F0dESlUmE2m/Hw8GDfvn3odDpSU1MfMAIqK= ytpa2ujuLiYL7/8koULF3L37l28vb154YUXOHPmDEFBQRQXF/P4448LBlhQUJBwOrac7DMyMrCx= saG8vFwYa2FhIZ6enjQ1NbFkyRKam5tpbm7G0dGRlJQUGhsbuXbtGikpKSxZsoTi4mIAVCoVkZG= RqFQqDhw4QFVVFT///DMBAQG0tbURHBxMYGAgW7du5cKFC8LHAbrd3snJyXR0dLBu3To6Ozvp7O= wkIyOD8+fPc+XKFZYtW0ZMTAytra3IZDJsbGyIiIhAKpVy4sQJZsyYQUNDA6+++ioeHh7Y2tqya= dMmBgwYwP3797l//z5Dhw5FLBYTFBTEm2++ia2trRAWsLKyIj4+nvb2diEsBN0HAxcXFxYuXCjw= lZuby/79+7l37x5BQUGIxWImTpxI//79qaqqYsSIEbz++uvcvHmTpUuXUlVVJXg81Wo1K1eupLq= 6msTERPr3709JSQkjR46ktbUVX19f7t+/z+LFi5k8ebLgEZw9ezZ3797F19eXgwcPEhISQm1tLd= euXRPCHkajkcbGRlatWsWsWbME3ExISAgqlYrKykp8fHwwGo2C9+/WrVtER0ezePFirK2tUavVZ= GRk8Nhjj5GXl0evXr0A2LhxIzExMTQ3N1NfX4+HhwdbtmwhNTWVmpoarl69SmhoKBUVFdTX1xMe= Ho7RaMTHxweNRsNnn31GYmIip06dYvny5aSnp3Px4kUhVNhTB548eZKEhAQUCgUTJ05k6dKlhIS= EkJ+fT2hoKCqVij179ggeIYCZM2dy8eJFFixY8ACQ1iJb+/fvp7CwkI6ODqqqqjh48CBZWVkMGD= CAtrY2Nm7cyKBBg5DL5eTm5rJ8+XIuXbrEqlWr6NevH1qtlvDwcL7++mtWrFiBnZ0dCQkJvP322= xQWFhIVFcXt27eJiorC2dkZOzs79Ho9u3btYvHixaSkpKBWq7lz5w7e3t7s3r2bq1ev0tbWRl1d= HcnJyXz99dcsWLCAS5cu8corrzBhwgTKy8spLi5Gq9UKIUCLftFqtbi6ugqG99dff01ISAhqtZq= AgAABV9O3b18hBGcx9o4fP86UKVPo6uri0qVLPPvss0ycOJGEhAS0Wi2Ojo4MGDAArVbL2bNnSU= 1N5cUXX0Qul1NVVYVUKqVfv37Y2Njg6enJW2+9RXR0NHq9HmdnZ9zc3HjnnXc4efIkcXFxbNy4k= RkzZqDRaMjJyWHMmDGIxWJcXV05ceIE9fX1xMXF0dTUhLOzM8nJyXR2dnLp0iUh/Lpr1y4hPPXv= kOTdd999999u/Qu1t7eTm5eHm6c7Jkzk37xJdlY2kydP5qWXXsJgMJCdnc3u3bs5d+4carUaV1d= Xamtr2bt3Lz/88AMlJSV4eXnh5+eHyWTi/PnzGAwGYnp3K7hLF7J5ctKTxMbGIpFIhBBCTU0Ner= 0eNzc3ZsyY0S3oIjEFBQVkXcxiQNog7t0twqA38Kc//Yn09HTGjRtHTEwMZrOZEydOkJ2dTUNDA= 1ZWVtjZ2SGTyfj222/xC/THzsGe63nXmDJ5MmHh4eh0OtRqNTNnziQuLg5HR0fu379PZmam4Ok4= e/Zn7pWWdAP0VM0onBT0ju39gEfCZDJx48YNTp06RVNTE1lZWeTl5REQEEBoaCjZ2dkCGDY6Opq= bN2/S2NgoGDg///wzPj4+eHp6YjKZiIiIEIzHU6dOMXnyZBwcHBCLxURHR5OZmUljYyNTp07F39= 8fAE9PT8aNG4eDgwNKpZK8vDxsbGzIz88nJyeHmJgYkpOTuXr1KrW1tYSFhdHQ0MCJEycIDg7G2= dkZqVRKaGiooFxCQ0PJyMigsbFRACQePXqUiooKhg0bhpWVFSqVivr6epKSksjOziYrK4snnnhC= cIkqFAoBFPjTTz9RVVWFUqlk2rRp+Pv7c/r0aZ588kkB2BYbG8uePXtobW3lnXfewcnJiYqKCq5= du0bfvn0JCwsT3Kzz5s2joKCAvLw8SktL0Wq1yGQyZDIZ5eXlqNVq+vbty7Fjx3BwcBBAllFRUV= y8eJGzZ88yf/58qqqqCA0NRaFQIBKJkMvl1NTUcODAAaRSKUuWLMHHx4cbN25w5coVwsPDcXBwQ= KVSUVRUxIgRI4iMjMTW1pb9+/fj5+fH888/j52d3QOYm/Lycu7du4ePjw/Ozs5cu3aN2NhY+vbt= i5ubG9evX6erq4uAgABOnz7NvXv3mDhxIlVVVcTHxwvg7IaGBurr6+nXrx8uLi5UVFSgVqsZPnw= 4P//8M/n5+bz11ls4OjpiNBrJysoS3OiVlZUkJSURFBREWVmZcJLPzs6moKCAIUOGEBQUxK1bt2= hpaSE8PJyqqipOnTolYDzkcrngtbPM19SpU8nKyiIzM5Nz587h4+NDTEwMRqOR+Ph4bG1tcXNzQ= 61Wk52dTU1NDS+++CLe3t6cOnWKW7duCQaan58fKpWKjo4OHBwcqK+vx8rKitDQUHQ6HU8//TSx= sbF4eHhQW1vL5cuX0Wq1LFmy5AHMjZWVFaNGjaKyspKTJ09y7tw5jEYjU6ZMwc/Pj6ysLDIyMli= 5ciWpqamUl5eTnJyMm5sbpaWljBs3jtLSUioqKlAoFPj4+BAbG8v169d5/PHHMRgM1NTUYDAY6N= evHydOnODSpUusWbOG4OBgamtrBRB0UVERlZWV1NfXc+HCBdzc3EhPTxeSCerq6ti/fz+tra2MG= jWK8+fPU1dXx40bN+jduzcFBQWoVCr8/PwoKChAq9XS0tLCiBEj8Pb2RiKRUF9fT319vRCCyszM= JDMzk6VLl9KrVy9qa2tpaGigoaGBPn36CAZXSUmJEPKpq6vDx8eHyMhIjh49yuXLl3njjTcIDw8= nNzeX+fPnYzKZqK2tpbKykuTkZCQSCUqlki1btgi4DA8PD7y9vXF0dKR///5ERUVx/Phxrly5wh= NPPEFaWhq3b99m5MiRBAcHU1xczM2bN0lOThZ4EYlEhIaG4uLiwtGjRzl79iz37t1j1KhRpKenc= /LkSbKyskhOTmbKlCloNBrUajWpqanU1dUxceJEdDodubm5uLq6cvfuXV544QUqKiro16+fEJI2= Go2MGTOG7OxsSkpKGDNmDMHBwVy5coXp06cjk8lwcHDA1dWVvXv3EhcXR0pKCiaTibNnz+Ls7Cx= 4SQHi4+O5deuW4EVMTU0VDJTKykq+/fZbiouL6dOnD3Z2djg7O5OQkEBISAguLi6cPHmSzMxM3n= 77bXr37i3gwdra2jh06BDNzc3k5ORw4cIFGhoaWLp0KYMGDcLFxQWDwcDFixe5ceMGH3zwAeXl5= SQmJgrA8/r6ekpLS5FIJISEhKDVannqqaeIiIhAJpNx584dTp8+zcyZMykrK0Mmk2FnZ0dOTg6R= kZEolUoqKiro06cPAElJSaSlpeHo6Ii1tTXnz58nPz+fNWvWUFpayokTJ6itrWXevHkP6MN/lUT= m/2b1PUuGwubPPyc6NoYug47D3x8iNyeXHTt20KdPHw4ePMg777wjuNSysrKYPHkya9euxcrKik= mTJnHu3DmSk5NZsWIFhYWFLFy4EL1Bx2tvraC9rZ11a9ayYP4CFi9ejFQqpbW1lS+++IIPP/wQh= ULB22+/zezZsxGJROj1el5//XXOnjvL0tde5eKFLPIuXeHEiR9xdXUV3OJqtRqTycT777/Pzz//= jLW1NUFBQQwcOJB9+/fx9OwZ+Pr7smvbTp6dMZt5z88TMCe9evXiqaeeQq/X895777F9+3Y2b97= MqFEj+eNrr3Hz9k2WvvoqxffuEewfyNPTn3nAvWZJdXzYu/MwKM2CUeg53z3BXpY2PdtZgIs9AX= EWwJrllNMT9NYzHfNhXizP9gTwWfqyvNPy8+F39Rxrz7E83FdP17GlL71ez4YNG4iOjmbo0KEPg= CgtwL5HvbMnMNTSnyXMYwF/jh07lsOHDwtykJmZyaJFi4RnevLc0x368LgsWADL33rOX89Qndls= 5s6dO2RlZeHk5ERlZSWvvfbaA0DknqnGPdfaMvcPA/x6zl9PuejJX0+QpWWeeo7P8qwFnP3wWHq= 2t4y3Z8kCS789gbB/T0Yt/fccn2XdHl67hzM3LM9ZxmT5XU/57Sk/j5IRS5+WOes5voczPyx/t4= yj5/7qmUr/8Fr1BJz2TOV91HOWf1t+PrwvLXNtWXsL/z29FD1lo+daWtr3XIOe8mGRtZ5y8bAs9= OTbcnr+R3P9j9o/PFbLOCz890zV7smzZWw998fDcvvw+lje0XMNe8reo3738F7vua967rWec9AT= 9N2TfwuvPfenxRPx8Lr1fJ+Fesp/T/m16JGeQPCe7R4u8dCz755y1HNMj9JdPQ2Jh3Ws5e8Py3r= P8gEPz+PDe7nnXrPMfc+93FNfPzyWf5V+twrFAGaMGI0GVColjo6OBAYG0tbWRk5ODp2dnXzwwQ= d4enqycOFCfvrpJyorK3n11VdZsmQJL774Ira2tgB4eXnh7u7GnaI76Du1ODo4Ep+UwJ49exg9e= jRRUVHI5XLGjx/P+vXrcXV1JT09XRDemzdvcu78eVL69cPe1p6oyEh+OnWGPXt2s2BBd7bPd999= x/fff49er0ehULBhwwbCw8P5+eef+eKLL3BwdCAiIhwrmRUhoSFs+2YbY8aOQaFQ0NbWxnvvvcf= hw4fRarUUFxcze/Zshg4bys2b+eTl5TJ81EispNKHihn+jSwb4B+lywrz+pDw/72/9ey35/OPes= fDzwB/10L+rXUQ/t67fitZxmI0Grl79y4KhYLW1lYB/W955mGl8M/G13NcBoOBDz74gL179yISi= XB0dOSll176h4j8hzfto6jnJuz505ItFhAQQGFhIVKplGXLlj3wIf97ZFHA/+jk8ltONT2V5aPa= /c1o7K4f9Y/k8h+t72+Vk57v/S38P+qdEolEQLL9K6rPMg//bBx/byy/dYz/7mmzZ7t/tpcexee= j5uXhwqgW+mdyYSEL1um30MPtLTXCHjVtj+K/5354FC+/ZX7+0b4RicW/mgtB/vnbPPVsa9kX3X= 3/fd7g13r1UXz8q/vE4lF81O//WZ+/RSf/s334cB893/uw/Pyr9Kh3/16lFn6/6xcs1YDF3eluW= l23C9TPzw83NzdMJhNXr14lPDycO3fuoNfrkcvlVFRUUFFRwZ07d1AoFAwYMIDOzk40HR3IreVI= raRYScWMGjWcLaVlvPPOO3z44Yf4+/sjFotRKBQ4OTkJKcb5N/N57733cHZ1ZsjwoZgx4uXjzdj= xj7F58+c4Ojjx1NSnWLRoEdOmTWPPnj089thjRERE0NLSgp29HVYyK56cOhlHJwcwm0kbPIiCW9= 3gyZUrV7Jq1SpGjx7N2bNnsbW15c033yQhIYGCggL+svYvOLu6kNAnCaPZ9E9m7UHS6/V0dHRgb= 28vCJPZbKa9vZ3i4mIcHBwICAgQlI0FkFxVVYXJZMLPzw8XF5d/29L93ySTyURTUxMNDQ0EBgbS= u3dv4uLigAc3kyUbzGw2C27Tnjidf0bW1tYMGjSIgQMHPtD3P2rf1tZGWVkZQUFBD2Qg9KSuri5= KS0sxm80P4EssfTs7OzN16lQBAHrnzh1CQ0NxcHD4TXz/T5IZaNcaqVbpiPS26S6y+d/t0wx1rX= o8nazQ6EyYzeBgI/ndanSbzXC/WYdMKsbdwYr/H4r8/wi1dhgQiaClw4CdtQSFrZTihk74+2fHA= AAgAElEQVQ8HWU42Uj/n85Tm9aIyWSmpkWPr7M1DnLJ/9o6WeTRYDLjo5AhEYtQtnehsJUiEYtQ= dxpQdxrxcZZ1l2m1VCExmylp0KLtMhHoKhfG0Kk30dllQmEr+V32y3/o96ffEXOTi4enByKRCFW= Tirt37hIYFERK375CfYivv/6aU6dOIZFIGDt2LCkpKWRkZLB3714qKioYMmQI3t7e5ObmcujwIb= y9vRk4aAAisQgrqRWxMbEU3b3Hl19+SU1NDT4+vowbP57hw4ejVDbx2V//yroN6/D09WTyU5OR2= 8p/OZ2Ar58vbm4u7Nmzm8zMM0ikUlxdXYnu1Qu9vosTP57g/fffJ/vyZSY9OYmomCgkYjFmkQiZ= jTXxCYncKbjDtq1f09DYQGJSIkMGDyEhIYEmZRObN21m7dq1eHl6MenJichtbRCJRCibmh6Juel= JJpMJvV7P3r17uXHjBomJiYJbWqlUsnTpUry8vMjLyxOQ9pZ2Go2GzZs3U1JSIsSee3o2zGazEL= O3YB7+u2Q2d6fmX79+HZFIxKlTpzh69CgDBgz4t/u3eGveffddnnjiCeRy+a9c4zk5OaxYsQJHR= 0cUCgVnzpxh9+7djBs37p9a+5a52LlzJ+fPnyclJeU3eU8sYdcdO3bg6+uLu7v7I08qer2eL774= gtu3bzNo0KBf9Wv5f5PJRFlZGVu2bCEyMpIzZ85w/vx5+vTp87utTXl5OevWrRNSkf/x89DY1sU= 7B8tYl3GfOYO8kEp+qVNjNPN9XhNWEjEOcikfn6iif5jjP1XmJrOZK6Vt5FW008vHjrN3W5CIRb= jZ//tGiPkXXm9UtXO/WYeXQkZrpxGJBOys//c+mv+XyGQ2c+S6koslat74rgxnOykxvnYo2w3Yy= yXIrcT/z+bJbIbTBS389cx9PjpeSVKQA4Gu3XWO/jeW6mpFG6/sKaGoroPBkQrUnUZ+yFcR6WWD= 3mBm3an7fJ/XxOhYF8RiEItEGE1mNv9Uw9m7rXR2mfgxX8WAMEfMwMViNWazGVc7K8SPqDz/H/r= fp9+liF93AvgvcXmplIioCHIu5bB50yYGp6URGhrKO++8I2TEWKoyhoWFMWLECHQ6Hba2tshkMu= rr6zl46CBtbW1Mn/kMSCSAGbGVCHuFI5OmPMndu3e5fu06p8+cRizu/rvZDB5eHjw5dQqhEaFIr= ax+ue5AhEjSbV33iovF28eHq7lX2bT5M3Q6vVAUSi63Jioqiil9k3FxdcEsMmP+RWglUgkOCnum= TJtM8d17XM27RuaZTCSSX4qbmc14eHkw7ZlphIaFIpVb9Zibnj8fMXtmM2q1mj179pCRkSGg/83= m7orEW7dupX///gwfPpxDhw5x//79B9pKpVIaGhp48803yc3NxcHBgcDAQC5evEhkZGQ3HmrzZh= YtWoRGo+HKlStUVVURHByMvb09+fn5DB06lNzcXCF08vjjj3P16lVEIpFgBBw7dkyoTZSUlMS+f= ftobGxk4cKFaDQaoSZJfn4+d+7cwcXFhQEDBlBcXMy9e/cYOHAgJSUl2NnZ0adPH5qbm7l8+bIQ= 001JSaG4uJgnn3zyV1U7jUYjpaWlbNmyhblz5zJw4EDEYjHh4eH07t2brq4uCgsLuXbtmlCcrrS= 0lCtXrpCQkMDNmzeJiIggODgYuVxOdHQ0BoMBpVLJ2bNnEYm6QYgRERGCJ8VgMJCbm0tJSQlubm= 44Ozvj7+/PTz/9RG1tLREREUIhLouxV1NTwxtvvCGAxQsKCggJCUEsFgvVQ00mE/X19fTq1Qt7e= 3u0Wi39+vWjq6uLq1evUlJSgq+vL4MHD8ZkMnH06FE0Gg2JiYm0trZSW1tL3759KSwsFLK+LGN1= d3dn8ODBtLW1ER8fj1QqpbOzk6tXr1JaWkpgYCBeXl7Y2NhQXV39S/FIGc52UiYmunGhqJWLxWp= qW3QMDHfiSlkba36oYkKSK43tXWQVqYnysiXA1RqdwUxpQydymZi+wQ6IRSKy7rUyOFKBu4MVeR= XtPJfmRb1aj85gxtlOSnWzjnN3W5BKRAyNckajN5Jb1oaVRESgmxyZRMT1ynacbKWkRTgBcDK/G= b3BRKiHDWqtgY2na4jztyPQVU5JQyfOdlLyqzQ0tHUR7WOLvbWEaxXtjO7tTGFtB8X1nXg4yugf= 5kiXwczPhS106I0kBjoQ6tHdx7WKdgAGhDlhKxNzo0qDr7M11yraiPCypUNvpKZFT58ge2xlEu7= WdeBsZ8Xd2g5ifGypbdXT3GFgYJgTXgoZeeVtlDR0YieTkBRkj6ejjCPXlIR72XC7WkOMrx3RPr= Zk3WvFSipGLILUEEekkm4tajSaOXytCW2XCW+FNSnBDtSr9VyrbEcsEhHmYUNnl4l79R3dIRNgQ= LgTJpMZW5mEaX0VFNzXYDSBwWTmZlU7LnYK2sVGLha30tTWhYejjMGRTpQ2arlW0Y7cSkxykAPa= LhPFDZ042kioVukYFO6Eh6OM4zeUONpI8HW2JshNLshJkJuc5GAH8qs0NLZ1YSMT0z/Mkaa2Lgw= mM28+HkhOaRt3azuoVukI87TBYDRTodQS7W2Lj7M1Z++2EO1tS5y/nWBUVCp11Kv11Kv1dOpNpI= Y64utszenbzag0XXg5yUgNdcRW1m3YGk3dHpbqZh0AyvYuBoQ54u4g42pFG/fqu71XBpMZg8nM7= RoNfQK79cylEjW1LXqsrbqv8DH/clWQSmPgq3N1rJkWQp8gB17afo+fC1tJDLSnXWckwtbmP0b1= /2H6XcJSZrpPDSaTCanECr+AANKHDWH7th0sW7aMtWvXEhYWJngVen64rK2tBcBSZ2cnW7du5cC= BA4wcPYromGiMBiMScbe1byWRILGV0Du+N716x3S/1wJGlIgRicRIRGbEYlH31VAmC3cgQYRUao= WHhzsjx4xixNjRmE3dxQbFEjFiuu+8kvxyKhcBIpOl9LIYqUiMzEZCdO9YomJ7AX8DvEl/MZ7E4= l/AYObu+6lM/ONwh6X67B//+EdWrlxJSUkJkZGRwgm/qakJlUrFE088gUgkory8nLCwsL/Nu9nM= lStXGDVqFO7u7pw+fVpIAR0zZgyZmZkEBgYycOBA4uLi+K//+i8CAgIYM2YML774IitWrKCqqoo= ZM2bg5ubG8uXLqa6u5oMPPiAsLIzm5maheuimTZvQ6XScOnWKQYMGYTKZGDZsGB4eHty6dQs3Nz= d27NhBaWkpr7zyCkeOHGHPnj0MHz6cjRs30tbWRmtrKx0dHURFRbFo0SJeeuklJBIJ7777Lt988= w0lJSVMnjz5V/iXrq4uzp07h4eHB0lJSdjY2ADdlTgHDhzIjz/+yIEDB3j33XfZtWsXzc3NJCUl= cerUKXJycnj++efZuXMny5cv56effsLf359Lly6xc+dO3nzzTWpqati2bRurV6/GZDKh0+nYuHE= jVlZWPPPMM3z00Uekpqby5z//mfj4eOLj48nNzSUsLAxXV1eMRiO5ubkkJiaiUCjYsWMHZWVlLF= y4kE8//ZS0tDQBt2MputivXz8UCgU3btwgICCATZs20dzczAsvvMDu3btJTU1l4sSJvPbaa9jY2= JCTk0OfPn3YvHkzdXV16PV6lEolnZ2dbN68mXfffZf169czaNAg2trauH//Pnq9nlWrVhEUFMTU= qVMZOnQohw4dwtPTU6h3IRKBWNR9UlW2G/gxX0Wwu5ztWfU8l+aFrUxMaqgjZU06rlW046WQsWx= vKcX1neS8k8jmn2q5VKJm+Rh/xsW7IpOIuFLWhr21BLMZmtq7kIq7vSvpH13lmxeiOFPQzO3799= meVYePwprVTwXTqTcxe1sRJ5fH8flPNeSWt2MlEaHrMhHja8dHxyv5yzNheDha0SfIgS/O1rLrU= j1/HOvP+HhXZn9RyK4F0VQqdUT72JJxq5ld2fV8NjuCNw+UUVzfybXKdoZGKdDoTLx1oIz3JwVx= IK+J2QM8OV/UyjOf3yHK25bMgmZ6+djx2mN+zNxyh0XDfalo0vJjvgqxCM7caSE9SsFTfd0Ztza= frfOiOHFTRXmTlhgfO27XaJg/xJsLRa2s2F9Gs6aLOzUdpEU6MTDcia8v1PHW44GcK2rFUS7lel= U7yUEOSCXdldj/fLSCKC9b+gY78sHRCm5Va/j0ZBXBbnJWPxWCv4s1I9fc4LNnIzh2XYkZGJ/gy= tWKNtwcrLCVSZCKuz3W7x2qYM/lBvYv6kV+tQZ1p5EZqR7M+qKQm9UablS28/6kIH64qWLRjns0= tXdxv1nHnEFeWEtFNLV3YTCasZKKOVWgwdtJhrWVmNoWPTP7e7J8bwnvTAgk41YzCf52rDlRy+E= /xFKv7sLaSoTCVorBaOZWtYZRvV14aXsRh/8Qy/GbSpztpIR72XCnpoPH410xmsAkMtOo7uK5r+= 5S1tTJB08Gk12sprnDQIfehEZn5Klkdz76oRIbmYSUYAdEIrhZreGN78rIr9Ywe6BnN88SEXqDm= e/zGnnriUD2Xm4g0E2OSmOgpEGLj8Iasxku3GtlQLgjF4rUmCwF5UVQ26JHrTWQHOyARCTC3lpC= Q5ue8iYtJrMZD0fZf0JS/4fp96lQbIbqqmqysrK6U4PDwkjsk8TsuXM4fPAQzz//PAsWLGD8+PG= /wixYMCWXLl1iw4b15OVdJX3YUEaPHc21vGvkXr4ieIVA9AAy7gEHpwWN3+O/f5dfS1sBcdejle= gX2X4AqPugAIseZALM5h43kf+tPwBNewdz5jz7Ky7M5u6KsW+88QY6nY6VK1cKtQwsIRStVktQU= BAODg5otVoqKiqYNm2a0N4ybxMmTBDCHWKxmJUrVwpFo7799lsmT55MQUEBGRkZJCQk0NbWxurV= q8nPz0epVPLdd99hb2/PDz/8QH5+Pi+//DLV1dU0NDRw8OBBtm3bRnh4ODt37iQuLg6tVkt1dTX= z589HqVRy9epVpkyZQm5uLs899xyOjo40Nzfj6enJ5cuXsba2plevXuTk5NC3b19mzpzJ+++/T3= h4OH/5y1947rnnKC8vx8rKCjc3t1/NlQXtb6msaTEUTCYTKpWKnTt3snr1ajw8PKioqCAuLo7bt= 2/Tp08f5syZw/nz51EoFELBOm9vb7Zv386LL76Il5cXR48epX///tjZ2WE0Grl8+TJisZiZM2ei= UqloaWmhvb2dwsJCwfhJS0vDyckJs7n7Tqr8/Hzi4+O5efMmpaWlvPrqq7S0tAiF7iweqoaGBm7= fvs3s2bNpbGzkxo0bTJw4EZFIxMKFC3FxcWHJkiWsX78eGxsbfvzxR2JjY0lLSyMzMxO5XE5SUh= InT55k9OjRfPLJJ8I9Vn/5y1/QarXcvXsXDw8PvvnmGwIDA5kzZw6XLl1iyJAh+Pj4YGVlJeC2e= twHi7uDFSvGBXDoahNN7V1IRGBtJcZeLsHeWoy1VEyUly3PDfIkv7oDuZWYxxNc2XahjnadUTgZ= t2kNDAh3xGQ2U1jTwaAIJ84VtuLpaEWMjy0J/nYYTNA32IHdlxpIDnLg25xGZFIR+3IacHew6vb= kSMWcuq3i+A0l2i4TVhIR1lIxcisxi0f4cq+hE7MZ5FZi+oc5ceS6kl4+tkjEIm5WtWMwmdmX00= BCgB0hHnL2X2lk4VAfYnxsmT3Qk/1XGjGbzfg4y3gy2Y2f77bQy8cOZXsXX82NpKBGQ0KAPcN7K= Th+U4XOYGJcvCudXSY2zgznfFELgyMVhHnY4O5ghd5gpqBGg4NcgoONlDBPGzwcrVg+xo9pmwpY= MsKPa5XtqDQGJGII87ChrFFLgn93UT6TuTsUmF2s5ul+Hvg6y3gszoVLJWo+nBzM2cJWEgPsMZu= hX6gjfz19H53RzLQUd9p1Rlo6jMT52QveBLMZ3ng8gEPXmmhsM1BU28moWGccbCQc/UMsx24oOV= vYwvd5TUjEMGuAJw1teo5dV7F8jD8bM+9T06xnTpoXx64rsZaKCXKT88NNFSaTmXNFLTzZxw0Ha= wl9gx24XtlOUqA9eoOJoroOhkQqkIi712diHzcGhDmy/YINt6o7GBfnQsbtZsqbtExMcqOmVc/x= G0qaNQaC3OQsGu7D5RI1aRFOXCxW06wxcL9Zx1N93QlwtWbLnAiqlDrWnKiiQ28kzNOGcfEuONt= JWZDuzec/1XK3rpM7tRri/e3xc7amT7ADzRoDGq0RV3spfs7WTFh/i4QAew7mNVHTomfr+ToWDv= VGjAh3ByscrCWUN2oJ9bChQ28k1teOCpWWIFc5IhH/8dz8H6bfxXNjMploamwi63wWZrOZvNyrd= BlNpA8fiqe3F4e+6y7X/NFHHzF69GhiY2NxcnISMo0yMzMpKCjAzsGeKdOfIrV/Kvk389n81020= t7U/kK0ik8lwd3dHJpPR1dVFe3s7EomE1tZWoSaGRqP5FY8WVLflorfOzk6cnZ1pbW3FxcUFW1t= bGhsbaW1t/VUGkqW99BecjqVeSUtLC05OTojFYpQqZffVEw+lSlpbW9PZqX3kvLm6urJhwwY6Oz= tZvnw5b775Jn5+fhQXFwthI7O5+zLC3bt38+STTxISEoLZ3F3V89SpU3R2dmJra4tSqcRsNvPyy= y9z7tw5AgMDhdO7BaicmJjItGnTOHv2LDk5Oej1embNmoVCoRCqoi5YsICYmBjWrVvHyJEjKSgo= oL29na+//pqDBw+ybNkydu3aJVTlPHDgAGPGjEEk6r6zpaSkhJMnT1JdXc3s2bNZtGgRhw8fpqa= m+8JUo9FIQ0MDXV1drF69mkOHDrFz506ys7MpLi6mtbWVxsZGIYQE3dka/fv3580332T//v306d= MHvV7P5cuX6d+/v1CHY9++fQQFBdG3b182b95MUFAQWVlZ7Nu3j40bN7Ju3ToGDRqEWq1GqVTS3= NzMH//4R7Kysvjyyy8FWbbUSDl9+jSrV69m3LhxGAwGUlJSGD58OIWFhdy6dYvIyEgAqqqqaGpq= Ii8vD1tbW5ycnMjKymL9+vUkJSUJmQ5Go5E9e/bg7OxMfn4+Fy5cYPz48RgMBpqamrh79y63b98= WSryPGjWK2NhYrl69SlFREQcOHODAgQOUlJRgMBiwt7ensbGRoqIijhw5QmJiIr6+vhQWFjJx4k= T27dvHs88+K4x/yZIlaLVaGhsb8fHx+dudYwYzjW1d6A0mypu0NKj1qDQGmjsMGH4JEXR2mejQm= yhr0qLtMlPc0EnB/Q4u3GslxtcOJxspt2s0dBnMtGtNeDhYoe400qk34eUowzlKytsHjXxxtpbB= kU5cuKdGKhah0RlRdxrpG+QgfCiC3OUU1XVSWNuBl5OMPkHWHLuuoqZFR5fRRIVSS6DSmtYOAyq= NAaPJzNJRvgxefZ23nwhkVIwzA8KcOHe3FWc7K0RAeVO3R+fQ1SbMZlcOX1MyOdmNEze7jSd/Fz= lyqZhePrZk3FJRqdRS06ynTWukpllPg1pPS4eBmhYdGp2R6mYdNS161J1GqlQ6VJoujCYziYH2H= LmmJDXUkYomLX7O1nR2dQOqq5t1KNu7aO00UN6k5XxRK8+lefHO9+XMTfOmulmHwkbKgDBHVh2r= ZNFwH8qbtIzp7cLt+x20abtBrw5yCfXqLl4d7YtYJEImFaHu6E4VdrKVCuunbO+ivFGLwWimU28= k2teWnZcasJGJMRjNlDVpMZrMOMgl+LtYU1DTgUrThbbLRJVKS1NbF21aI99ebsBkMtPLx5bLpW= oGhDly5JqSCE8bihu0VKp0nMxXMSHJjW8vN/xiLIlwc7DCZDbjpZBRqex+ztOpOxwmtxKTcauZ7= GI18wZ7IxbBS0N9MJpBbzCx51IDLR0G6lr1NGu6sLeWEOwuZ92p+6x4zJ/7LXoCXK35wyhfzOZu= gO83Wd1Gdm2Lnqb2LnQGE6HuNpzIVzEkSsGdmg7yytuwlYl5JtUTiRiOLY1FbzRz5JqSc3dbeHa= gJx06E8p2HR6OVswa6MWO7HqC3eR4KWR4OsnILW9jTKwL2s5OqqsqCQ8P/2+lLP+H/mfod6lzU1= 1dzcKFC8nIyOiupSER4+DgSN/+KUyaNAkbuTWV5ZXczL9JUeFd1G3t6HRaRIhRKJwICAokPj6B8= MhwRGIRZ05nknHiJCqlSqg3AN0pYmFhYbz00kvcvHmT9PR0Tp06RVRUFMXFxaSlpbFixQrq6+t/= xadYLMbe3p758+cTHR3NZ599xh/+8AdOnz5NYGAgFRUVBAQE8NlnnwnVZR9uHxYWxssvv8ydO3d= wcHBg+/btvPzyy7i7u/Pqq6/S3t7+gHEjkUiQW1vz4apVLF68+JG1HyxVOq9fvy58tEtKSoQig1= VVVdTV1eHh4UFgYKAAnG1paeHOnTuYTCZCQkJ+MaK6y8nX1tbS2NiIQqGgubkZJycn4aOn1+sJD= AzEycmJxsZGvL29BUOxvr4eV1dXZDKZgN8xGAx0dHSgUCgwGAzCJX46nQ4/Pz9aWlqEwm1KpZLG= xkbkcjm9e/cWPqT+/v50dnZy79697otKm5vp6urC1dUVtVqNXC4Xbur18/OjsLCQ6OhoAQxrqfP= Q0NAgZIZJJBKhmmx1dTW1tbUCLqauro5Vq1YxZ84crKysSE5OBhCMp4iICKqqqmhvbyckJISysj= K8vLwICQnBZDLR1tZGQUEB9vb22NnZ0dzcjJeXF7W1teh0Ory9vQn6pVKtZS3u3bsntC8qKsLOz= g4bGxuUSiW9evUSvDyFhYUYDAYiIiIoLy+npaWFsLAwmpqaaG5uJjAwEA8PD1QqFeXl5RgMBoKC= grC1tUWlUgl3NVmwQBZj0cfHBz8/Pzr/v/bO5bep7I7jn/vw49oOcZ5OCI+MKaEDmpmqaKSq7Wx= Yd1GkFAkWs0PQBausWlZs+oeEbVWViiVCSqW2UIkRlEYhFAIJeSceEtux77Xvo4vje319sZPQcV= sGnc/K9vV5/c6x7s/3/H7fU60yNzcXXNvY2AjaLpVKnDt3jq2tLcbHx4VaNeLG8Hy9wmZJ3EQc1= 8OyXY71Jdgu18GD/kyM1R2LpK7yzWKZfyzv8asvB+lJ6pwaSmK7HgtbZrBtMZDR2S4JfZShnhiO= 67G2W2P5WwsUONGf4PW2cPpPDRv0p3XWd2ssv62hKHB2NMVO1WapYKGp4ilEXzqG63rsVm2OGDr= Fqk0qrnE6ZxCPqTxfr5A1dEZ643jAYsFks1gnpil8OprCdj2er1dwXBjsiXG8P8FWqc7ytxaKAj= /IGRTKdbZLddIJjbrjYdZdepIae1ZD50MVMSHZlE6x6mA3nIM9y0HXFE4OJNmt2hTKNsmYyon+B= Ou7NYqmg64qqAqYtstQJkbJcqjZoq4TAwkWt01GeuNkkhpPlso4LvRndI73JXj8Zk9k4o2kOGJo= /Pb3r/jljwdRFPj7Qon8UJKfne4VdizWeLVlkoprqIrIWsokNPJDSRa2Tao1l1RcJT+UZLcqsuR= URdi3ZNqYdZcjhk7JdHBcj6GeGGXLwaq7HO9PMpDRebVlUjQdjLjKp6Mp/rVRDWwwciROTBdPPg= AKZZsXG1VUFc6MiLgoTVWY/us6PxxNc348gxp62mTZHs/WKpg1hyMpnbd7DVsOJFgqWNQdj3RCJ= T9kkIqL32DZcni9ZVK2nGBtAJwbS/Nys4pZd0noKqmERlxXGB9IijACREjFVkk4nZ8MGlRrwnk9= OZAkriv8c7lC3XE5lROZhJYtnPe6VWHhxQu++OJz6dx8gHTdufEFnzRdHHR29NgYP//qKz7/0Wf= 09/ejqipWrUatJk7zNVIGCgrlYpGF+ZfM/HlGpIpbtRbHxtcMmJiYYGpqivn5ec6fP8/t27dJp9= NMTU1x9epVZmdn20o2q6pKb29vcPZMuVxmbGyMp0+f8vDhQ2ZmZpiYmODZs2cUi8V3ymuaxtGjR= 5mcnCSfz7O3t8fMzAxXrlwhlUoxPT3N3bt3W4TcNE0jkUjwuw7OjU87QT3/xhkVOAoLR4UFv8LC= TlGhsKhwmy++FI1/Ci+FqOhTlKhQU7R8WHAvOs7w59GMIp9OjmBYkM8fS1iY68mTJ0xPTzM8PMy= 1a9fIZrMtwm9+nVHhLn99+baLiqOFRdDCcxGdo7DAV7uxhPsfrtO/FhUA88WsokTXjN//diJ70f= lrWUuIYMzpv2zweKksNlwju67Q3L56u2fztxdFdio2X37Sw+mc0XKTUBSCVFpf48Rv3vW8IKYhf= N0vLw7cbdgs6H9TfyRcplEAFOFw+Af2RtN4Xa9ZVsSyeU09n8b4XdcLrnue19yqC7UdtkHLDnTk= vZ9I57gilklRCMbQsluuNN/7/VVorke30Q//M98WasO5uvPNNqYt1sDpnNjqi+n+WhVj8jvmeX5= fWsenhtpqhx+sHO6rGJ8YlP9rDs+Vv9uvKs158LzGeBp6Ny83TR4vlfnsWJr8UJKYrgZzBOC6zf= FHbRQ2o9ZoQ6y9ZhthG7fMnddcB74zFW7TQ9jJ7287+6ihNn99YZSTISdJOjcfFl3TuYlOrGM7u= I7L4sJr1pZX+dMf/shQbph8Ps9wbphMTwbLqrG1scni60XevFmislcJjo9vhx94HIvFgnToWq3G= ysoK8/PzzM3NHXiek2ma3Llzh7NnzzI2NsaDBw+4ePEik5OTLCwsMDs727F8LBbjzJkzaJpGT08= PFy5c4NGjR2xubnL58mXu379PqVTa1y7taCeo59NOgGlfkap92jsoXfowolDvS7fq3G/Mvhqwrz= Fz8+ZNEokEhmG02C/8upMt2gmbHcT7iFAd9tpBfeh07X0FsPwb0dc/zXHlJ8MHft+yXao1F8f1M= OIaxv8wvVgisB2P3/ziBI4jvI+krpKMq+jfg5RkzwOz7lKpORhxjYSuCOf0e4YCaJoSOFiSD4+u= PLlZXV3lxo0b3Lt3r6NzEfxDVtXGPyYviFEJP2nYt7ONmBt/66RUKrGzsyIRKrUAAAEZSURBVIO= u68H2Qad6/JujYRhBH9PpdHBScCaTYWVlhXq9vm/MTSaTIZvNUigU0HWdSqWC4zj09fVRKBRaxq= +qKslkklu3bnH9+vUDNVUkEolEIpF8d7ri3JimydraGpVKpVv92pd2Wyn+I9f/pI4wB9URLddpW= 8b/rqqq5HI5stls156GSCQSiUQi6cx3dm6AlviPLlT30eA7PfudVSORSCQSiaS7dMW5kUgkEolE= IvlQOFRAcTiDpFOwr0QikUgkEsl/m3DiR6ddkUM7N/7Bl+VyuaudlEgkEolEIjksiqIwODjIpUu= XguN43vnOYbelwrobEolEIpFIJP8vonpj71yXMTcSiUQikUg+JmQKj0QikUgkko+KfwOqgMa3Yp= b0wAAAAABJRU5ErkJggg=3D=3D" width=3D"567" height=3D"110" alt=3D"" /><br /><= span>DATOS REVISTA</span></p></td><td style=3D"border-top:0.75pt solid #000= 000; padding:0pt; vertical-align:top"></td></tr><tr style=3D"height:0pt"><t= d style=3D"width:44.25pt"></td><td style=3D"width:11.1pt"></td><td style=3D= "width:101.35pt"></td><td style=3D"width:312.35pt"></td><td style=3D"width:= 1pt"></td></tr></table><p class=3D"Default" style=3D"margin-bottom:10pt; li= ne-height:115%"><span style=3D"font-weight:bold; color:#a5a5a5"> </spa= n></p><table style=3D"width:468.3pt; margin-right:7.05pt; margin-left:7.05p= t; margin-bottom:0pt; padding:0pt; border-collapse:collapse; float:left"><t= r><td style=3D"width:74.75pt; border:0.75pt solid #000000; padding:0pt 5.03= pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify; = line-height:115%"><span style=3D"font-weight:bold; color:#767171">Palabras = claves:</span><span style=3D"color:#767171"> </span></p><p style=3D"margin-= bottom:0pt"><span>Crecimiento econ=C3=B3mico, PIB per capita, energ=C3=ADas= renovables, regresi=C3=B3n lineal simple</span></p></td><td colspan=3D"2" = style=3D"width:4.3pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vert= ical-align:top"><p class=3D"Title" style=3D"margin-top:6pt; margin-bottom:1= 2pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"f= ont-family:'Times New Roman'; font-weight:bold"> </span></p></td><td s= tyle=3D"width:356.1pt; border:0.75pt solid #000000; padding:0pt 5.03pt; ver= tical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify; line-he= ight:115%"><span style=3D"font-weight:bold; color:#808080">Resumen </span><= /p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><sp= an style=3D"font-weight:bold">Introducci=C3=B3n: </span><span> </span>= <span>El presente art=C3=ADculo investiga la relaci=C3=B3n entre el consumo= de energ=C3=ADas renovables y el crecimiento econ=C3=B3mico en Ecuador y E= spa=C3=B1a durante el periodo 2000-2020, en un contexto global marcado por = el cambio clim=C3=A1tico y la necesidad de adoptar fuentes de energ=C3=ADa = m=C3=A1s sostenibles. </span><span style=3D"font-weight:bold">Objetivos: </= span><span> </span><span>El objetivo principal es analizar c=C3=B3mo e= l uso de energ=C3=ADas renovables influye en el crecimiento econ=C3=B3mico,= utilizando un modelo de regresi=C3=B3n lineal simple para evaluar esta rel= aci=C3=B3n.</span><span>  </span><span style=3D"font-weight:bold">Meto= dolog=C3=ADa: </span><span> </span><span>La metodolog=C3=ADa empleada = es exploratoria-descriptiva, combinando enfoques de an=C3=A1lisis cualitati= vo y cuantitativo, con m=C3=A9todos documental-deductivo, aplicando una rev= isi=C3=B3n bibliogr=C3=A1fica y un modelo de regresi=C3=B3n lineal simple. = </span><span style=3D"font-weight:bold">Resultados: </span><span> </sp= an><span>Los resultados indican que Espa=C3=B1a resaltando como l=C3=ADder = en energ=C3=ADa renovables, presenta una sucesi=C3=B3n positiva, aunque poc= o significativa entre el consumo de estas fuentes y el crecimiento econ=C3= =B3mico. Por lo contrario, en Ecuador, la relaci=C3=B3n de estas dos variab= les fue negativa y poco significativa. </span><span style=3D"font-weight:bo= ld">Conclusiones: </span><span> </span><span>Con estos hallazgos se co= ncluye que existe la necesidad urgente de pol=C3=ADticas efectivas que fome= nten la transici=C3=B3n hacia energ=C3=ADas renovables, planteando que las = experiencias de Espa=C3=B1a pueden servir como modelo para Ecuador. Este an= =C3=A1lisis proporciona informaci=C3=B3n valiosa para formuladores de pol= =C3=ADticas y destaca la importancia del consumo de energ=C3=ADas renovable= s como motor clave para un crecimiento econ=C3=B3mico sostenible en diferen= tes contextos. </span><span style=3D"font-weight:bold">=C3=81rea de estudio= general: </span><span>Econom=C3=ADa. </span><span style=3D"font-weight:bol= d">=C3=81rea de estudio espec=C3=ADfica: </span><span>Econom=C3=ADa ambient= al y energ=C3=A9tica. </span><span style=3D"font-weight:bold">Tipo de art= =C3=ADculo: </span><span>original.</span></p></td></tr><tr><td colspan=3D"2= " style=3D"width:78pt; border-top:0.75pt solid #000000; border-right:0.75pt= solid #5b9bd5; border-left:0.75pt solid #5b9bd5; border-bottom:0.75pt soli= d #5b9bd5; padding:0pt 5.03pt; vertical-align:top"><p class=3D"Title" style= =3D"margin-top:6pt; margin-bottom:12pt; text-align:justify; line-height:115= %; font-size:12pt"><span style=3D"font-family:'Times New Roman'; font-weigh= t:bold; color:#767171">Keywords:</span><span style=3D"font-family:'Times Ne= w Roman'; color:#767171"> </span></p><p class=3D"Title" style=3D"margin-top= :6pt; margin-bottom:12pt; text-align:justify; line-height:115%; font-size:1= 2pt"><span style=3D"font-family:'Times New Roman'; color:#767171">Economic = growth, GDP per capita, renewable energies, simple linear regression, simpl= e linear regression</span></p><p class=3D"Title" style=3D"margin-top:6pt; m= argin-bottom:12pt; text-align:left; line-height:115%; font-size:12pt"><span= style=3D"font-family:'Times New Roman'; font-weight:bold"> </span></p= ></td><td style=3D"width:1.05pt; border-top:0.75pt solid #000000; border-ri= ght:0.75pt solid #5b9bd5; border-left:0.75pt solid #5b9bd5; border-bottom:0= .75pt solid #5b9bd5; padding:0pt 5.03pt; vertical-align:top"><p class=3D"Ti= tle" style=3D"margin-top:6pt; margin-bottom:12pt; text-align:justify; line-= height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'; = font-weight:bold"> </span></p></td><td style=3D"width:356.1pt; border-= top:0.75pt solid #000000; border-right:0.75pt solid #5b9bd5; border-left:0.= 75pt solid #5b9bd5; border-bottom:0.75pt solid #5b9bd5; padding:0pt 5.03pt;= vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify"><sp= an style=3D"font-weight:bold; color:#808080">Abstract</span></p><p style=3D= "margin-bottom:0pt; text-align:justify; line-height:115%"><span style=3D"fo= nt-weight:bold">Introduction:</span><span>  </span><span>This paper in= vestigates the relationship between renewable energy consumption and econom= ic growth in Ecuador and Spain during the period 2000-2020, in a global con= text marked by climate change and the need to adopt more sustainable energy= sources. </span><span style=3D"font-weight:bold">Objectives:</span><span> = The main objective is to analyze how the use of renewable energies influenc= es economic growth, using a simple linear regression model to evaluate this= relationship.</span><span>  </span><span style=3D"font-weight:bold">M= ethodology:</span><span> The methodology employed is exploratory-descriptiv= e, combining qualitative and quantitative analysis approaches, with documen= tary-deductive methods, applying a literature review and a simple linear re= gression model. </span><span style=3D"font-weight:bold">Results:</span><spa= n> The results indicate that Spain, standing out as a leader in renewable e= nergy, presents a positive, although not very significant, relationship bet= ween the consumption of these sources and economic growth. On the contrary,= in Ecuador, the relationship of these two variables was negative and insig= nificant. </span><span style=3D"font-weight:bold">Conclusions:</span><span>=   </span><span>With these findings, it is concluded that there is an u= rgent need for effective policies that promote the transition to renewable = energies, suggesting that the experiences of Spain can serve as a model for= Ecuador. This analysis provides valuable information for policymakers and = highlights the importance of renewable energy consumption as a key driver f= or sustainable economic growth in different contexts.</span></p><p style=3D= "margin-bottom:0pt; text-align:justify; line-height:115%"><span style=3D"fo= nt-weight:bold">General area of study:</span><span> Economics. </span><span= style=3D"font-weight:bold">Specific area of study:</span><span> Environmen= tal and energy economics. </span><span style=3D"font-weight:bold">Type of a= rticle:</span><span> original.</span></p></td></tr><tr style=3D"height:0pt"= ><td style=3D"width:85.55pt"></td><td style=3D"width:3.25pt"></td><td style= =3D"width:11.85pt"></td><td style=3D"width:366.9pt"></td></tr></table><p cl= ass=3D"Default" style=3D"margin-bottom:10pt; line-height:115%"><span style= =3D"font-weight:bold; color:#a5a5a5"> </span></p><p class=3D"ListParag= raph" style=3D"text-indent:-18pt; text-align:justify"><span style=3D"font-w= eight:bold; color:#767171"><span>1.</span></span><span style=3D"width:9pt; = font:7pt 'Times New Roman'; display:inline-block">    &= #xa0; </span><span style=3D"font-weight:bold; color:#767171">Introducci=C3= =B3n</span></p><p style=3D"text-align:justify"><span>La preocupaci=C3=B3n p= or el cambio clim=C3=A1tico y sus consecuencias han obligado a los pa=C3=AD= ses a nivel global a optar por fuentes de energ=C3=ADa m=C3=A1s amigables c= on el medio ambiente.</span><span>  </span><span>Este cambio se produj= o especialmente para controlar las </span><span style=3D"text-decoration:un= derline">Emisiones de Gases Invernadero (GEI</span><span>) e impulsar el cr= ecimiento econ=C3=B3mico sostenible. Este art=C3=ADculo titulado =E2=80=9CC= onsumo de energ=C3=ADas renovables y su impacto al crecimiento econ=C3=B3mi= co: un an=C3=A1lisis comparativo periodo 2000-2020" permite explorar como d= os econom=C3=ADas con realidades distintas han enfrentado la transici=C3=B3= n hacia energ=C3=ADas renovables, evaluando los resultados en t=C3=A9rminos= de crecimiento y sostenibilidad.</span><span>  </span></p><p><span>El= uso excesivo de combustibles f=C3=B3siles ha generado un desequilibrio amb= iental sin precedentes, agravando el cambio clim=C3=A1tico y sus severas co= nsecuencias. La liberaci=C3=B3n ca=C3=B3tica de gases de efecto invernadero= derivados principalmente de la combusti=C3=B3n de carb=C3=B3n, gas natural= y petr=C3=B3leo ha elevado catastr=C3=B3ficamente la concentraci=C3=B3n at= mosf=C3=A9rica de estos agentes (Aliaga Lordemann & Paredes Alanes, 201= 0). Este escenario ha provocado a un aumento significativo de la temperatur= a global y la intensificaci=C3=B3n de fen=C3=B3menos clim=C3=A1ticos extrem= o, impulsado por la irresponsabilidad humana, demanda acciones urgentes y c= ontundentes para contrarrestar sus impactos y transitar hacia una econom=C3= =ADa m=C3=A1s sostenible y resiliente (</span><span style=3D"background-col= or:#ffff00">Lino</span><span> y S=C3=A1enz, 2023).</span><span>  </spa= n></p><p style=3D"text-align:justify"><span>La transici=C3=B3n energ=C3=A9t= ica se presenta como uno de los objetivos m=C3=A1s relevantes a nivel globa= l, enfrentando desaf=C3=ADos tanto para naciones desarrolladas como para na= ciones en v=C3=ADas de desarrollo. En el caso de estos =C3=BAltimos pa=C3= =ADses, el acceso limitado a la tecnolog=C3=ADa avanzada y disponibilidad d= e recursos financieros ha obstaculizado su capacidad de adaptaci=C3=B3n a e= nerg=C3=ADas limpias.</span><span>  </span><span>A pesar del consenso = multilateral de los gobiernos en el plan de acci=C3=B3n denominado =E2=80= =9CAgenda 2030=E2=80=9D, la carencia de infraestructura especializada es lo= que dificulta a=C3=BAn m=C3=A1s esta transici=C3=B3n (</span><span style= =3D"background-color:#ffff00">Magoja</span><span>, 2022). Los pa=C3=ADses d= esarrollados tambi=C3=A9n han enfrentado varios retos en la implementaci=C3= =B3n de energ=C3=ADas renovables, particularmente en cuanto a la eficiencia= energ=C3=A9tica y la dependencia de los combustibles f=C3=B3siles (</span>= <span style=3D"background-color:#ffff00">Salinas</span><span>, 2020).</span= ></p><p style=3D"text-align:justify"><span>En este contexto, Espa=C3=B1a se= posiciona como pionero en la adopci=C3=B3n de energ=C3=ADas renovables, de= stac=C3=A1ndose en la producci=C3=B3n de energ=C3=ADa e=C3=B3lica y solar f= otovoltaica. En contraste, Ecuador, al igual que otros pa=C3=ADses en desar= rollo, se encuentra transitando hacia un mayor consumo de energ=C3=ADas ren= ovables como parte de su estrategia para diversificar su matriz energ=C3=A9= tica (</span><span style=3D"background-color:#ffff00">Sol=C3=ADs</span><spa= n>, 2019).</span><span>  </span><span>Sin embargo, al comparar ambos p= a=C3=ADses, es relevante considerar las diferencias estructurales que afect= an su transici=C3=B3n energ=C3=A9tica. Ecuador, con una matriz energ=C3=A9t= ica mayormente hidroel=C3=A9ctrica, enfrenta desaf=C3=ADos significativos c= omo la falta de infraestructura y financiamiento para diversificar sus fuen= tes de energ=C3=ADa. Espa=C3=B1a, por su parte, ha implementado un marco re= gulatorio s=C3=B3lido que ha facilitado inversiones sustanciales en energ= =C3=ADas e=C3=B3lica y solar, consolid=C3=A1ndose como un l=C3=ADder en el = sector. Sin embargo, tambi=C3=A9n enfrenta retos relacionados con la eficie= ncia y la dependencia energ=C3=A9tica. Estas diferencias no solo reflejan l= os contextos econ=C3=B3micos y pol=C3=ADticos de cada pa=C3=ADs, sino que t= ambi=C3=A9n determinan las oportunidades y obst=C3=A1culos en su camino hac= ia un crecimiento econ=C3=B3mico sostenible. </span></p><p style=3D"text-al= ign:justify"><span>Con este an=C3=A1lisis se pretende determinar la contrib= uci=C3=B3n del consumo de energ=C3=ADas renovables al crecimiento econ=C3= =B3mico de Ecuador y Espa=C3=B1a durante el periodo estudiado. Siguiendo es= te contexto el articulo busca: (1) analizar la evoluci=C3=B3n del consumo d= e energ=C3=ADas renovables en relaci=C3=B3n con el crecimiento econ=C3=B3mi= co, incluyendo las pol=C3=ADticas implementadas por Espa=C3=B1a y Ecuador e= n su camino hacia las energ=C3=ADas renovables; y (2) evaluar el aporte del= consumo de energ=C3=ADas renovables al crecimiento econ=C3=B3mico con la a= plicaci=C3=B3n de una modelo de regresi=C3=B3n lineal simple.</span><span>&= #xa0; </span></p><p style=3D"text-align:justify"><span>Al contrastar un pa= =C3=ADs pionero en energ=C3=ADas renovables como Espa=C3=B1a con Ecuador, e= l cual se encuentra en una etapa temprana de su transici=C3=B3n, podemos ob= tener una visi=C3=B3n completa de los desaf=C3=ADos y oportunidades, que po= steriormente, posibilitar=C3=A1 a los encargados de la formulaci=C3=B3n de = recomendaciones y pol=C3=ADticas energ=C3=A9ticas, tomar decisiones m=C3=A1= s robustas y aplicables en diferentes realidades.</span></p><p style=3D"tex= t-align:justify"><span>Este art=C3=ADculo es fundamental para comprender la= urgente necesidad de transici=C3=B3n hacia energ=C3=ADas limpias en un con= texto marcado por el cambio clim=C3=A1tico y la degradaci=C3=B3n ambiental.= Al analizar comparativamente el impacto del consumo de energ=C3=ADas renov= ables en el crecimiento econ=C3=B3mico de Ecuador y Espa=C3=B1a entre 2000 = y 2020, se busca ofrecer tanto a pol=C3=ADticos como investigadores interes= ados en el progreso sostenible, una mejor comprensi=C3=B3n del panorama ene= rg=C3=A9tico, as=C3=AD como una visi=C3=B3n clara sobre las pol=C3=ADticas = implementadas que han logrado tener =C3=A9xito. Esto no solo permitir=C3=A1= aprender mejores pr=C3=A1cticas sino tambi=C3=A9n, ajustar modelos efectiv= os a situaciones espec=C3=ADficas de cada naci=C3=B3n.</span></p><p style= =3D"text-align:justify"><span>Para abordar la relaci=C3=B3n entre el consum= o de energ=C3=ADas renovables y el crecimiento econ=C3=B3mico, es indispens= able analizar los fundamentos te=C3=B3ricos que sustentan esta interacci=C3= =B3n. En este estudio, se resalta dos teor=C3=ADas fundamentales. La primer= a es la teor=C3=ADa del crecimiento end=C3=B3geno, formulada principalmente= por economistas como Paul Romer, Robert Lucas, Robert Barro y Sergio Rebel= o, quienes postulan que el crecimiento econ=C3=B3mico sostenido a largo pla= zo es impulsado mayormente por factores internos como la acumulaci=C3=B3n d= e capital humano (</span><span style=3D"background-color:#ffff00">L=C3=B3pe= z</span><span>, 2023). As=C3=AD tambi=C3=A9n, el concepto de sostenibilidad= d=C3=A9bil desarrollado por los economistas neocl=C3=A1sicos Robert Solow = y John Hartwick, argumentan la idea de que el capital manufacturado puede r= eemplazar al capital natural, siguiendo los principios de la econom=C3=ADa = neocl=C3=A1sica. Este enfoque considera que es posible mantener la inversi= =C3=B3n neta total por encima de cero, abarcando todas las formas de capita= l (</span><span style=3D"background-color:#ffff00">Mora</span><span>, 2024)= .</span><span>  </span></p><p class=3D"ListParagraph" style=3D"text-in= dent:-18pt; text-align:justify"><span style=3D"font-style:italic"><span>1.1= .</span></span><span style=3D"font-style:italic"> Revisi=C3=B3n de la liter= atura</span></p><p style=3D"text-align:justify"><span>La crisis financiera = de 2008 marc=C3=B3 un punto de inflexi=C3=B3n en la estrategia energ=C3=A9t= ica global, impulsando a los organismos internacionales a priorizar las ene= rg=C3=ADas renovables. Este cambio fue motivado por la creciente preocupaci= =C3=B3n por el cambio clim=C3=A1tico y la necesidad de alternativas energ= =C3=A9ticas (Salazar </span><span style=3D"background-color:#ffff00">Bravo<= /span><span> y Spliarky, 2021). Estas alternativas no solo ofrecen una solu= ci=C3=B3n limpia para la generaci=C3=B3n de energ=C3=ADa, sino que tambi=C3= =A9n act=C3=BAan como motores del crecimiento econ=C3=B3mico, contribuyen a= la preservaci=C3=B3n de recursos naturales y a la reducci=C3=B3n de la con= taminaci=C3=B3n, factores cruciales para un crecimiento econ=C3=B3mico sost= enible (</span><span style=3D"background-color:#ffff00">Tilla</span><span> = Guango & Loaiza, 2019).</span><span>  </span></p><p style=3D"text-= align:justify"><span>As=C3=AD tambi=C3=A9n </span><span style=3D"background= -color:#ffff00">Chen</span><span> et al. (2022) afirma que en los =C3=BAlti= mos a=C3=B1os la creciente necesidad por preservar el medio ambiente ha gen= erado que gran cantidad de pa=C3=ADses a nivel global opten por utilizar te= cnolog=C3=ADas de energ=C3=ADa renovable. Incentivados por factores como la= seguridad del suministro, la dependencia energ=C3=A9tica, los constantes c= ambios clim=C3=A1ticos y la inestabilidad de los precios.</span><span> = ;  </span></p><p class=3D"ListParagraph" style=3D"text-indent:-18pt; t= ext-align:justify"><span style=3D"font-style:italic"><span>1.2.</span></spa= n><span style=3D"font-weight:bold"> </span><span style=3D"font-style:italic= ">Ecuador </span></p><p style=3D"text-align:justify"><span>Siguiendo esta l= =C3=ADnea, Ecuador se ha consolidado como un pa=C3=ADs subdesarrollado que = ha logrado avances significativos en el consumo de energ=C3=ADas renovables= . De acuerdo con </span><span style=3D"background-color:#ffff00">Reyes (202= 1</span><span>), durante 1970 y 2013 mostr=C3=B3 una evoluci=C3=B3n positiv= a en el consumo de energ=C3=ADas renovables en relaci=C3=B3n con el crecimi= ento econ=C3=B3mico, destac=C3=A1ndose el consumo de energ=C3=ADa hidroel= =C3=A9ctrica y geot=C3=A9rmica, reflejando su esfuerzo por diversificar su = matriz energ=C3=A9tica. </span><span style=3D"background-color:#ffff00">Lab= re</span><span> (2024), complementa esta perspectiva al mencionar que entre= 1990 y 2020 Ecuador ha experimentado considerablemente un crecimiento en l= a oferta de energ=C3=ADa renovable, con un aumento constante en la particip= aci=C3=B3n de la energ=C3=ADa hidroel=C3=A9ctrica, energ=C3=ADa e=C3=B3lica= y solar al conjunto energ=C3=A9tico renovable fortaleciendo la residencia = del sistema energ=C3=A9tico nacional ante los desaf=C3=ADos ambientales y e= con=C3=B3micos contempor=C3=A1neos.</span><span>  </span></p><p style= =3D"text-align:justify"><span>En este sentido </span><span style=3D"backgro= und-color:#ffff00">L=C3=B3pez</span><span> (2023) en su art=C3=ADculo concl= uye que, a pesar de que la mayor parte del consumo energ=C3=A9tico en Ecuad= or proviene de combustibles f=C3=B3siles, existe una relaci=C3=B3n signific= ativa entre el consumo de energ=C3=ADas renovables y el crecimiento econ=C3= =B3mico. La cointegraci=C3=B3n que se realiza entre estas variables refleja= que, a largo plazo, el consumo de energ=C3=ADas renovables podr=C3=ADa ten= er un efecto positivo en el crecimiento del PIB per c=C3=A1pita. Es decir, = aunque a corto plazo el pa=C3=ADs dependa en gran medida de fuentes no reno= vables, la transici=C3=B3n hacia un mayor uso de energ=C3=ADas limpias podr= =C3=ADa contribuir a un desarrollo econ=C3=B3mico m=C3=A1s sostenible.</spa= n></p><p style=3D"text-align:justify"><span>En el marco te=C3=B3rico de las= pol=C3=ADticas energ=C3=A9ticas el pa=C3=ADs evidencia un cambio significa= tivo, que le ha permitido recuperar el rol estatal en la gesti=C3=B3n del s= ector mediante instrumentos como las "Pol=C3=ADticas y Estrategias para el = cambio de la matriz energ=C3=A9tica" y el "Plan de Soberan=C3=ADa Energ=C3= =A9tica" marcando un hito en la promoci=C3=B3n de energ=C3=ADas renovables = en el pa=C3=ADs (</span><span style=3D"background-color:#ffff00">Macas</spa= n><span>, 2015). A trav=C3=A9s de regulaciones como la Ley de R=C3=A9gimen = del Sector El=C3=A9ctrico y la participaci=C3=B3n del Consejo Nacional de E= lectricidad, se han establecido par=C3=A1metros regulatorios espec=C3=ADfic= os y programas de incentivos para fomentar la generaci=C3=B3n y consumo de = energ=C3=ADas renovables (Zatizabal Sanchez & Angulo Mendoza, 2021).</s= pan></p><p class=3D"ListParagraph" style=3D"text-indent:-18pt; text-align:j= ustify"><span style=3D"font-style:italic"><span>1.3.</span></span><span sty= le=3D"font-style:italic"> Espa=C3=B1a</span></p><p style=3D"text-align:just= ify"><span>Espa=C3=B1a, perteneciente a los pa=C3=ADses desarrollados, dura= nte la =C3=A9poca de los noventa empez=C3=B3 a evidenciar grandes avances e= n el uso de energ=C3=ADas renovables. Seg=C3=BAn Camacho-Ballesta et al. (2= 021) dentro de este periodo se obtuvo un incremento notable en la capacidad= de energ=C3=ADa e=C3=B3lica, la cual se multiplic=C3=B3 por cien entre 199= 0 y 2003. Del mismo modo, la energ=C3=ADa solar t=C3=A9rmica experiment=C3= =B3 un crecimiento significativo despu=C3=A9s de 2004, pasando de 2,2 MW a = 1.643,4 MW.</span><span>  </span><span>Este impulso se ha visto respal= dado por las masivas inversiones en infraestructura y tecnolog=C3=ADa relac= ionadas con la generaci=C3=B3n de energ=C3=ADas sostenibles realizadas en l= os =C3=BAltimos 20 a=C3=B1os, convirtiendo al pa=C3=ADs como l=C3=ADder en = generaci=C3=B3n de energ=C3=ADas verdes en Europa, destacando la energ=C3= =ADa e=C3=B3lica terrestre, que representa el 20% de su producci=C3=B3n el= =C3=A9ctrica total (</span><span style=3D"background-color:#ffff00">Rodr=C3= =ADguez</span><span>, 2024).</span><span>  </span></p><p style=3D"text= -align:justify"><span>En cuanto a las pol=C3=ADticas energ=C3=A9ticas espa= =C3=B1olas, el cierre de la miner=C3=ADa destac=C3=B3 un cambio transcenden= tal en las pol=C3=ADticas medioambientales, reduciendo la producci=C3=B3n d= e energ=C3=ADa a partir de carb=C3=B3n lo que facilit=C3=B3 la adopci=C3=B3= n de energ=C3=ADas renovables (</span><span style=3D"background-color:#ffff= 00">Schmidt</span><span>, 2022). Adem=C3=A1s, mediante la implementaci=C3= =B3n del </span><span style=3D"text-decoration:underline">Plan de Acci=C3= =B3n Nacional de Energ=C3=ADas Renovables de Espa=C3=B1a (PANER</span><span= >), se establecieron pol=C3=ADticas dirigidas principalmente al desarrollo = de un marco adecuado para la simplificaci=C3=B3n, homogeneizaci=C3=B3n y un= ificaci=C3=B3n de procedimientos de instalaci=C3=B3n de EERR y el apoyo a l= a I+D+i en sistemas de almacenamiento de energ=C3=ADa. Estos factores propo= rcionaron la estructura necesaria para compensar la p=C3=A9rdida de energ= =C3=ADa tras el cierre de las minas (</span><span style=3D"background-color= :#ffff00">Garc=C3=ADa</span><span>, 2021). </span></p><p style=3D"text-alig= n:justify"><span>La trayectoria energ=C3=A9tica de Ecuador y Espa=C3=B1a mu= estran enfoques distintos que, a su vez, se complementan en su transici=C3= =B3n hacia energ=C3=ADas limpias, influenciados por sus contextos tanto pol= =C3=ADticos como econ=C3=B3micos. En el caso de Ecuador, la participaci=C3= =B3n del estado ha sido fundamental para diversificar su matriz energ=C3=A9= tica, promoviendo el desarrollo de proyectos hidroel=C3=A9ctricos y geot=C3= =A9rmicos. Sin embargo, el avance de energ=C3=ADas como la solar y la e=C3= =B3lica se ha visto limitado, debido a las restricciones institucionales y = econ=C3=B3micas. Por su lado, Espa=C3=B1a bajo un marco regulatorio europeo= descentralizado, ha obtenido mejoras notables en un periodo relativamente = corto, especialmente en la energ=C3=ADa e=C3=B3lica, posicion=C3=A1ndose co= mo un l=C3=ADder en energ=C3=ADas limpias. No obstante, la creciente integr= aci=C3=B3n de energ=C3=ADas de fuente no convencional y la dependencia de c= ombustibles f=C3=B3siles ha generado un problema de estabilidad en su red e= l=C3=A9ctrica.</span></p><p class=3D"ListParagraph" style=3D"text-indent:-1= 8pt; line-height:108%"><span style=3D"font-weight:bold; color:#767171"><spa= n>2.</span></span><span style=3D"width:9pt; font:7pt 'Times New Roman'; dis= play:inline-block">      </span><span style=3D"fon= t-weight:bold; color:#767171">Metodolog=C3=ADa</span></p><p style=3D"text-a= lign:justify"><span>La investigaci=C3=B3n parti=C3=B3 de un an=C3=A1lisis i= ntegral que defini=C3=B3 los fundamentos clave relacionados con el consumo = de energ=C3=ADas renovables y su relaci=C3=B3n con el crecimiento econ=C3= =B3mico en Ecuador y Espa=C3=B1a, optando por una metodolog=C3=ADa explorat= oria-descriptiva, que permiti=C3=B3 adquirir un entendimiento amplio sobre = la situaci=C3=B3n en ambos pa=C3=ADses. La fase exploratoria estableci=C3= =B3 las bases para la investigaci=C3=B3n descriptiva, la cual promovi=C3=B3= la interpretaci=C3=B3n de la relaci=C3=B3n entre el consumo de energ=C3=AD= as renovables, como variable independiente, y el PIB per c=C3=A1pita, como = variable dependiente. Con un enfoque cualitativo y cuantitativo, se busc=C3= =B3 explicar tanto =C3=A1mbitos sociales como pol=C3=ADticos que influyen e= n la adopci=C3=B3n de energ=C3=ADas limpias y aplicar un modelo de regresi= =C3=B3n lineal simple con los datos estad=C3=ADsticos recolectados, facilit= ando as=C3=AD la comprensi=C3=B3n de la relaci=C3=B3n entre las variables d= e inter=C3=A9s.</span><span>  </span></p><p style=3D"margin-right:0.05= pt; text-align:justify"><span>El m=C3=A9todo utilizado en esta investigaci= =C3=B3n es el documental, que implica la revisi=C3=B3n y an=C3=A1lisis de f= uentes secundarias, como art=C3=ADculos acad=C3=A9micos, informes gubername= ntales y bases de datos estad=C3=ADsticas relevantes para eval=C3=BAan dife= rentes enfoques y datos hist=C3=B3ricos que permitan entender c=C3=B3mo el = consumo de energ=C3=ADas renovables ha influido en el crecimiento econ=C3= =B3mico de Espa=C3=B1a y Ecuador durante el per=C3=ADodo 2000-2020. Complem= entariamente, el m=C3=A9todo deductivo enfocado en una visi=C3=B3n organiza= do y l=C3=B3gico facilit=C3=B3 el an=C3=A1lisis de las pol=C3=ADticas energ= =C3=A9ticas implementadas en los dos pa=C3=ADses de estudio a lo largo del = periodo establecido.</span><span>  </span></p><p style=3D"margin-right= :0.05pt; margin-bottom:13.8pt; text-align:justify"><span>En este sentido, s= e implementaron dos t=C3=A9cnicas clave para la recopilaci=C3=B3n de inform= aci=C3=B3n. La revisi=C3=B3n bibliogr=C3=A1fica, basada en una selecci=C3= =B3n sistem=C3=A1tica de fuentes, provenientes de plataformas reconocidas c= omo </span><span style=3D"font-style:italic">Redalyc, Web of Science y Lati= ndex</span><span>, asegura la inclusi=C3=B3n de estudios actualizados y rel= evantes para el tema de investigaci=C3=B3n. El an=C3=A1lisis de regresi=C3= =B3n, por su parte, se desarroll=C3=B3 conforme a los supuestos fundamental= es del modelo estad=C3=ADstico, incluyendo la normalidad de los residuos, l= a heterocedasticidad y la colinealidad, con el objetivo de asegurar la vali= dez y confiabilidad de los resultados obtenidos. Adem=C3=A1s, se prioriz=C3= =B3 el uso de bases de datos confiables para la recolecci=C3=B3n de informa= ci=C3=B3n, garantizando la precisi=C3=B3n y relevancia de los datos emplead= os.</span></p><p class=3D"ListParagraph" style=3D"margin-right:0.05pt; marg= in-bottom:13.8pt; text-indent:-18pt"><span style=3D"font-style:italic"><spa= n>2.1.</span></span><span style=3D"font-weight:bold"> </span><span style=3D= "font-style:italic">Modelo econom=C3=A9trico</span></p><p style=3D"margin-r= ight:0.05pt; margin-bottom:17.1pt"><span>Con los datos obtenido del Banco m= undial, se procede a desarrollar un modelo econom=C3=A9trico que emplea una= regresi=C3=B3n lineal simple con el fin de examinar la relaci=C3=B3n entre= el consumo de energ=C3=ADa renovable y el crecimiento econ=C3=B3mico, en d= onde se busca identificar y cuantificar el impacto que tiene la variable ex= plicativa sobre la variable explicada. </span></p><p style=3D"margin-left:3= 5.95pt; margin-bottom:20.35pt; text-align:center"><span style=3D"font-famil= y:'Cambria Math'">=F0=9D=92=80</span><span> =3D </span><span style=3D"font-= family:'Cambria Math'">=F0=9D=9C=B7</span><span style=3D"line-height:150%; = font-family:'Cambria Math'; font-size:8pt; vertical-align:sub">=F0=9D=9F=8E= </span><span style=3D"line-height:150%; font-size:8pt; vertical-align:sub">= </span><span>+ </span><span style=3D"font-family:'Cambria Math'">=F0=9D=9C= =B7</span><span style=3D"line-height:150%; font-family:'Cambria Math'; font= -size:8pt; vertical-align:sub">=F0=9D=9F=8F</span><span style=3D"line-heigh= t:150%; font-size:8pt; vertical-align:sub"> </span><span style=3D"font-fami= ly:'Cambria Math'">=F0=9D=91=BF</span><span style=3D"line-height:150%; font= -family:'Cambria Math'; font-size:8pt; vertical-align:sub">=F0=9D=9F=8F</sp= an><span style=3D"line-height:150%; font-size:8pt; vertical-align:sub"> </s= pan><span>+ </span><span style=3D"font-family:'Cambria Math'">=F0=9D=9D=81<= /span><span style=3D"font-weight:bold"> </span><span style=3D"font-weight:b= old"> </span><span style=3D"font-weight:bold">   </span><spa= n style=3D"font-weight:bold">(1)</span></p><p style=3D"margin-right:0.05pt;= margin-bottom:20.4pt"><span>D=C3=B3nde: </span></p><ul style=3D"margin:0pt= ; padding-left:0pt"><li class=3D"ListParagraph" style=3D"margin-right:0.05p= t; margin-left:32.33pt; margin-bottom:0pt; text-align:justify; padding-left= :3.67pt; font-family:serif"><span style=3D"font-family:'Times New Roman'">= =CE=B2</span><span style=3D"line-height:150%; font-family:'Times New Roman'= ; font-size:8pt; vertical-align:sub"> 0 </span><span style=3D"font-family:'= Times New Roman'">representa el termino constante, =E2=80=A2 </span></li><l= i class=3D"ListParagraph" style=3D"margin-right:0.05pt; margin-left:32.33pt= ; margin-bottom:0pt; text-align:justify; padding-left:3.67pt; font-family:s= erif"><span style=3D"font-family:'Times New Roman'">=CE=B2</span><span styl= e=3D"line-height:150%; font-family:'Times New Roman'; font-size:8pt; vertic= al-align:sub">1 </span><span style=3D"font-family:'Times New Roman'">corres= ponde al coeficiente, </span></li><li class=3D"ListParagraph" style=3D"marg= in-right:0.05pt; margin-left:32.33pt; margin-bottom:14.9pt; text-align:just= ify; padding-left:3.67pt; font-family:serif"><span style=3D"font-family:'Ti= mes New Roman'">=CE=BC t=C3=A9rmino de error. </span></li></ul><p style=3D"= margin-bottom:19.8pt"><span style=3D"font-weight:bold">Variable dependiente= </span><span> </span></p><ul style=3D"margin:0pt; padding-left:0pt"><li cla= ss=3D"ListParagraph" style=3D"margin-right:0.05pt; margin-left:32.33pt; mar= gin-bottom:14.9pt; text-align:justify; padding-left:3.67pt; font-family:ser= if"><span style=3D"font-family:'Times New Roman'">Y=3D Crecimiento econ=C3= =B3mico, medido a trav=C3=A9s del Pib per c=C3=A1pita. </span></li></ul><p>= <span style=3D"font-weight:bold">Variable independiente</span></p><ul style= =3D"margin:0pt; padding-left:0pt"><li class=3D"ListParagraph" style=3D"marg= in-left:32.33pt; margin-bottom:0pt; padding-left:3.67pt; font-family:serif"= ><span style=3D"font-family:'Times New Roman'">X</span><span style=3D"line-= height:150%; font-family:'Times New Roman'; font-size:8pt; vertical-align:s= ub">1</span><span style=3D"font-family:'Times New Roman'">=3D Consumo de en= erg=C3=ADa renovable, expresado como porcentaje del consumo total de energ= =C3=ADa final.</span></li></ul><p class=3D"ListParagraph" style=3D"text-ind= ent:-18pt"><span style=3D"font-weight:bold; color:#767171"><span>3.</span><= /span><span style=3D"width:9pt; font:7pt 'Times New Roman'; display:inline-= block">      </span><span style=3D"font-weight:bol= d; color:#767171">Resultados</span></p><p style=3D"text-align:justify"><spa= n>En este apartado se presentan los resultados del an=C3=A1lisis econom=C3= =A9trico realizado para evaluar la relaci=C3=B3n entre el consumo de energ= =C3=ADa y el PIB per c=C3=A1pita en Ecuador y Espa=C3=B1a. Se utilizaron mo= delos de regresi=C3=B3n lineal simple para determinar c=C3=B3mo las variaci= ones en el consumo energ=C3=A9tico influyen en el crecimiento econ=C3=B3mic= o en ambos pa=C3=ADses. Los resultados obtenidos se organizan en dos seccio= nes principales, correspondientes a cada uno de los pa=C3=ADses analizados.= </span></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:n= ormal"><span style=3D"font-weight:bold">Tabla 1</span></p><p style=3D"margi= n-bottom:0pt; text-align:center; line-height:normal"><span style=3D"font-st= yle:italic">Estimaci=C3=B3n del modelo econom=C3=A9trico - Caso Ecuador</sp= an></p><p><span> </span><span>reg lPIBpercapECU lConsEERRECU </span></= p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; line-height:112%; f= ont-size:10pt"><span style=3D"font-family:Consolas">    = ;  </span><span style=3D"font-family:Consolas">Source |</span><span st= yle=3D"font-family:Consolas">       </span><s= pan style=3D"font-family:Consolas">SS</span><span style=3D"font-family:Cons= olas">           </span><= span style=3D"font-family:Consolas">df</span><span style=3D"font-family:Con= solas">       </span><span style=3D"font-fami= ly:Consolas">MS</span><span style=3D"font-family:Consolas">   = 0;   </span><span style=3D"font-family:Consolas">Number of obs</s= pan><span style=3D"font-family:Consolas">   </span><span style=3D= "font-family:Consolas">=3D</span><span style=3D"font-family:Consolas"> = ;       </span><span style=3D"font-family:Con= solas">21 </span></p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; = line-height:112%; font-size:10pt"><span style=3D"font-family:Consolas">----= ---------+----------------------------------</span><span style=3D"font-fami= ly:Consolas">   </span><span style=3D"font-family:Consolas">F(1, = 19)</span><span style=3D"font-family:Consolas">     = 0;   </span><span style=3D"font-family:Consolas">=3D</span><span = style=3D"font-family:Consolas">      </span><span = style=3D"font-family:Consolas">5.28 </span></p><p style=3D"margin-left:35.7= 5pt; margin-bottom:0.4pt; line-height:112%; font-size:10pt"><span style=3D"= font-family:Consolas">       </span><span sty= le=3D"font-family:Consolas">Model |</span><span style=3D"font-family:Consol= as">  </span><span style=3D"font-family:Consolas">.970388158</span><sp= an style=3D"font-family:Consolas">       = ;  </span><span style=3D"font-family:Consolas">1</span><span style=3D"= font-family:Consolas">  </span><span style=3D"font-family:Consolas">.9= 70388158</span><span style=3D"font-family:Consolas">   </span><sp= an style=3D"font-family:Consolas">Prob > F</span><span style=3D"font-fam= ily:Consolas">        </span><span style= =3D"font-family:Consolas">=3D</span><span style=3D"font-family:Consolas">&#= xa0;   </span><span style=3D"font-family:Consolas">0.0331 </span>= </p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; line-height:112%;= font-size:10pt"><span style=3D"font-family:Consolas">    </= span><span style=3D"font-family:Consolas">Residual |</span><span style=3D"f= ont-family:Consolas">  </span><span style=3D"font-family:Consolas">3.4= 9215894</span><span style=3D"font-family:Consolas">    =     </span><span style=3D"font-family:Consolas">19</span><sp= an style=3D"font-family:Consolas">  </span><span style=3D"font-family:= Consolas">.183797839</span><span style=3D"font-family:Consolas">  = ; </span><span style=3D"font-family:Consolas">R-squared</span><span style= =3D"font-family:Consolas">       </span><span= style=3D"font-family:Consolas">=3D</span><span style=3D"font-family:Consol= as">    </span><span style=3D"font-family:Consolas">0.2175 <= /span></p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; line-height= :112%; font-size:10pt"><span style=3D"font-family:Consolas">-------------+-= ---------------------------------</span><span style=3D"font-family:Consolas= ">   </span><span style=3D"font-family:Consolas">Adj R-squared</s= pan><span style=3D"font-family:Consolas">   </span><span style=3D= "font-family:Consolas">=3D</span><span style=3D"font-family:Consolas"> = ;   </span><span style=3D"font-family:Consolas">0.1763 </span></p= ><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; line-height:112%; fo= nt-size:10pt"><span style=3D"font-family:Consolas">    =    </span><span style=3D"font-family:Consolas">Total |</span><spa= n style=3D"font-family:Consolas">   </span><span style=3D"font-fa= mily:Consolas">4.4625471</span><span style=3D"font-family:Consolas"> &= #xa0;      </span><span style=3D"font-family:Conso= las">20</span><span style=3D"font-family:Consolas">  </span><span styl= e=3D"font-family:Consolas">.223127355</span><span style=3D"font-family:Cons= olas">   </span><span style=3D"font-family:Consolas">Root MSE</sp= an><span style=3D"font-family:Consolas">      = ;  </span><span style=3D"font-family:Consolas">=3D</span><span style= =3D"font-family:Consolas">    </span><span style=3D"font-fam= ily:Consolas">.42872 </span></p><p style=3D"margin-left:35.75pt; margin-bot= tom:0.4pt; line-height:112%; font-size:10pt"><span style=3D"font-family:Con= solas">--------------------------------------------------------------------= ---------</span></p><p style=3D"margin-left:35.25pt; margin-bottom:0.4pt; l= ine-height:112%; font-size:10pt"><span style=3D"font-family:Consolas">lPIBp= ercap~U |</span><span style=3D"font-family:Consolas">    = 0;  </span><span style=3D"font-family:Consolas">Coef.</span><span styl= e=3D"font-family:Consolas">   </span><span style=3D"font-family:C= onsolas">Std. Err.</span><span style=3D"font-family:Consolas">  &= #xa0;   </span><span style=3D"font-family:Consolas">t</span><span= style=3D"font-family:Consolas">    </span><span style=3D"fo= nt-family:Consolas">P>|t|</span><span style=3D"font-family:Consolas">&#x= a0; </span><span style=3D"font-family:Consolas">   </span><span s= tyle=3D"font-family:Consolas">[95% Conf. Interval] </span></p><p style=3D"m= argin-left:35.75pt; margin-bottom:0.4pt; line-height:112%; font-size:10pt">= <span style=3D"font-family:Consolas">-------------+------------------------= ---------------------------------------</span></p><p style=3D"margin-left:3= 5.25pt; margin-bottom:0.4pt; line-height:112%; font-size:10pt"><span style= =3D"font-family:Consolas">lConsEERRECU |</span><span style=3D"font-family:C= onsolas">  </span><span style=3D"font-family:Consolas">-1.390064</span= ><span style=3D"font-family:Consolas">    </span><span style= =3D"font-family:Consolas">.604968</span><span style=3D"font-family:Consolas= ">    </span><span style=3D"font-family:Consolas">-2.30</spa= n><span style=3D"font-family:Consolas">   </span><span style=3D"f= ont-family:Consolas">0.033</span><span style=3D"font-family:Consolas"> = ;   </span><span style=3D"font-family:Consolas">-2.656277</span><= span style=3D"font-family:Consolas">   </span><span style=3D"font= -family:Consolas">-.1238519</span><span style=3D"font-family:Consolas"> = 0;       </span><span style=3D"font-family:Co= nsolas">_cons</span><span style=3D"font-family:Consolas">   =      </span><span style=3D"font-family:Consolas">|</spa= n><span style=3D"font-family:Consolas">   </span><span style=3D"f= ont-family:Consolas">12.07681</span><span style=3D"font-family:Consolas">&#= xa0;  </span><span style=3D"font-family:Consolas">1.648367</span><span= style=3D"font-family:Consolas">     </span><span style= =3D"font-family:Consolas">7.33</span><span style=3D"font-family:Consolas">&= #xa0;  </span><span style=3D"font-family:Consolas">0.000</span><span s= tyle=3D"font-family:Consolas">     </span><span style= =3D"font-family:Consolas">8.626735</span><span style=3D"font-family:Consola= s">    </span><span style=3D"font-family:Consolas">15.52688 = </span></p><p style=3D"margin-left:34.6pt; margin-bottom:0.45pt; line-heigh= t:108%"><img src=3D" AYAAAA4qG+5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABtJREFUSInt= wQENAAAIwKDbP7T2cMBUGwDAUwfyaQEB+mb6RgAAAABJRU5ErkJggg=3D=3D" width=3D"571"= height=3D"1" alt=3D"" /></p><p style=3D"text-align:justify"><span> </= span></p><p style=3D"text-align:justify"><span>En la </span><span style=3D"= font-weight:bold">tabla 1</span><span>, el modelo aplicado muestra un r-cua= drado de 0.2175, lo cual indica que aproximadamente el 21.75% de la variabi= lidad en el PIB per c=C3=A1pita puede ser explicada por el consumo de energ= =C3=ADa. Aunque esta proporci=C3=B3n es relativamente baja, sugiere que exi= ste cierta relaci=C3=B3n entre las variables. Adem=C3=A1s, la prueba f tien= e un valor de 5,28 con un p-valor de 0.0331, lo que indica que el modelo es= significativo a un nivel del 5%. Esto implica que al menos una de las vari= ables independientes tiene un efecto sobre la variable dependiente. Por =C3= =BAltimo, el coeficiente de LCONSEERRECU es de -1.390064, lo que refleja qu= e un aumento en el consumo de energ=C3=ADa est=C3=A1 asociado con una dismi= nuci=C3=B3n en el PIB per c=C3=A1pita, lo cual es contrario a lo esperado e= n un an=C3=A1lisis intuitivo donde se podr=C3=ADa esperar un impacto positi= vo de las energ=C3=ADas renovables en el crecimiento econ=C3=B3mico. </span= ></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:normal">= <span style=3D"font-weight:bold">Tabla 2</span></p><p style=3D"margin-botto= m:0pt; text-align:center; line-height:normal"><span style=3D"font-style:ita= lic">Estimaci=C3=B3n del modelo econom=C3=A9trico - Caso Espa=C3=B1a</span>= </p><p style=3D"text-align:justify"><span> </span><span>reg lPIBpercap= ESP lConsEERRESP </span></p><p style=3D"margin-left:35.75pt; margin-bottom:= 0.4pt; text-indent:-0.5pt; text-align:justify; line-height:112%; font-size:= 10pt"><span style=3D"font-family:Consolas">      <= /span><span style=3D"font-family:Consolas">Source |</span><span style=3D"fo= nt-family:Consolas">       </span><span style= =3D"font-family:Consolas">SS</span><span style=3D"font-family:Consolas">&#x= a0;          </span><span styl= e=3D"font-family:Consolas">df</span><span style=3D"font-family:Consolas">&#= xa0;      </span><span style=3D"font-family:Consol= as">MS</span><span style=3D"font-family:Consolas">    &= #xa0; </span><span style=3D"font-family:Consolas">Number of obs</span><span= style=3D"font-family:Consolas">   </span><span style=3D"font-fam= ily:Consolas">=3D</span><span style=3D"font-family:Consolas">  &#= xa0;     </span><span style=3D"font-family:Consolas">21= </span></p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; text-inde= nt:-0.5pt; text-align:justify; line-height:112%; font-size:10pt"><span styl= e=3D"font-family:Consolas">-------------+----------------------------------= </span><span style=3D"font-family:Consolas">   </span><span style= =3D"font-family:Consolas">F(1, 19)</span><span style=3D"font-family:Consola= s">        </span><span style=3D"font-fa= mily:Consolas">=3D</span><span style=3D"font-family:Consolas">  &= #xa0;   </span><span style=3D"font-family:Consolas">6.13 </span><= /p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; text-indent:-0.5pt= ; text-align:justify; line-height:112%; font-size:10pt"><span style=3D"font= -family:Consolas">       </span><span style= =3D"font-family:Consolas">Model |</span><span style=3D"font-family:Consolas= ">  </span><span style=3D"font-family:Consolas">.283091817</span><span= style=3D"font-family:Consolas">       &= #xa0; </span><span style=3D"font-family:Consolas">1</span><span style=3D"fo= nt-family:Consolas">  </span><span style=3D"font-family:Consolas">.283= 091817</span><span style=3D"font-family:Consolas">   </span><span= style=3D"font-family:Consolas">Prob > F</span><span style=3D"font-famil= y:Consolas">        </span><span style= =3D"font-family:Consolas">=3D</span><span style=3D"font-family:Consolas">&#= xa0;   </span><span style=3D"font-family:Consolas">0.0229 </span>= </p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; text-indent:-0.5p= t; text-align:justify; line-height:112%; font-size:10pt"><span style=3D"fon= t-family:Consolas">    </span><span style=3D"font-family:Con= solas">Residual |</span><span style=3D"font-family:Consolas">  </span>= <span style=3D"font-family:Consolas">.877236852</span><span style=3D"font-f= amily:Consolas">        </span><span sty= le=3D"font-family:Consolas">19</span><span style=3D"font-family:Consolas">&= #xa0; </span><span style=3D"font-family:Consolas">.046170361</span><span st= yle=3D"font-family:Consolas">   </span><span style=3D"font-family= :Consolas">R-squared</span><span style=3D"font-family:Consolas">  = ;     </span><span style=3D"font-family:Consolas">=3D</= span><span style=3D"font-family:Consolas">    </span><span s= tyle=3D"font-family:Consolas">0.2440 </span></p><p style=3D"margin-right:0.= 25pt; margin-left:36pt; margin-bottom:0pt; text-align:justify; line-height:= 114%; font-size:10pt"><span style=3D"font-family:Consolas">-------------+--= --------------------------------</span><span style=3D"font-family:Consolas"= >   </span><span style=3D"font-family:Consolas">Adj R-squared</sp= an><span style=3D"font-family:Consolas">   </span><span style=3D"= font-family:Consolas">=3D</span><span style=3D"font-family:Consolas"> =    </span><span style=3D"font-family:Consolas">0.2042</span><span= style=3D"font-family:Consolas">        = </span><span style=3D"font-family:Consolas">Total |</span><span style=3D"fo= nt-family:Consolas">  </span><span style=3D"font-family:Consolas">1.16= 032867</span><span style=3D"font-family:Consolas">    &= #xa0;   </span><span style=3D"font-family:Consolas">20</span><spa= n style=3D"font-family:Consolas">  </span><span style=3D"font-family:C= onsolas">.058016433</span><span style=3D"font-family:Consolas">  = </span><span style=3D"font-family:Consolas">Root MSE</span><span style=3D"= font-family:Consolas">        </span><sp= an style=3D"font-family:Consolas">=3D</span><span style=3D"font-family:Cons= olas">    </span><span style=3D"font-family:Consolas">.21487= </span><span style=3D"font-family:Consolas">  </span></p><p style=3D"m= argin-left:35.75pt; margin-bottom:0.4pt; text-indent:-0.5pt; text-align:jus= tify; line-height:112%; font-size:10pt"><span style=3D"font-family:Consolas= ">-------------------------------------------------------------------------= ----</span></p><p style=3D"margin-left:35.25pt; margin-bottom:0.4pt; text-a= lign:justify; line-height:112%; font-size:10pt"><span style=3D"font-family:= Consolas">lPIBpercap~P |</span><span style=3D"font-family:Consolas"> &= #xa0;    </span><span style=3D"font-family:Consolas">Coef.</= span><span style=3D"font-family:Consolas">   </span><span style= =3D"font-family:Consolas">Std. Err.</span><span style=3D"font-family:Consol= as">      </span><span style=3D"font-family:Consol= as">t</span><span style=3D"font-family:Consolas">    </span>= <span style=3D"font-family:Consolas">P>|t|</span><span style=3D"font-fam= ily:Consolas">  </span><span style=3D"font-family:Consolas">  = 0; </span><span style=3D"font-family:Consolas">[95% Conf. Interval] </span>= </p><p style=3D"margin-left:35.75pt; margin-bottom:0.4pt; text-indent:-0.5p= t; text-align:justify; line-height:112%; font-size:10pt"><span style=3D"fon= t-family:Consolas">-------------+------------------------------------------= ---------------------</span></p><p style=3D"margin-left:35.25pt; margin-bot= tom:0.4pt; text-align:justify; line-height:112%; font-size:10pt"><span styl= e=3D"font-family:Consolas">lConsEERRESP |</span><span style=3D"font-family:= Consolas">   </span><span style=3D"font-family:Consolas">.3465715= </span><span style=3D"font-family:Consolas">   </span><span style= =3D"font-family:Consolas">.1399622</span><span style=3D"font-family:Consola= s">     </span><span style=3D"font-family:Consolas">2.4= 8</span><span style=3D"font-family:Consolas">   </span><span styl= e=3D"font-family:Consolas">0.023</span><span style=3D"font-family:Consolas"= >     </span><span style=3D"font-family:Consolas">.0536= 272</span><span style=3D"font-family:Consolas">    </span><s= pan style=3D"font-family:Consolas">.6395158</span><span style=3D"font-famil= y:Consolas">        </span><span style= =3D"font-family:Consolas">_cons</span><span style=3D"font-family:Consolas">=         </span><span style=3D"font-famil= y:Consolas">|</span><span style=3D"font-family:Consolas">   </spa= n><span style=3D"font-family:Consolas">9.311886</span><span style=3D"font-f= amily:Consolas">   </span><span style=3D"font-family:Consolas">.3= 519923</span><span style=3D"font-family:Consolas">    </span= ><span style=3D"font-family:Consolas">26.45</span><span style=3D"font-famil= y:Consolas">   </span><span style=3D"font-family:Consolas">0.000<= /span><span style=3D"font-family:Consolas">     </span>= <span style=3D"font-family:Consolas">8.575158</span><span style=3D"font-fam= ily:Consolas">    </span><span style=3D"font-family:Consolas= ">10.04861 </span></p><p style=3D"margin-left:34.6pt; margin-bottom:2.05pt;= text-align:justify; line-height:108%"><img src=3D" BORw0KGgoAAAANSUhEUgAAAjsAAAABCAYAAAA4qG+5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzA= AAOxAAADsQBlSsOGwAAABtJREFUSIntwQENAAAIwKDbP7T2cMBUGwDAUwfyaQEB+mb6RgAAAABJ= RU5ErkJggg=3D=3D" width=3D"571" height=3D"1" alt=3D"" /></p><p style=3D"tex= t-align:justify"><span> </span></p><p style=3D"text-align:justify"><sp= an>En la </span><span style=3D"font-weight:bold">tabla 2</span><span> corre= spondiente al modelo aplicado para Espa=C3=B1a, se observa un Rcuadrado de = 0.2440, lo cual se=C3=B1ala que aproximadamente el 24.40% de la variabilida= d en el PIB per c=C3=A1pita puede ser explicada por el consumo de energ=C3= =ADa. La prueba F muestra un valor de 6.13 con un p-valor de 0.0229, lo que= indica que el modelo tambi=C3=A9n es significativo a un nivel del 5%. El c= oeficiente para lConsEERRESP es 0.3465715, indicando que, en Espa=C3=B1a, u= n aumento en el consumo energ=C3=A9tico est=C3=A1 positivamente relacionado= con el PIB per c=C3=A1pita. </span></p><p><span> </span><span>Validac= i=C3=B3n de los supuestos del modelo para ambos casos. </span></p><p style= =3D"margin-bottom:0pt; text-align:center; line-height:normal"><span style= =3D"font-weight:bold">Tabla 3</span></p><p style=3D"margin-bottom:0pt; text= -align:center; line-height:normal; font-size:13pt"><span style=3D"font-styl= e:italic">Validaci=C3=B3n de los supuestos del modelo</span></p><table styl= e=3D"width:433.05pt; margin-left:35.3pt; margin-bottom:0pt; padding:0pt; bo= rder-collapse:collapse"><tr style=3D"height:38.3pt"><td style=3D"width:77.4= 5pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; p= adding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-left:6.= 1pt; margin-bottom:0pt; line-height:108%; font-size:10pt"><span>Supuesto </= span></p></td><td style=3D"width:63.5pt; border-top:0.75pt solid #7f7f7f; b= order-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-a= lign:top"><p style=3D"margin-bottom:0pt; line-height:108%; font-size:10pt">= <span>Hip=C3=B3tesis Nula (H0) </span></p></td><td style=3D"width:63.5pt; b= order-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding= :0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; l= ine-height:108%; font-size:10pt"><span>P-valor </span></p><p style=3D"margi= n-bottom:0pt; line-height:108%; font-size:10pt"><span>(Ecuador) </span></p>= </td><td style=3D"width:71.8pt; border-bottom:0.75pt solid #7f7f7f; padding= :0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; l= ine-height:108%; font-size:10pt"><span>Resultado (Ecuador) </span></p></td>= <td style=3D"width:59.55pt; border-top:0.75pt solid #7f7f7f; border-bottom:= 0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p = style=3D"margin-bottom:0pt; line-height:108%; font-size:10pt"><span>P-valor= (Espa=C3=B1a) </span></p></td><td style=3D"width:62.75pt; border-top:0.75p= t solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0= pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line-height:108%= ; font-size:10pt"><span>Resultado (Espa=C3=B1a) </span></p></td></tr><tr st= yle=3D"height:53.15pt"><td style=3D"width:77.45pt; border-top:0.75pt solid = #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; = vertical-align:top"><p style=3D"margin-left:6.1pt; margin-bottom:0pt; line-= height:108%; font-size:10pt"><span>Normalidad de residuos </span></p></td><= td style=3D"width:63.5pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.= 75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p st= yle=3D"margin-bottom:0pt; line-height:107%; font-size:10pt"><span>P=E2=80= =93valor > 0.05: </span></p><p style=3D"margin-bottom:0pt; line-height:1= 08%; font-size:10pt"><span>Normalidad </span></p></td><td style=3D"width:63= .5pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; = padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom= :0pt; line-height:108%; font-size:10pt"><span>0.774 </span></p></td><td sty= le=3D"width:71.8pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt s= olid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D= "margin-bottom:0pt; line-height:108%; font-size:10pt"><span>Aceptada </span= ></p></td><td style=3D"width:59.55pt; border-top:0.75pt solid #7f7f7f; bord= er-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-alig= n:top"><p style=3D"margin-bottom:0pt; line-height:108%; font-size:10pt"><sp= an>0.5354 </span></p></td><td style=3D"width:62.75pt; border-top:0.75pt sol= id #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0p= t; vertical-align:top"><p style=3D"margin-bottom:0pt; line-height:108%; fon= t-size:10pt"><span>Aceptada </span></p></td></tr><tr style=3D"height:68.2pt= "><td style=3D"width:77.45pt; border-top:0.75pt solid #7f7f7f; border-botto= m:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><= p style=3D"margin-left:6.1pt; margin-bottom:0pt; line-height:108%; font-siz= e:10pt"><span>Heterocedasti cidad </span></p></td><td style=3D"width:63.5pt= ; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padd= ing:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt= ; line-height:108%; font-size:10pt"><span>P=E2=80=93valor > chi2: Varian= za constante </span></p></td><td style=3D"width:63.5pt; border-top:0.75pt s= olid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt = 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line-height:108%; f= ont-size:10pt"><span>0.6969 </span></p></td><td style=3D"width:71.8pt; bord= er-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.= 7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line= -height:108%; font-size:10pt"><span>Aceptada </span></p></td><td style=3D"w= idth:59.55pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #= 7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margi= n-bottom:0pt; line-height:108%; font-size:10pt"><span>0.2056 </span></p></t= d><td style=3D"width:62.75pt; border-top:0.75pt solid #7f7f7f; border-botto= m:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><= p style=3D"margin-bottom:0pt; line-height:108%; font-size:10pt"><span>Acept= ada </span></p></td></tr><tr style=3D"height:68.05pt"><td style=3D"width:77= .45pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f;= padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-left:= 6.1pt; margin-bottom:0pt; line-height:108%; font-size:10pt"><span>Colineali= dad </span></p></td><td style=3D"width:63.5pt; border-top:0.75pt solid #7f7= f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vert= ical-align:top"><p style=3D"margin-right:4.95pt; margin-bottom:0pt; line-he= ight:108%; font-size:10pt"><span>VIF < 5: No hay colinealida d severa </= span></p></td><td style=3D"width:63.5pt; border-top:0.75pt solid #7f7f7f; b= order-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-a= lign:top"><p style=3D"margin-bottom:0pt; line-height:108%; font-size:10pt">= <span>VIF =3D 1.00 </span></p></td><td style=3D"width:71.8pt; border-top:0.= 75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75p= t 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line-height:1= 08%; font-size:10pt"><span>Sin colinealidad </span></p></td><td style=3D"wi= dth:59.55pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7= f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin= -bottom:0pt; line-height:108%; font-size:10pt"><span>VIF =3D 1.00 </span></= p></td><td style=3D"width:62.75pt; border-top:0.75pt solid #7f7f7f; border-= bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:t= op"><p style=3D"margin-bottom:0pt; line-height:108%; font-size:10pt"><span>= Sin colinealidad </span></p></td></tr></table><p style=3D"text-align:justif= y"><span> </span></p><p style=3D"text-align:justify"><span>De acuerdo = con la </span><span style=3D"font-weight:bold">tabla 3</span><span>, los su= puestos de normalidad y heterocedasticidad para Ecuador fueron aceptados, l= o que significa que los residuos del modelo siguen una distribuci=C3=B3n no= rmal y que no existe heterocedasticidad, lo cual es importante para la robu= stez y la confiabilidad del modelo. As=C3=AD mismo, la ausencia de colineal= idad severa. </span></p><p style=3D"text-align:justify"><span>(VIF =3D 1.00= ) indica que las variables son independientes entre s=C3=AD, asegurando que= los efectos de cada variable se pueden atribuir de manera clara y precisa = sin interferencias entre ellas. </span></p><p style=3D"text-align:justify">= <span>As=C3=AD tambi=C3=A9n, podemos observar que al igual que en Ecuador, = los supuestos tanto de normalidad como de heterocedasticidad para Espa=C3= =B1a fueron aceptados, validando as=C3=AD los resultados obtenidos. Y de la= misma manera, la ausencia de colinealidad severa (VIF =3D 1.00) refuerza l= a independencia entre las variables. Por lo tanto, sugieren que las conclus= iones derivadas del an=C3=A1lisis son fiables y pueden ser utilizadas para = informar decisiones econ=C3=B3micas y pol=C3=ADticas. </span></p><p style= =3D"margin-bottom:0pt; text-align:center; line-height:normal"><span style= =3D"font-weight:bold">Tabla 4</span></p><p style=3D"margin-bottom:0pt; text= -align:center; line-height:normal"><span style=3D"font-style:italic">Cuadro= Comparativo</span></p><table style=3D"width:425.25pt; margin-left:36pt; ma= rgin-bottom:0pt; padding:0pt; border-collapse:collapse"><tr style=3D"height= :23.4pt"><td style=3D"width:129.45pt; border-top:0.75pt solid #7f7f7f; bord= er-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-alig= n:top"><p style=3D"margin-left:5.4pt; margin-bottom:0pt; line-height:108%; = font-size:10pt"><span>Aspecto </span></p></td><td style=3D"width:142.1pt; b= order-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding= :0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; l= ine-height:108%; font-size:10pt"><span>Ecuador </span></p></td><td style=3D= "width:136.45pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt soli= d #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"ma= rgin-bottom:0pt; line-height:108%; font-size:10pt"><span>Espa=C3=B1a </span= ></p></td></tr><tr style=3D"height:23.4pt"><td style=3D"width:129.45pt; bor= der-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0= .7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-left:5.4pt; mar= gin-bottom:0pt; line-height:108%; font-size:10pt"><span>Modelo Econom=C3=A9= trico </span></p></td><td style=3D"width:142.1pt; border-top:0.75pt solid #= 7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; v= ertical-align:top"><p style=3D"margin-bottom:0pt; line-height:108%; font-si= ze:10pt"><span>Regresi=C3=B3n lineal simple </span></p></td><td style=3D"wi= dth:136.45pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #= 7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margi= n-bottom:0pt; line-height:108%; font-size:10pt"><span>Regresi=C3=B3n lineal= simple </span></p></td></tr><tr style=3D"height:38.3pt"><td style=3D"width= :129.45pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7= f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-l= eft:5.4pt; margin-bottom:0pt; line-height:108%; font-size:10pt"><span>N=C3= =BAmero de </span></p><p style=3D"margin-left:5.4pt; margin-bottom:0pt; lin= e-height:108%; font-size:10pt"><span>Observaciones </span></p></td><td styl= e=3D"width:142.1pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt s= olid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p style=3D= "margin-bottom:0pt; line-height:108%; font-size:10pt"><span>21 (a=C3=B1os) = </span></p></td><td style=3D"width:136.45pt; border-top:0.75pt solid #7f7f7= f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertic= al-align:top"><p style=3D"margin-bottom:0pt; line-height:108%; font-size:10= pt"><span>21 (a=C3=B1os) </span></p></td></tr><tr style=3D"height:38.3pt"><= td style=3D"width:129.45pt; border-top:0.75pt solid #7f7f7f; border-bottom:= 0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertical-align:top"><p = style=3D"margin-left:5.4pt; margin-bottom:0pt; line-height:108%; font-size:= 10pt"><span>R-cuadrado </span></p></td><td style=3D"width:142.1pt; border-t= op:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt = 5.75pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line-hei= ght:108%; font-size:10pt"><span>0.2175 (21.75% de variabilidad explicada) <= /span></p></td><td style=3D"width:136.45pt; border-top:0.75pt solid #7f7f7f= ; border-bottom:0.75pt solid #7f7f7f; padding:0.7pt 5.75pt 0pt 0pt; vertica= l-align:top"><p style=3D"margin-bottom:0pt; line-height:108%; font-size:10p= t"><span>0.2440 (24.40% de variabilidad explicada) </span></p></td></tr></t= able><p style=3D"margin-bottom:0.25pt; line-height:108%; font-size:10pt"><s= pan style=3D"width:63.44pt; font-family:Calibri; display:inline-block"> = 0;</span><span>Coeficiente de Consumo -1.390064 (relaci=C3=B3n </span><span= style=3D"width:80.87pt; display:inline-block"> </span><span>0.3465715= (relaci=C3=B3n </span></p><p style=3D"margin-bottom:0pt; page-break-inside= :avoid; page-break-after:avoid; line-height:108%; font-size:10pt"><span sty= le=3D"width:45.69pt; font-family:Calibri; display:inline-block"> </spa= n><span>Energ=C3=A9tico </span><span style=3D"width:141.97pt; display:inlin= e-block"> </span><span style=3D"text-decoration:underline">negativa co= n PIB per c=C3=A1pita) positiva con PIB per c=C3=A1pita) </span></p><p styl= e=3D"margin-left:36pt; margin-bottom:0.45pt; line-height:108%; font-size:10= pt"><img src=3D" ABHRpXVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABNJREFUKJFjrK+v= /88wCkbBEAMAwnICflgsbU4AAAAASUVORK5CYII=3D" width=3D"174" height=3D"1" alt= =3D"" /></p><table style=3D"width:425.95pt; margin-left:35.3pt; margin-bott= om:0pt; padding:0pt; border-collapse:collapse"><tr style=3D"height:22.7pt">= <td style=3D"width:132.3pt; border-bottom:0.75pt solid #7f7f7f; padding:0pt= 3.55pt 0pt 0pt; vertical-align:top"><p style=3D"margin-left:6.1pt; margin-= bottom:0pt; line-height:108%; font-size:10pt"><span>Prueba F </span></p></t= d><td style=3D"width:144.3pt; border-bottom:0.75pt solid #7f7f7f; padding:0= pt 3.55pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line-= height:108%; font-size:10pt"><span>F(1, 19) =3D 5.28 </span></p></td><td st= yle=3D"width:138.65pt; border-bottom:0.75pt solid #7f7f7f; padding:0pt 3.55= pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line-height:= 108%; font-size:10pt"><span>F(1, 19) =3D 6.13 </span></p></td></tr><tr styl= e=3D"height:23.4pt"><td style=3D"width:132.3pt; border-top:0.75pt solid #7f= 7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0pt 3.55pt 0pt 0pt; verti= cal-align:top"><p style=3D"margin-left:6.1pt; margin-bottom:0pt; line-heigh= t:108%; font-size:10pt"><span>P-valor de la Prueba F </span></p></td><td st= yle=3D"width:144.3pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt= solid #7f7f7f; padding:0pt 3.55pt 0pt 0pt; vertical-align:top"><p style=3D= "margin-bottom:0pt; line-height:108%; font-size:10pt"><span>0.0331 (signifi= cativo al 5%) </span></p></td><td style=3D"width:138.65pt; border-top:0.75p= t solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0pt 3.55pt 0pt= 0pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify= ; line-height:108%; font-size:10pt"><span>0.0229 (significativo al 5%) </sp= an></p></td></tr><tr style=3D"height:38.3pt"><td style=3D"width:132.3pt; bo= rder-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:= 0pt 3.55pt 0pt 0pt; vertical-align:top"><p style=3D"margin-left:6.1pt; marg= in-bottom:0pt; line-height:108%; font-size:10pt"><span>Normalidad de Residu= os </span></p></td><td style=3D"width:144.3pt; border-top:0.75pt solid #7f7= f7f; border-bottom:0.75pt solid #7f7f7f; padding:0pt 3.55pt 0pt 0pt; vertic= al-align:top"><p style=3D"margin-bottom:0pt; line-height:108%; font-size:10= pt"><span>P-valor =3D 0.774 (Aceptada) </span></p></td><td style=3D"width:1= 38.65pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7= f; padding:0pt 3.55pt 0pt 0pt; vertical-align:top"><p style=3D"margin-right= :1.5pt; margin-bottom:0pt; line-height:108%; font-size:10pt"><span>P-valor = =3D 0.5354 (Aceptada) </span></p></td></tr><tr style=3D"height:38.3pt"><td = style=3D"width:132.3pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75= pt solid #7f7f7f; padding:0pt 3.55pt 0pt 0pt; vertical-align:top"><p style= =3D"margin-left:6.1pt; margin-bottom:0pt; line-height:108%; font-size:10pt"= ><span>Heterocedasticidad </span></p></td><td style=3D"width:144.3pt; borde= r-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0pt= 3.55pt 0pt 0pt; vertical-align:top"><p style=3D"margin-right:7.15pt; margi= n-bottom:0pt; line-height:108%; font-size:10pt"><span>P-valor =3D 0.6969 (A= ceptada) </span></p></td><td style=3D"width:138.65pt; border-top:0.75pt sol= id #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0pt 3.55pt 0pt 0pt;= vertical-align:top"><p style=3D"margin-right:1.5pt; margin-bottom:0pt; lin= e-height:108%; font-size:10pt"><span>P-valor =3D 0.2056 (Aceptada) </span><= /p></td></tr><tr style=3D"height:38.3pt"><td style=3D"width:132.3pt; border= -top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; padding:0pt = 3.55pt 0pt 0pt; vertical-align:top"><p style=3D"margin-left:6.1pt; margin-b= ottom:0pt; line-height:108%; font-size:10pt"><span>Colinealidad </span></p>= </td><td style=3D"width:144.3pt; border-top:0.75pt solid #7f7f7f; border-bo= ttom:0.75pt solid #7f7f7f; padding:0pt 3.55pt 0pt 0pt; vertical-align:top">= <p style=3D"margin-bottom:0pt; line-height:108%; font-size:10pt"><span>VIF = =3D 1.00 (sin colinealidad severa) </span></p></td><td style=3D"width:138.6= 5pt; border-top:0.75pt solid #7f7f7f; border-bottom:0.75pt solid #7f7f7f; p= adding:0pt 3.55pt 0pt 0pt; vertical-align:top"><p style=3D"margin-bottom:0p= t; line-height:108%; font-size:10pt"><span>VIF =3D 1.00 (sin colinealidad s= evera) </span></p></td></tr></table><p style=3D"text-align:justify"><span>&= #xa0;</span></p><p style=3D"text-align:justify"><span>En la </span><span st= yle=3D"font-weight:bold">tabla 4</span><span> los resultados muestran difer= encias significativas en la forma en que el consumo energ=C3=A9tico contrib= uye al crecimiento econ=C3=B3mico en Ecuador y Espa=C3=B1a. En el caso de E= cuador, la relaci=C3=B3n negativa observada se=C3=B1ala la existencia de pr= oblemas estructurales que limitan la capacidad del consumo energ=C3=A9tico = para impulsar el crecimiento econ=C3=B3mico. Esto podr=C3=ADa estar vincula= do a una infraestructura energ=C3=A9tica subdesarrollada y a pol=C3=ADticas= poco eficaces que no promueven adecuadamente las energ=C3=ADas renovables.= En contraste, Espa=C3=B1a presenta una relaci=C3=B3n positiva entre el con= sumo energ=C3=A9tico y el PIB per c=C3=A1pita. Sin embargo, a pesar del inc= remento en el uso de energ=C3=ADas limpias, su impacto en el crecimiento ec= on=C3=B3mico sigue siendo limitado. Esto podr=C3=ADa deberse a factores com= o la falta de una integraci=C3=B3n efectiva de estas energ=C3=ADas en los s= ectores productivos, lo que impide que su potencial se traduzca en un creci= miento econ=C3=B3mico significativo.</span></p><p class=3D"ListParagraph" s= tyle=3D"text-indent:-18pt"><span style=3D"font-weight:bold; color:#767171">= <span>4.</span></span><span style=3D"width:9pt; font:7pt 'Times New Roman';= display:inline-block">      </span><span style=3D= "font-weight:bold; color:#767171">Discusi=C3=B3n</span></p><p style=3D"text= -align:justify"><span>Los resultados obtenidos en esta investigaci=C3=B3n s= obre la relaci=C3=B3n entre el consumo de energ=C3=ADas renovables y el cre= cimiento econ=C3=B3mico no fueron los esperados en base a los antecedentes.= Este escenario fue evidente en Ecuador, donde se identific=C3=B3 una relac= i=C3=B3n negativa entre las variables, lo cual se alinea con los hallazgos = de </span><span style=3D"background-color:#ffff00">Robayo</span><span> (202= 1), quien document=C3=B3 una relaci=C3=B3n similar en su estudio sobre Colo= mbia. Seg=C3=BAn el autor, esta discrepancia podr=C3=ADa atribuirse a difer= encias en las condiciones socioecon=C3=B3micas, las metodolog=C3=ADas aplic= adas y los per=C3=ADodos de an=C3=A1lisis considerados. Adem=C3=A1s, el mod= elo utilizado para Ecuador reflej=C3=B3 una baja capacidad de las energ=C3= =ADas renovables para contribuir al crecimiento, lo que podr=C3=ADa estar r= elacionado con la dependencia del pa=C3=ADs hacia el petr=C3=B3leo y una ma= triz energ=C3=A9tica poco diversificada (</span><span style=3D"background-c= olor:#ffff00">Sol=C3=ADs</span><span>, 2019).</span></p><p style=3D"text-al= ign:justify"><span>En el caso de Ecuador, la contribuci=C3=B3n del consumo = de energ=C3=ADas renovables al PIB per c=C3=A1pita fue poco significativa. = Esto pone de manifiesto una estructura econ=C3=B3mica que no logra optimiza= r el uso de energ=C3=ADas limpias para fomentar el crecimiento econ=C3=B3mi= co sostenible. </span><span style=3D"background-color:#ffff00">Rodr=C3=ADgu= ez-Galarza</span><span> et al. (2023) refuerzan este hallazgo al se=C3=B1al= ar que esta contribuci=C3=B3n limitada se debe, en gran parte, a la ausenci= a de un marco regulatorio eficaz, pol=C3=ADticas energ=C3=A9ticas sostenibl= es y la escasa diversificaci=C3=B3n de la matriz energ=C3=A9tica. Adem=C3= =A1s, aunque la hidroel=C3=A9ctrica ocupa un lugar predominante, otras fuen= tes renovables como la solar y la e=C3=B3lica permanecen subdesarrolladas, = lo que restringe el potencial de crecimiento derivado de una matriz m=C3=A1= s diversificada (</span><span style=3D"background-color:#ffff00">Labre</spa= n><span>, 2024).</span></p><p style=3D"text-align:justify"><span>Por otro l= ado, en el caso de Espa=C3=B1a, los resultados indican que, a pesar de un i= ncremento en el consumo de energ=C3=ADas renovables, la contribuci=C3=B3n a= l crecimiento econ=C3=B3mico fue poco significativa. Esto se explica, en pa= rte, por la falta de integraci=C3=B3n efectiva de estas energ=C3=ADas en lo= s sectores productivos clave, y por la coexistencia de estructuras econ=C3= =B3micas tradicionales que no responden con rapidez a los cambios del merca= do (</span><span style=3D"background-color:#ffff00">Esparza</span><span> &a= mp; Hern=C3=A1ndez, 2023). A pesar de esto, el marco regulatorio s=C3=B3lid= o en Espa=C3=B1a y las inversiones en infraestructura y tecnolog=C3=ADa han= permitido avances significativos en la generaci=C3=B3n de energ=C3=ADas li= mpias, destacando la energ=C3=ADa e=C3=B3lica y solar (</span><span style= =3D"background-color:#ffff00">Rodr=C3=ADguez</span><span>, 2024).</span></p= ><p style=3D"text-align:justify"><span>Las diferencias entre Ecuador y Espa= =C3=B1a reflejan la importancia de adaptar las pol=C3=ADticas energ=C3=A9ti= cas a las particularidades locales. En el caso ecuatoriano, los resultados = sugieren la necesidad de diversificar su matriz energ=C3=A9tica e integrar = fuentes renovables adicionales, mientras que en Espa=C3=B1a se requiere max= imizar la eficiencia econ=C3=B3mica mediante una mejor integraci=C3=B3n de = las energ=C3=ADas renovables en los sectores productivos. Estas conclusione= s coinciden con los planteamientos de </span><span style=3D"background-colo= r:#ffff00">Rodr=C3=ADguez-Galarza</span><span> et al. (2023), quienes resal= tan que los marcos regulatorios y las pol=C3=ADticas adaptadas a cada conte= xto son clave para optimizar el impacto econ=C3=B3mico de las energ=C3=ADas= renovables.</span></p><p class=3D"ListParagraph" style=3D"margin-bottom:12= pt; text-indent:-18pt; text-align:justify"><span style=3D"font-weight:bold;= color:#767171"><span>5.</span></span><span style=3D"width:9pt; font:7pt 'T= imes New Roman'; display:inline-block">      </spa= n><span style=3D"font-weight:bold; color:#767171">Conclusiones</span></p><p= style=3D"text-align:justify"><span>Este estudio brinda una perspectiva inn= ovadora al debate sobre el impacto del consumo de energ=C3=ADas renovables = en el crecimiento econ=C3=B3mico, enfoc=C3=A1ndose en realidades distintas = como la de Ecuador y Espa=C3=B1a. M=C3=A1s all=C3=A1 de la relaci=C3=B3n po= sitiva o negativa entre ambas variables, el an=C3=A1lisis ayuda a identific= ar las disparidades que caracterizan esta relaci=C3=B3n en econom=C3=ADas c= on niveles de desarrollo y marcos regulatorios distintos.</span></p><p styl= e=3D"text-align:justify"><span>El an=C3=A1lisis de los resultados obtenidos= , amplia la comprensi=C3=B3n de la teor=C3=ADa econom=C3=ADa en el sector e= nerg=C3=A9tico y ofrece evidencia =C3=BAtil para el dise=C3=B1o de pol=C3= =ADticas efectivas. y ajustadas a las particularidades de cada contexto nac= ional. En Ecuador, donde el sector energ=C3=A9tico es menos diversificado, = se destacan las oportunidades de crecimiento econ=C3=B3mico al ampliar las = inversiones en energ=C3=ADas renovables. En Espa=C3=B1a, la investigaci=C3= =B3n valida las pol=C3=ADticas existentes, al tiempo que sugiere mejoras es= trat=C3=A9gicas para optimizar el impacto econ=C3=B3mico.</span></p><p styl= e=3D"text-align:justify"><span>Esta investigaci=C3=B3n establece un marco a= nal=C3=ADtico para futuros estudios dentro de la misma rama, incluyendo var= iables como adicionales, mismas que permitir=C3=A1n determinar las condicio= nes espec=C3=ADficas bajo las cuales el consumo de energ=C3=ADas renovables= potencia el crecimiento econ=C3=B3mico. Investigaciones posteriores podr= =C3=A1n profundizar en el impacto de la infraestructura, la tecnolog=C3=ADa= y los incentivos en econom=C3=ADas emergentes o en procesos de transici=C3= =B3n energ=C3=A9tica, con el fin de formular pol=C3=ADticas que optimicen l= os beneficios econ=C3=B3micos y ambientales.</span></p><p style=3D"text-ali= gn:justify; line-height:115%"><span style=3D"font-weight:bold; color:#76717= 1">6</span><span style=3D"width:29.4pt; font-weight:bold; display:inline-bl= ock"> </span><span style=3D"font-weight:bold; color:#767171">Conflicto= de intereses</span></p><p style=3D"text-align:justify; line-height:115%"><= span>Los autores declaran que no existe conflicto de intereses en relaci=C3= =B3n con el art=C3=ADculo presentado.</span></p><p style=3D"text-align:just= ify; line-height:115%"><span style=3D"font-weight:bold; color:#767171">7</s= pan><span style=3D"width:29.4pt; font-weight:bold; display:inline-block">&#= xa0;</span><span style=3D"font-weight:bold; color:#767171">Declaraci=C3=B3n= de contribuci=C3=B3n de los autores</span></p><p style=3D"text-align:justi= fy; line-height:115%"><span>Todos autores contribuyeron significativamente = en la elaboraci=C3=B3n del art=C3=ADculo.</span></p><p style=3D"text-align:= justify; line-height:115%"><span style=3D"font-weight:bold; color:#767171">= 8</span><span style=3D"width:29.4pt; font-weight:bold; display:inline-block= "> </span><span style=3D"font-weight:bold; color:#767171">Costos de fi= nanciamiento</span><span style=3D"font-weight:bold"> </span></p><p style=3D= "text-align:justify; line-height:115%"><span>La presente investigaci=C3=B3n= fue financiada en su totalidad con fondos propios de los autores.</span></= p><p style=3D"text-align:justify"><span style=3D"font-weight:bold; color:#7= 67171">9</span><span style=3D"width:29.4pt; font-weight:bold; display:inlin= e-block"> </span><span style=3D"font-weight:bold; color:#767171">Refer= encias Bibliogr=C3=A1ficas</span></p><p style=3D"margin-left:36pt; margin-b= ottom:0pt; text-indent:-36pt; line-height:normal"><span>Aliaga Lordemann, J= . A., & Paredes Alanes, M. P. (2010). </span><span style=3D"font-style:= italic">Cambio clim=C3=A1tico, desarrollo econ=C3=B3mico y </span><span sty= le=3D"font-style:italic; background-color:#ffff00">energ=C3=ADas renovables= : Estudio exploratorio de Am=C3=A9rica Latina</span><span style=3D"backgrou= nd-color:#ffff00"> </span><span>. [Documento de trabajo, Universidad Cat=C3= =B3lica Boliviana, La Paz, Bolivia]. </span><a href=3D"https://hdl.handle.n= et/10419/72791" style=3D"text-decoration:none"><span class=3D"Hyperlink">ht= tps://hdl.handle.net/10419/72791</span></a></p><p style=3D"margin-left:36pt= ; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><span style=3D"= background-color:#ffff00">Salazar Bravo, I., & Sepliarsky, P. M. (2021)= . La crisis del 2008 y el boom de las energ=C3=ADas renovables: El =E2=80= =9CMarketing verde=E2=80=9D y el =E2=80=9COro blanco=E2=80=9D como parte de= l discurso del desarrollo y progreso para los pa=C3=ADses emergentes. </spa= n><span style=3D"font-style:italic; background-color:#ffff00">Espacio Abier= to, 30</span><span style=3D"background-color:#ffff00">(1), 97-107. </span><= a href=3D"https://www.redalyc.org/articulo.oa?id=3D12266352005" style=3D"te= xt-decoration:none"><span class=3D"Hyperlink">https://www.redalyc.org/artic= ulo.oa?id=3D12266352005</span></a></p><p style=3D"margin-left:36pt; margin-= bottom:0pt; text-indent:-36pt; line-height:normal"><span style=3D"color:#05= 63c1"> </span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; tex= t-indent:-36pt; line-height:normal"><span style=3D"background-color:#ffff00= ">Camacho-Ballesta, J. A., da-Silva-Almeida, L., & Molina Belmonte, J. = (2021). Evoluci=C3=B3n de las pol=C3=ADticas de energ=C3=ADas renovables en= Espa=C3=B1a. </span><span style=3D"font-style:italic; background-color:#ff= ff00">Revista Internacional de Pol=C3=ADtica Econ=C3=B3mica</span><span sty= le=3D"background-color:#ffff00">, 3(2), 77=E2=80=9387.</span><span style=3D= "background-color:#ffff00"> </span><span style=3D"background-color:#ff= ff00"> </span><a href=3D"https://doi.org/10.7203/IREP.3.2.22790" target=3D"= _blank" style=3D"text-decoration:none"><span style=3D"text-decoration:under= line; color:#467886; background-color:#ffff00">https://doi.org/10.7203/IREP= .3.2.22790</span></a><span style=3D"background-color:#ffff00">.</span><span= > </span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-ind= ent:-36pt; line-height:normal"><span style=3D"color:#0563c1"> </span><= /p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line= -height:normal"><span>Chen, J., Su, F., Jain, V., Salman, A., Tabash, M. I.= , Haddad, A. M., Zabalawi, E., Abdalla, A. A., & Shabbir, M. S. (2022).= Does renewable energy matter to achieve sustainable development goals? The= impact of renewable energy strategies on sustainable economic growth</span= ><span style=3D"background-color:#ffff00">. </span><span style=3D"font-styl= e:italic; background-color:#ffff00">Frontiers In Energy Research</span><spa= n style=3D"background-color:#ffff00">, 10. </span><a href=3D"https://doi.or= g/10.3389/fenrg.2022.829252" target=3D"_blank" style=3D"text-decoration:non= e"><span style=3D"text-decoration:underline; color:#467886; background-colo= r:#ffff00">https://doi.org/10.3389/fenrg.2022.829252</span></a><span style= =3D"background-color:#ffff00">.</span><span> </span></p><p style=3D"ma= rgin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><= span> </span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text= -indent:-36pt; line-height:normal"><span style=3D"color:#222222; background= -color:#ffff00">Esparza L=C3=B3pez, J. J., & Hern=C3=A1ndez Rodr=C3=ADg= uez, C. (2023). =C2=BFSe retroalimentan las energ=C3=ADas renovables con el= crecimiento econ=C3=B3mico en M=C3=A9xico?: An=C3=A1lisis del 2013-2020.</= span><span style=3D"color:#222222; background-color:#ffff00"> </span><= span style=3D"font-style:italic; color:#222222; background-color:#ffff00">P= aradigma econ=C3=B3mico</span><span style=3D"color:#222222; background-colo= r:#ffff00">,</span><span style=3D"color:#222222; background-color:#ffff00">=  </span><span style=3D"font-style:italic; color:#222222; background-co= lor:#ffff00">15</span><span style=3D"color:#222222; background-color:#ffff0= 0">(2), 143-173. </span></p><p style=3D"margin-left:35.45pt; margin-bottom:= 0pt; text-indent:-0.05pt; line-height:normal"><a href=3D"https://dialnet.un= irioja.es/descarga/articulo/9083700.pdf" style=3D"text-decoration:none"><sp= an class=3D"Hyperlink" style=3D"background-color:#ffff00">https://dialnet.u= nirioja.es/descarga/articulo/9083700.pdf</span></a><span style=3D"color:#22= 2222; background-color:#ffffff"> </span></p><p style=3D"margin-left:36pt; m= argin-bottom:0pt; text-indent:-36pt; line-height:normal"><span> </span= ></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; li= ne-height:normal"><span style=3D"background-color:#ffff00">Garc=C3=ADa Vall= ina, J. (2021). Energ=C3=ADas alternativas: su implementaci=C3=B3n en Espa= =C3=B1a [Trabajo de fin de grado, Universidad de Oviedo, Oviedo, Espa=C3=B1= a].</span><span style=3D"background-color:#ffff00"> </span></p><p styl= e=3D"margin-left:35.45pt; margin-bottom:0pt; text-indent:-0.05pt; line-heig= ht:normal"><a href=3D"https://digibuo.uniovi.es/dspace/bitstream/handle/106= 51/61522/TFG_JuanGarciaVallina.pdf?sequence=3D4" style=3D"text-decoration:n= one"><span class=3D"Hyperlink" style=3D"background-color:#ffff00">https://d= igibuo.uniovi.es/dspace/bitstream/handle/10651/61522/TFG_JuanGarciaVallina.= pdf?sequence=3D4</span></a></p><p style=3D"margin-left:36pt; margin-bottom:= 0pt; text-indent:-36pt; line-height:normal"><span> </span></p><p style= =3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:nor= mal"><span style=3D"background-color:#ffff00">Labre Dias, W. D. (2024). An= =C3=A1lisis t=C3=A9cnico de la evoluci=C3=B3n del consumo energ=C3=A9tico e= n ecuador durante el periodo 1990-2020 para el an=C3=A1lisis de sostenibili= dad energ=C3=A9tica AL 2050 [Tesis de pregrado, Universidad T=C3=A9cnica de= Ambato, Ambato, Ecuador]. </span><a href=3D"https://repositorio.uta.edu.ec= /handle/123456789/40997" style=3D"text-decoration:none"><span class=3D"Hype= rlink">https://repositorio.uta.edu.ec/handle/123456789/40997</span></a></p>= <p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-he= ight:normal"><span style=3D"color:#0563c1"> </span></p><p style=3D"mar= gin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><s= pan style=3D"background-color:#ffff00">Lino, G., & S=C3=A1ez, M. (2023)= . Energ=C3=ADas renovables en Am=C3=A9rica Latina y el Caribe para la mitig= aci=C3=B3n del cambio clim=C3=A1tico. </span><span style=3D"font-style:ital= ic; background-color:#ffff00">La Saeta Universitaria Acad=C3=A9mica y de In= vestigaci=C3=B3n</span><span style=3D"background-color:#ffff00">, 11(2), 43= =E2=80=9371. </span><a href=3D"https://doi.org/10.56067/saetauniversitaria.= v11i2.354" target=3D"_blank" style=3D"text-decoration:none"><span style=3D"= text-decoration:underline; color:#0563c1; background-color:#ffff00">https:/= /doi.org/10.56067/saetauniversitaria.v11i2.354</span></a><span> </span= ></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; li= ne-height:normal"><span> </span></p><p style=3D"margin-left:36pt; marg= in-bottom:0pt; text-indent:-36pt; line-height:normal"><span style=3D"backgr= ound-color:#ffff00">L=C3=B3pez Montero, J. J. (2023). </span><span style=3D= "font-style:italic; background-color:#ffff00">Energ=C3=ADa renovable y crec= imiento econ=C3=B3mico en el Ecuador</span><span style=3D"background-color:= #ffff00"> [Tesis de pregrado, Universidad Nacional de Chimborazo, Riobamba,= Ecuador]. </span><a href=3D"http://dspace.unach.edu.ec/handle/51000/11441"= target=3D"_blank" style=3D"text-decoration:none"><span style=3D"text-decor= ation:underline; color:#0563c1; background-color:#ffff00">http://dspace.una= ch.edu.ec/handle/51000/11441</span></a><span> </span></p><p style=3D"m= argin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal">= <span> </span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; tex= t-indent:-36pt; line-height:normal"><span style=3D"background-color:#ffff00= ">Macas Pallo, L. (2015). </span><span style=3D"font-style:italic; backgrou= nd-color:#ffff00">Pol=C3=ADticas en gesti=C3=B3n energ=C3=A9tica para incen= tivar el uso de energ=C3=ADas renovables en Ecuador =C2=BFc=C3=B3mo incide = la crisis del precio del petr=C3=B3leo?</span><span style=3D"background-col= or:#ffff00"> [Tesis de maestr=C3=ADa, Universidad de Chile, Chile]. </span>= <a href=3D"https://repositorio.uchile.cl/handle/2250/137810" target=3D"_bla= nk" style=3D"text-decoration:none"><span style=3D"text-decoration:underline= ; color:#0563c1; background-color:#ffff00">https://repositorio.uchile.cl/ha= ndle/2250/137810</span></a><span> </span></p><p style=3D"margin-left:3= 6pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><span> = </span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36= pt; line-height:normal"><span style=3D"background-color:#ffff00">Magoja, E.= E. (2022). El camino de la justicia energ=C3=A9tica en Argentina: desaf=C3= =ADos y riesgos de las energ=C3=ADas renovables en el desarrollo de la sust= entabilidad ambiental, econ=C3=B3mica y social. </span><span style=3D"font-= style:italic; background-color:#ffff00">Revista de la Facultad de Derecho</= span><span style=3D"background-color:#ffff00">, (53), e20225304. </span></p= ><p style=3D"margin-left:35.45pt; margin-bottom:0pt; line-height:normal"><a= href=3D"http://www.scielo.edu.uy/pdf/rfd/n53/2301-0665-rfd-53-e203.pdf" st= yle=3D"text-decoration:none"><span style=3D"text-decoration:underline; colo= r:#0563c1; background-color:#ffff00">http://www.scielo.edu.uy/pdf/rfd/n53/2= 301-0665-rfd-53-e203.pdf</span></a><span> </span></p><p style=3D"margi= n-bottom:0pt; line-height:normal"><span> </span></p><p style=3D"margin= -left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><span= style=3D"background-color:#ffff00">Mora Clavijo, F. J. (2024). </span><spa= n style=3D"font-style:italic; background-color:#ffff00">Desarrollo de un Si= stema de Indicadores de Sostenibilidad Ambiental para la Conservaci=C3=B3n = de la Parroquia de San Miguel, Cant=C3=B3n Salcedo-Provincia de Cotopaxi</s= pan><span style=3D"background-color:#ffff00"> [Tesis de pregrado, Universid= ad T=C3=A9cnica de Cotopaxi, Latacunga, Ecuador]. </span><a href=3D"https:/= /repositorio.utc.edu.ec/bitstream/27000/11664/1/PC-003117.pdf" style=3D"tex= t-decoration:none"><span style=3D"text-decoration:underline; color:#0563c1;= background-color:#ffff00">https://repositorio.utc.edu.ec/bitstream/27000/1= 1664/1/PC-003117.pdf</span></a><span> </span></p><p style=3D"margin-le= ft:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><span>&#= xa0;</span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent= :-36pt; line-height:normal"><span style=3D"background-color:#ffff00">Reyes,= J. (2021). </span><span style=3D"font-style:italic; background-color:#ffff= 00">Evaluaci=C3=B3n general de la matriz energ=C3=A9tica ecuatoriana y el a= porte de las energ=C3=ADas renovables no convencionales a la descarbonizaci= =C3=B3n de la generaci=C3=B3n el=C3=A9ctrica con =C3=A9nfasis en el potenci= al geot=C3=A9rmico</span><span style=3D"background-color:#ffff00"> [Tesis d= e maestr=C3=ADa, Universidad Andina Sim=C3=B3n Bol=C3=ADvar, Quito, Ecuador= ]. </span><a href=3D"https://core.ac.uk/download/pdf/541927932.pdf" target= =3D"_blank" style=3D"text-decoration:none"><span style=3D"text-decoration:u= nderline; color:#0563c1; background-color:#ffff00">https://core.ac.uk/downl= oad/pdf/541927932.pdf</span></a><span> </span></p><p style=3D"margin-l= eft:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><span s= tyle=3D"color:#222222"> </span></p><p style=3D"margin-left:36pt; margi= n-bottom:0pt; text-indent:-36pt; line-height:normal"><span style=3D"color:#= 222222; background-color:#ffff00">Robayo Vargas, J. D. (2021).</span><span = style=3D"color:#222222; background-color:#ffff00"> </span><span style= =3D"font-style:italic; color:#222222; background-color:#ffff00">Relaci=C3= =B3n del consumo de energ=C3=ADa renovable y no renovable con el crecimient= o econ=C3=B3mico de Colombia</span><span style=3D"color:#222222; background= -color:#ffff00"> </span><span style=3D"color:#222222; background-color= :#ffff00">[Tesis doctoral, Pontificia Universidad Javeriana, Bogot=C3=A1, C= olombia]. </span><a href=3D"https://doi.org/10.11144/Javeriana.10554.53140"= style=3D"text-decoration:none"><span class=3D"Hyperlink">https://doi.org/1= 0.11144/Javeriana.10554.53140</span></a></p><p style=3D"margin-left:35.45pt= ; margin-bottom:0pt; line-height:normal"><span> </span></p><p style=3D= "margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal= "><span style=3D"background-color:#ffff00">Rodr=C3=ADguez-Galarza, F. E., V= era-Alc=C3=ADvar, D. G., & Carrera-Reyes, C. E. (2023). Alternativas y = desaf=C3=ADos para enfrentar la transici=C3=B3n de la era post petrolera en= el Ecuador. FIGEMPA: Investigaci=C3=B3n y Desarrollo, 16(2), 143-162. </sp= an><a href=3D"https://doi.org/10.29166/revfig.v16i2.4721" style=3D"text-dec= oration:none"><span class=3D"Hyperlink" style=3D"background-color:#ffff00">= https://doi.org/10.29166/revfig.v16i2.4721</span></a></p><p style=3D"margin= -bottom:0pt; line-height:normal"><span> </span></p><p style=3D"margin-= left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><span = style=3D"background-color:#ffff00">Rodr=C3=ADguez Klecker, A. (2024). Cambi= o clim=C3=A1tico y transici=C3=B3n energ=C3=A9tica: Las energ=C3=ADas renov= ables en Espa=C3=B1a. [Tesis de pregrado, Universidad Rey Juan Carlos, M=C3= =B3stoles, Espa=C3=B1a]</span></p><p style=3D"margin-left:35.4pt; margin-bo= ttom:0pt; line-height:normal"><a href=3D"https://burjcdigital.urjc.es/bitst= ream/handle/10115/33848/2023-24-FCEE-J-2166-2166060-a.rodriguezk.2019-MEMOR= IA.pdf?sequence=3D-1&isAllowed=3Dy" style=3D"text-decoration:none"><spa= n class=3D"Hyperlink" style=3D"background-color:#ffff00">https://burjcdigit= al.urjc.es/bitstream/handle/10115/33848/2023-24-FCEE-J-2166-2166060-a.rodri= guezk.2019-MEMORIA.pdf?sequence=3D-1&isAllowed=3Dy</span></a></p><p sty= le=3D"margin-left:35.45pt; margin-bottom:0pt; line-height:normal"><span>&#x= a0;</span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:= -36pt; line-height:normal"><span>Salinas D=C3=ADaz, A. (2020). Las energ=C3= =ADas renovables en la transici=C3=B3n energ=C3=A9tica de Alemania. Comisi= =C3=B3n Federal de Electricidad. CFEnerg=C3=ADa</span><span style=3D"backgr= ound-color:#ffff00">. </span></p><p style=3D"margin-left:35.45pt; margin-bo= ttom:0pt; line-height:normal"><a href=3D"https://www.cfenergia.com/wp-conte= nt/uploads/2023/04/Las-energi%CC%81as-renovables-y-la-transicio%CC%81n-ener= ge%CC%81tica-de-Alemania.pdf" style=3D"text-decoration:none"><span style=3D= "text-decoration:underline; color:#0563c1; background-color:#ffff00">https:= //www.cfenergia.com/wp-content/uploads/2023/04/Las-energi%CC%81as-renovable= s-y-la-transicio%CC%81n-energe%CC%81tica-de-Alemania.pdf</span></a><span>&#= xa0;</span><span> </span></p><p style=3D"margin-bottom:0pt; line-heigh= t:normal"><span> </span></p><p style=3D"margin-left:36pt; margin-botto= m:0pt; text-indent:-36pt; line-height:normal"><span style=3D"background-col= or:#ffff00">Schmidt Margalho, L. (2022). </span><span style=3D"font-style:i= talic; background-color:#ffff00">El desarrollo sostenible y la agenda 2030:= las energ=C3=ADas renovables como reto para la Uni=C3=B3n Europea y Espa= =C3=B1a</span><span style=3D"background-color:#ffff00">. [Tesis de pregrado= , Universidad de Le=C3=B3n, Le=C3=B3n, Espa=C3=B1a] </span><a href=3D"https= ://buleria.unileon.es/bitstream/handle/10612/15173/Schmidt%20Margalho%2C%20= Lua.pdf?sequence=3D1&isAllowed=3Dy" style=3D"text-decoration:none"><spa= n class=3D"Hyperlink" style=3D"background-color:#ffff00">https://buleria.un= ileon.es/bitstream/handle/10612/15173/Schmidt%20Margalho%2C%20Lua.pdf?seque= nce=3D1&isAllowed=3Dy</span></a><span> </span><span> </span><= /p><p style=3D"margin-bottom:0pt; line-height:normal"><span> </span></= p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-= height:normal"><span style=3D"background-color:#ffff00">Sol=C3=ADs Guan=C3= =ADn, C.K. (2019). </span><span style=3D"font-style:italic; background-colo= r:#ffff00">El Consumo de Energ=C3=ADa renovable y el Crecimiento Econ=C3=B3= mico. Un an=C3=A1lisis para Ecuador</span><span style=3D"background-color:#= ffff00"> [Tesis de grado, Universidad T=C3=A9cnica de Ambato, Ambato, Ecuad= or]. </span><a href=3D"http://repositorio.uta.edu.ec/handle/123456789/30061= " style=3D"text-decoration:none"><span class=3D"Hyperlink">http://repositor= io.uta.edu.ec/handle/123456789/30061</span></a></p><p style=3D"margin-left:= 36pt; margin-bottom:0pt; text-indent:-36pt; line-height:normal"><span> = ;</span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-3= 6pt; line-height:normal"><span> </span><span style=3D"background-color= :#ffff00">Tillaguango, B., & Loaiza, V. (2019). Efecto causal de la ene= rg=C3=ADa sustentable y no sustentable en el crecimiento econ=C3=B3mico: nu= eva evidencia emp=C3=ADrica global por grupos de pa=C3=ADses. </span><span = style=3D"font-style:italic; background-color:#ffff00">Revista Econ=C3=B3mic= a</span><span style=3D"background-color:#ffff00">, 6(1), 37-48. </span><a h= ref=3D"https://revistas.unl.edu.ec/index.php/economica/article/view/789/628= " target=3D"_blank" style=3D"text-decoration:none"><span style=3D"text-deco= ration:underline; color:#0563c1; background-color:#ffff00">https://revistas= .unl.edu.ec/index.php/economica/article/view/789/628</span></a><span> = </span></p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36= pt; line-height:normal"><span style=3D"background-color:#ffff00">Zatizabal = Sanchez, J., & Angulo Mendoza, C. X. (2021). Normativa vigente sobre ge= sti=C3=B3n energ=C3=A9tica en Ecuador. </span><span style=3D"font-style:ita= lic; background-color:#ffff00">Polo del Conocimiento: Revista cient=C3=ADfi= co-profesional</span><span style=3D"background-color:#ffff00">, </span><spa= n style=3D"font-style:italic; background-color:#ffff00">6</span><span style= =3D"background-color:#ffff00">(11), 1426=E2=80=931439. </span><a href=3D"ht= tps://dialnet.unirioja.es/servlet/articulo?Codigo=3D8219408" style=3D"text-= decoration:none"><span class=3D"Hyperlink" style=3D"background-color:#ffff0= 0">https://dialnet.unirioja.es/servlet/articulo?Codigo=3D8219408</span></a>= </p><p style=3D"margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; lin= e-height:normal"><span> </span></p><p style=3D"margin-left:36pt; margi= n-bottom:0pt; text-indent:-36pt; line-height:normal"><span> </span></p= ><p style=3D"text-indent:36pt; text-align:right; line-height:115%"><img src= =3D" AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wB= DAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ= EBAQEBAQEBAQH/wAARCABAAHoDASIAAhEBAxEB/8QAHgAAAwEAAgMBAQAAAAAAAAAABwkKCAQGA= AILAQX/xABLEAAABgIABAMBCA4GCwEAAAABAgMEBQYHCAAJERITFCEVCjFBUXeRtrcWGSIjJDg5= YXFyc6HB8BcYN0KB0RonUlNVWGeGpbHS1f/EABwBAAIBBQEAAAAAAAAAAAAAAAAHCAECAwUGBP/= EADsRAAIBAwIDBAYHBwUAAAAAAAECAwQFEQASBhMhBzFBUQgiMjdhkRRxc3ahs8EVI0JDgbTwJz= aTpOH/2gAMAwEAAhEDEQA/ALGsJ8xjTPYOTawGM87VJ5ZpBVNuwq9j9p0mxyLpYe1NpFRNyYwjq= YcmEQKCMOV8fu9AAQD1wDzzM25ewXjTX61YcyNbMczjvJc+0fPqrMOY0sm0QrPmEmcs1SP5OXYl= cFKsDKSbu2hlAA3giPURlQ1wKA7E4CH4RzXiz17jB795gw98Pzfz8PFMPuiIvTCWuoh8OUbGI/4= 1E/X5x6fMA8Svl7KrJwH2wdntqpqia8Wy+m4TTUt2gpajaIKaoiMUoWJIahG3BsSQLtwCN/RhGC= HtKvHGnZdxzcKqCG13Cz/s6GKptctRAW59TTScxd0rSwOu0KCkzArnrjoRlyvebBsdnDPtF1yzU= hWb01uLaxC0viUenX7PHLQVekp8oPWsSmlCyqLgIw7UeyOYLJC4BYy6nh+GpTmn16dBD16dR6e9= +j4f8B+EPzdOITuTl+UPwT+ZLIX1d2YOLsyj17v1hD1/N0/n+evHBekFw7ZOG+OoaWxW6mtdNU2= OkrZqekUxwNVS1VbHJKsWSkW5IYxsjCRjb6qDJ12/YXe7tfeDpqm8V89xqKe7VFJFPVPzJhBHTU= kiRNKQXk2tKx3SMX69WIwAh3nacw/IWpFRo2JcIyxK5lHKjSVlpC4Ebtnb+o06MURZGWiEnZFm6= EzNP3CjZm/VbreSbMXqrcqbwW7hBRuHtLedVn+g1/LsJnPKsHAXuNa2KA+zTZq7QExKwsokV3Hz= HsZlLv1I9nItlU3LJJ6Ri4UaqJLlaEQUSMbm+6L0XxNyMYrrlUCOWwBAEZiPd4QroXe7jIETHp2= +IUqzMVOgiPRRIDAHUOLDsXv69J42oEhUlGqtXfUqrvK4oxEgsjwTiFZKxJmopfe/LiwM38ECfc= gn2gHQADhLZ5cUZVVJfJYsAe4jp/nl8NOjU/iOMeY9qpoPKQdv2loePc/yeyrCSY5NzLnOGlIA2= M3tFctlKk3uOWGUpHoyLqdjfaLSBQblcGRaPXjdQpRdAd0+uVxmY/V7E1wzZkuk2SxExzBSd+yh= F2WuOKLMyYsSKSViYWeNCOrTiHdKdV0ZFiRtHHTHvSKQgdAVv7of9NE6wIdOv9Yeg+v/AGfkjhI= HMPzfbU9SOWprshNSsRjp5rJUcnW9nGGEQsEi+frV2I841Mu1SkArjWvyrqPZOV0mp3ssKqxiqJ= ILIUVOaE9lSzNlgoycKPLwx3DRqwVnulqBISDWJj9pdeX0q+eIRzKNZZmx26fPH7pcjZsyaNW9i= UWcu3DhQiCDdAiiqyxyJplMYxQHmWLcHVCoTstV7Zstgas2WBfLxk5Xp/LdCiJuHkWxuxywlIt/= PN3rB63UASLNnKKayRwEpyFMAgEhWtspyepTKGDKjD4t3Tf5Jk8g46hYe0T8rQ2EGtcXlkiWsbL= SrCJuyxW0OWXUbrum7Fk4UIxKYhEXCgdD9ogtT8d7lc5na3C+UH9mjqsrdcyWYzmpyDOOlQfwcz= HkZplcPo+Tb+XOV6r4xPL9xxAglUL0ETUMIBOSwAUsSwwe8DoOvn56NWFY5zdhzMCT5fE+VcdZN= Qizppya1Autat6caot1FIj80BJvwZmVAphSK48MVAKYSAYAHpw8h5+wbiNy1Z5VzHi7Grt8QVWT= W+X+qVJy9SARKKrRtPSzBdykBgEplEkzEKICAmAQ6cSX69YnZ6J87eHwXiW0Wp1QUYywx8ilOPW= 60hOwEpg+ZvJ4abNHNmDKRRYWBkzesDmZJmSVYMlO0V0zKnFugeqLfm47ObKZQ2PyBbkGNdCNsc= i2rck1Rm3sld5mcQrUMwdzDSXSjqxW4muyDMjNu18QhQim6CqKRVhOcpQCxYhQqtnZ19Y4AxnA8= 85/po1TDtbsfEZE1ey/KacbVYBjMm1IKYcuQRyzjVxVKMWatTNBM1qm3zidgIILBHMpuOhxmWoB= IvE1G7ARcp96fN1FzurQ9QMW3fcTZbCM3cJqVt8VK5ebZMx4XHlqfpXK0+xY2BtkaeCqko9ja8z= bRztrGJg4QdRT9JyQ7hq5VFX+53LqwloXy59yHOHpa9Sh8oJYRSsIXSYjJUES0zJKR4sY32dDxQ= oCqNpkAd+N5gFATa9gpeGfxATRZjSyP5LOpyW6C18e1n+kLKknR6njF2RvdbLZ2eT8mtFyMQXdR= 7II+PjZJZeQcSUiwZIiq2KK53KzVutQKpVSuSDIB7I3eyCcEZ8D3dR46NUawe4+pNnlmMBW9nNf= 56ck102sbDw+YcfSMpIuljgmi1YsGthVcu3KpzARNBumoqoYQKQhhHpxowFAMACUeoCACAgHUBA= fUB693r1D4ePna7OT/Ldm6Gy/qnUTaCk5KbzbNRZxlR9UZOov4A6S5X6J1I21y8ozk0VvKrR6zZ= uKBwBwk4DqdFRI11LnN7pVCq1mps7c3etKvX4autXsn4r2SdtoSNbRqDqQeLgos7fOEmxVXblZQ= 6q651FVDmOcTDkFNuGQxHmHXB/An46NZa1v/GJwF8teK/pzBcUw+6I/7EddflQsX0RNxM9rf+MT= gL5a8V/TmC4ph90R/wBiOuvyoWL6Im4nr2g++/sh+yvP5MmoNcD+6TtS+1sv5kGk58nH8ofgr9j= kL6vLLxdkX+9+sP8ADiE3k4/lD8FfschfV5ZeLsi/3v1h/hwjPSe94VF92bf/AH1z06fR1/2PW/= eCr/sbdpM/OB5cVi3gx9U7biheLRzTiosqWEjJdyVgxudalSoryNaGTU/B4+VI8ZtncI5fCnHeM= Z01eOGaTrzaCUMZUHn44NqMXjLHkLmeIqFYRLHwcR1olmZRbFL7lJjFv5RSVUTjUAACNGrd15Nu= mAEbJkTEChV/tbsbW9TcE3bPdug5ux1yikhFJKIrvkfbDss5YIuutwZ+0nLRn1RdSqK63jOE/vC= SnZ3H7SGS9/pIGsnQf9R+bg/xpHp197qA2b/3xHtHlKBVjEihuhI3YPQ4xkeefq6DPg/NATOODu= Zbs3y0XlFzvQr7fNg2m2cFYYuCfsqwxmE8YxuOphmSRTSiTMY4zBCflHSHiKCLsVlzAPVIExL2P= bHlX52zppNpPO4+gkozY/XfD8JSLZjmceMo1/NxPhMX4x7GRcKjFpWCqTqDtw2aO3bdlIs5eSAH= gO2rNu7ZdptzfNWtyrqnjGsmtOPckvUXDiBqeQGkazPZ02aCjp6nX5SLkZKNePmzVJV0eNWWbPl= GyKy7dBciKokPz3mAa5MNqkdNHM5YS5ycOWTRKHLWZE8IKr+sp25uA2AC+RApoVUixhEehVhFAf= uwHigeVCFCbSpZyAvgQB3eA6+Hx8tGkZYgsnOCgLRjSFtGjGFwhoqx1KPn7sthKltrEjFNZVihK= WIZSFsjFmhLN2JFn5X8dHt003SYOEW3oBROeqOpexVH5xmwmwtsxZYYbDttf5jVr18deR9kSpLD= KxDiHO3BJ2d10fpILHSFRuToBBA/aPQOKMePww9oCPxfv+IOLDLuz6iqSMHGcnODnvPj/nTJNTm= 2vUXYWV54kBscXFdgXwMRdMj3IQeR9hkQNgmWqqveAuwedvttySNH8G9Vjh06kEDcY4d6KczTl3= 7M5HvGjVdG946vJ5BvFrxyVcsDRxVHkqrKRlct9Xn3bd4hM1lbtSaTDQnaomZRVrIgm/kGJaJcG= 7+66bEZqyNgDGU3YJDJGKwsg3BhI1qRi45oFUszeozAtJNyUG73wpp0ikl4I/fkTCuQRTKI8DDC= fMsxlm/cPI+msFRbxE3fGhboaWs8qMF9jD4KRKR8W/8AIeUk15P8LVkU1GnmGSP3tM/i+GYSgN+= +Qfy1KiNQ6n+Jem1iCR4Y/wDe7RpYFsYc1TbDSTcfGOzuGV0bm8Qwf/QtXoOs1+vPrEunfZGSyA= BBZSrhF37MjoivuRK6VQ8FNQ4oiqdc5SZrzJywNssi8tjTGuQOPZJPMWAJ3OaVuxJIOotnOLwmR= slSk8wlWRl35I906aNo6KWFgV15hywljKJAY7cyJq9+POLBKRjaqAB94ABxkgDuyemPL5jRqLvP= OKebPsNiVDD9t0Vx5XK+k6gnvtvHmKKrUbYZWAIYjUnthlZVEUkHPcIv2yDFFFbqBUyJEKUoYM+= 1O8w7/ldyD/4X/wDV4sTvnMqxrQN3Klo3I0S8Pb9cHNabsLYz9hfYm1GzQ68y1M58aTSlxBBBAy= a4JR6g+KYAS7yfdcMg6m+I37v/AJ4yiokQAbEXIDYGeoOOvtHyI/Tpo183rW/8YnAXy14r+nMFx= TD7oj/sR11+VCxfRE3Ezut34xOAR/61Yr+nMFxTD7oiEBwjrr8qNjD5qib+fTie3aD77+yH7K8/= kyag3wOP9Je1H4y2XH/LCNJ05OP5Q/BX7HIX1eWXi7Iv979Yf4cQmcnIwBzD8FdfgRyD+/Hlm/y= 4uyKYo9egh6j/AADr+8f8ve4RnpO+8Ki+7VvHyrbkf1H46c3o6MDwTXDyv9Wf+lbx+mlb86P8m5= sR+wx99Z9O4WzyPdQtYM7ah2S25jwRjLJNoSy7aYVGwW+qRczLIxTaErSrdgi+doHcJNkFXLhRI= iZygmdZQ5BKY3Xhk3Oj/JubEfsMffWfTuEzcoTma6laf6wz2Ms326ywdwe5OsdpasYikWSxIKRE= jEwDRop5+KZLsyLKLsHJBQUWKoQCAY4FKYB4j2u4wnZuzzD7Pf3IP10/tYd5iGDK3oDzG6ktgtJ= Wq1ps/wAcZhpMQ0fPV/sYWUnDFfRTN07WWdmZFlYZ8Zsk4XW8Ni6I0E5kSAQG9v8AZRk652FdxI= XAevSy8k5qTkuZHNAcKZsSLJYTY2IqhbmE6VAqzYi3sduf2QPZDkK0EBMHjcJr2azO95pPMfpCm= Ka9OlgbPPUbHFHj5NoklMI1ODfGdzFjmW7Rd0jHtyFXm596JnKhI+NJ1cKlMicCMBtkaCHuh2Li= Gh/AKkvVo5scB6Cl4eurFqifqHvCToU3UA98OvTjI4OFVj6whYHJyehXGfHp4aNHHO3Os2UuWx1= pwJoZgKLyqWoSs1DHlpGvWa6zNqUrrkWUzORcNWJaHRh6yg8TUSaSEg8c+bbi3dKiyM4TbB/O16= 5sO/1g3Zw7qnshiHG2MnF3tEdG2mEWpNsgrewh5SGkJRi8ZjIXaSQbHdEbIqIKrs3BDoiYfD+6A= 3GHuU3sNiTRvc3Y2t7RyyeOXckwsFELaZqMlHaMJZK9dgdvoqQNGMH7xk3mUmx1SvTolaHWZNiq= rACyRhKVszRi3P3PpwNknDlxjL5R5Cdx3HMrHEEeJsXL2Kocm0kG5Cv2rNx3tHBTJKCdApRMA9p= jB68W7VyUCAgRk7zuySFBOMdPP+oHfnRo96m7R5CntseYfX8I6x65xOX8Z0PYGUoExQ8dO4e9ZJ= t9cypHRkNFXWZNakwnULDIKISM0kkeIF9LkSclctSF7BVXrbmLe6scwfMOR8PYVg7XtXNlySGQc= Yu4hZ1EwRZSah1bcKEeS2xqqXsqSSj2yPdYXnhlXEDC5E3iFZXygOn22ffDr/u89D8XXpn2D+H5= /wCQ4D2s2csVa5c7XaC4ZuuEbjmpyUxnCspWCxg5bxSErLT0NKxqD5ym3VKxSfNYx0KDt2CTY6h= kEfGBRwkU9wODIAgb91GfEk9FGMeXj9fho02nZHZHmx06va+OsDaxVW7zdsw3C2HNjJ/XXbslNy= m5XVLK1hiVPIkOLVo1QKmcjdRWWOTu9ZFX3gw8HON351tzBjur7260VWgUS8O0SqOYmAnIGbThg= ft2EpPQcgvbbRCy54AzpJxIw4gi7FM6BTLNBdt1Dinmp7lZUyBuhijCmOdpZXX7XObpGO7FG5Uq= k7YYauScfkNFWTd5Dl5CruY6Vn4Vo1BtGxzPziccgpHuVRFqo5duSKy3uqDKrOcUmZ8wZLeoXyt= l8bw5WzSY428E9fEvX7IrjbPB+ygVTejTyPf7C+/eY7U/BpHGCF3KvrgnAD5A8eucKR5fMDGjTe= Ni1Sr+6FcELEEBIs/xEoQQ94SHocgJR9OvXqAgPX4h4q/4kxzqHT3QBrr0/wBnCn1dO+KzuMMpy= sQ8RGM/HJJH4dDo189TEOuOy1Hyri68yut+d14Wm5DpVsliR+Lba4eKxldssbLviMklo1BJZ0do= zVBukqugmooJCHWTKInLSNuDdNQd+qTSanmhXbPBIUuefWCJB7r7fmLoz5/GezFSSblKj3SFO1T= RMJygjINjgoHcZYUx7RfF4ZA94oB+jj0MgmID1KUevxgHQf09A68OfirtnruK7vZ79UWf9lXewx= 1EdsrbNdHgkhFTjmsy1lFXRuxGVB2KNrEEHOdJrhzshp+G7ZdbNBeFuNsvbQNcaO6WtZo5jT9Yw= GpaykkRdx3EB+pCkYAxqR+C5YmI4GyRl61V5j0DUcgwy5nVWQvUIpSLA1cqJKJHIpLt5qMlmnit= lFG7pMaiuRdBVVBZAyaihDNQw1sJv7gdBpD7S4nhtlMZNippDsBrHJx9usEagY/aDqz48bpxM5O= t26IlVeP4OAZOmzchlAQmVzCHDe39cgpVI6MnDRMgioUSnRexzR2kcpvQwGI4SOU4GD0EDAIevx= cD0+CsUpqLOIqlRFcerG7zSFSIrUZEpx9O9OQrasY7TU9A6nTWKYQ9OoB7+ivPaZW8SxCn4opor= +iKUhqLjS0RulKnfinu1thtNSoViWCTJU0zMSZqeTrrbWns5g4el+kcO1ctmd2DzQUNRVi3VBwA= fpNrr5blTyZACs0b08wXokyEAgbWyD193rwZO0WUk0L9iq6hGJWFhDysjCSiK8TKsJxqwk00TMJ= 6vSjOSj2pnka/RZP0DpKNnbYvVVMMU/aM+XQIemKrP69ffyRdP0f8V4ZKbEdYQk0LJEJOYS3t00= kFLXHKFTl5ZugQySDSyqdvg2lqmmcxCknk3yqYiDlBZvIETeplBsVUqKZVzFMqBQBQxCCmQxugd= xiJmOoYhBHqJSCooJQEAE5xDuFbTNEJWNI9QkJOVjmKtJH3YVpVVUl7vbVEJwSyJkAsemNTy1Wq= ERmUANJDkRyHA9ZUZneMnrlGd9vTDt4Y31p5fuqGpMi/ncI4rjK9Z5Judm6tkk8kbFZgYqdoqsW= kxOO3rqPZriQouG7AzZNz2l8cFAKHHu+0L1wfbPpbhuarKHzq3cNHSdkCyTYR4KMK2SqNxGAB6E= QPbCpEbCHlehjgKxgFYe8NmceCHUBAfhDp8/GEknqWJPcST1I78fh8sjx16NSocw3Z/lTS2zOR6= bsNqZl+0ZZx9OBVrRfcer1+sp2dwzYslEHDp00v0I6lwQaqoNkXctHFekSRBHu8FNMAxhy9seUD= OvNPxtfNSsSXvH2u+MXyVwfJXJ8aakYFCKpzxi5cTcuL6TZkd2C2O0m0dFtpR+uRmr5gAKm3d+X= s5k8QYompB1LTOM6DLyr9UV30nKVCvv5B4sIAUVnTx1HquHColKUoqKqHMIFAOvpx2Gu06pVBso= zqlZgKy0WUFZVtAQ8fDt1VhAAFVRGObtkzqCAAXvMUTdAAOvGYSgKVAfONvrOSvcOoAwPq+WjWW= MLaI65a9ZkyDnzGNWlIfJWUS2MLnLu7LNyjSQC02Nva5kEIt+8XYsfMTTZFwmLZJPwEyign2pGE= vALzDy4uX5ttk+1ZIuFRibNkYy6Mfc39NvkrFOVZGOSTaAM9H1+WTbElUECJN3CyzdN4YpEiL9x= igHGsdtMtzuDNfMnZSrNbPbJ6qwCasXDD5vynmpOTYQpJWV8iUzwIKvhIjPTxmopuAho18KS7cw= AuktLF+Cs2VHEtLg8Tzb+/WKvWC1IyVviLNWaq9Wxzd4mfu3sVvM1+bdRyylmzHV6DLWSWWmJy9= R1EmfKoyqovZFoXd22zLV0ElwnuEVEprFoabmkbJSkPPqXkf+WsAelVFkZBM1QeVvaF11ztzvst= FcIqCmoZq1hSNWVPJB5kaPMsNNHGuP3jTFKlmK7+UIQHCCVXUwZV055a2cqzjGiZAaUqULiFNHC= FEeIZBdQ9uYBXl3kWlQ3MuylmsrLqMX0XJETZSXmzpPW8ks37FVXJz9JHkmctdBs1fnx3NpNXKr= QjR2plO3FQcLPFCJsk0FTTBU1TOlVEk25SHMK51CkTAxjFAQnT9JNmoKYipV5TIM60TaFbCEwpK= 1J7Y15KwyUHTrBYivnC6hlptGmRFjt7Uzt1+CWHLNzfR4hMVuuISBvyZr/u00tM2fG862lYlOOq= kygq+lmxICbyBWqdKmGzMajZp2cJDvFbCetIN26rsGp5Kkxkk7WVTssrIwu1qeHrQKhIaTiekZG= ikkeSolQJuSSNeWGTeil1fepJLNh1KgIW1qaXiW+GCSar4brVZZUjSGCNy5V0J5hEveA67WAIAU= oScsF1pi9ab6mr7O432buUYu1z0EvBQOPZde2zLNCRl6xWpEYyOaV8jwI1+6bV2Ok3KxDtjCdBo= uuqJhT68bvAw9A9R+cR/f8ADws/AWDdhS5xSuuZlptzSaQ+uz/GUfbriheJGLGe8KnslhdJSjxd= KecVSAa2F0+OKjBo9vtshWDVq2QbDwzQCB0D3w+b/LjmrlSQUUsUENbHXEQq800BDQrI7OyxRsM= 7jHFyxIdzDmFlUkAa6S11lRXwzT1FFLRKJ2jghqVKztGiRhpJFPRQ8u/YB/AFJ9YnH//Z" widt= h=3D"122" height=3D"64" alt=3D"editorial1.png" /></p><p style=3D"line-heigh= t:108%"><a id=3D"_Hlk92188167"><br style=3D"page-break-before:always; clear= :both" /></a></p><p style=3D"margin-top:6pt; margin-bottom:12pt; text-align= :justify"><span>El art=C3=ADculo que se publica es de exclusiva responsabil= idad de los autores y no necesariamente reflejan el pensamiento de la </spa= n><span style=3D"font-weight:bold">Revista Ciencia Digital.</span></p><p cl= ass=3D"Header" style=3D"margin-top:6pt; margin-bottom:12pt; text-align:just= ify; line-height:115%"><img src=3D" QEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB= AQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE= BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABGAIQDASIAAhEBAxEB/8QAHg= AAAgIDAQEBAQAAAAAAAAAAAAoICQUHCwYDAgT/xABGEAABBAIBAwMBAwgECgsAAAADAQIEBQYHC= AAJERITIRQVMUEKFiJRdHaztTQ1N2EXIyQ5QlaBkaOxJScyQ1VmcXXB4fD/xAAcAQABBQEBAQAA= AAAAAAAAAAAAAQIEBQgGAwf/xAA/EQACAQIEBAMDCAYLAAAAAAABAgMEEQAFEiEGBzFBE1FhCCJ= xNDZ1gZGxs/AUFTI3c6EjJVRiZHSitLXB0f/aAAwDAQACEQMRAD8AdA1Dzk4m70mRavWG99fZHd= y1RIuPPuhVGSSHq31+gFDdJAtTkRqOVzQxSKiIvnx4XqLfeQ2Bm+tuE2S5lrnL8hwjKq/PddNhZ= Bi9rMpraMOTkDByBDnQTBOgZIXKKQBXqE4lUZmPYqoqOlcQ8e0rZUUxY8kE+IYBwEeEwTjkDeIo= SjVCCIx7GuYQb2vY5rXNcitaqOp97Zqt7eGSff8AOa6tVVX58qt6D5+/z+v460xxHyny3l3zF5b= 09NXy5vQZ9ntOslNmFPCWiWmrqFJIpGUeDUxzpUgENDHsrqwYbYzlkfM7MeOuA+PZamiiyysyfJ= 5mjnoZpbyNPTTlHUPd4njaE6WWViQQwswGKTuLXen5bYHlGK4ns+fUbrxW0u6mmkFyOJHqctign= zI8JpYuQVAADlEChEKv2nXTDSFb6SSmq5Xtc4gEU8YB1T0++EJkb8fHuDa/wq+E8qnq8f8Ax1zS= 9e/2gYJ++eMfzuF10sapf+jq9P1wYy/8EafH93x+Pz0ntJ8K8PcOZtw5PkWVUmVNmlNmL1qUcYh= hmkglp/DcQJaKNlEjAmNVDahcGww72fOI88zzL8+p83zKqzFMvmoFpGq5DNLEk0dQXUSsPEcEoh= /pGcixsRc41NyK3RQceNI7M3Vk7HHptc4naZJIhse0ZbE8UKsr6sBH+GsPaWJIkALnfDSyGqvwi= 9JHU/ILuhdy3dGRRNQ53s582Ow9ymIa7zWZrfAcGx50lQwRypUa1poPlqkZHZNt5cy2sjo7w4np= QY2a++BIng7dG5EguK1p7bX0ef7fq/SryZrUKZpFb/3akYFHoq+PHjyip1AP8mwr6JNZcmLQYwL= kZc5wiDLKrWrKbTBobaRAGrvlzY75hp7kRP0XFYqqqvb8Zwj0pE8hUMdQUagCO3n8fttjReIzaV= 4A95TG9y6iyLO8z2XIweh2dgNzmQZnJZ9rFPitXldTOyAMmrXMpH2lHLUAmMPX+wZJgnOjKIiF9= DrSKjI+d690laWVuHDCcRkyq2Y3Wjc61C/KG1LdaTDQoy4mNf8ACSpBZW0Vi4Tm/UsjDWUXxXI5= eru1RFRU/BU8dKDVRWRfyjObJcn6ANgZad/jx58C462718efKovhq+FT8UTpoYyFiVT3UJsFF7X= UWHkem/UAEC2DDaOTZxh2Fw0scwynHsVrle0aT8iua2lhOI7z6RtlWUmMFSO8KqMR6uVEXwnwvX= l6fd2nMiklh49tXXV9MBDlWJ4lNmuN2coFfBEpps4wIVmYoocQKKWVJexoQDRXle1qKvSG+0dy4= pzg5tZzkvLjfd5qnTkO7y0NBMBSX2XuoMcpbVIGN4jiuN1UebHgT7CP6JlhaGjhjKQVjMkvkSyA= jHtD4X6R7duM5JvDJeLPJnYe29lUvGHdxpOK5NgtjjlazHZuLPq7Gz+0JtBVjeeLJnQRCAyQ4hH= HV6Dcxj1arQhVuWbVYGwRiouRtqG1wDv8R9Zhm5OR3H1fH/XhqRPP4LsbD0X9X/jHWyMeyvGstr= g3GLX9NklPI9SR7ahs4VvWnVjla9Aza88iMRWuRWuRhHK1yKi+FTpETtg9tKg7g4t1Gutn2+una= tPhgojazH4N421XLWZS4r5H1dhBWMkJ2OjRjR+57ySXepw1G31yP7U2zs04d8qeaGqZORzcl19p= vVfIfI72laQseqvb7QtkUcO8h1xSmHXTrONBlxiOH5e6PMYA5DNjicg0IGoB/eXSSpBGxt389/q= 8jvgw4tlGyte4P7C5rm+JYgkpytiuyfIqehbJVv8A2vYW0mxfe8fHn2/V48p1FrlNtixy7jPuwv= FTcGuibhpMViycXv67O8CLAxqxlXVcEU65sbmbLx6piniMnxxSL1BxCF/xYlWR7fhSbhbw/wBpd= 4Lc+6tm7j3TbUjcdJAsr29JCfkVgSyyiXYEqcdxyrlzocGnoauJBksDHCRseFHHEixopFIQgrTd= pdr7HO33wM5739FtO62K7ZepMSqZUe1x2DRtqm45m0SWIwXxLCash0pbZzHteg0GgWq1X+pURDG= qMFLDXdbrYkbkenQA73+7BiyftxZ9vqo435Rk/NvbuC5HlsHZNrHDmsfONaWeOV+LGqsYDUV0y/= wg8fGIkr7YPYI2LKK2yV8sCPRRnitWbY+RegDEYEW7tSlKVzWDEPYuIPIR719LWMY24VznOVURr= Woqqvwieelne3PrvTe0uznyDwzfmyk1HqqdvmXZZPnaEhsLUsoBaqvYAYzJrCCkybKxrolZHhCC= eXMJKbGhBLKIJjq7dqcf+0zW4FmE3VnNrZNzsKupbGXidReaqyJtJd3UQBDQ6qTKFjEJYwbMw2x= GTVOwcVx2yXo8Y3MVRHqkkUlhZ7AKhIAOnckWtsfL1vgw+fHmxZYBSYpxSI5mNIE4SDKEw3ojmk= EVjnMIxyL5a9jlav4KvR0hJxF7u3IPilqEGoKwxMvoqy/srPHy38p04tFVWEWtYmPV5JLTEDVRZ= 0WdOjRkf7YC2UhgmsH6WIdBp5b9AfW/58/v8sGK/If9Ng/tkb+M3p1fvbr57d+Rqn+uerPv/wDf= gp/f0lRD/psH9sjfxm9Ord7X/N3ZH++WrP5+HrdfOf8AeRyY9M/cj4/rHJx92MScqPmJzX+hI/8= AbV+E0Ne/2gYJ++eL/wA7hddLCq/q+v8A2CL/AAmdc0/Xv9oGCfvni/8AO4XXSwqv6vr/ANgi/w= AJnXC+1d8v4L/yucfi0WO29mf5NxX/AB8s/DqsaA5daGh8m+OG3NHS5AIRM/xCdV1dhJa54K2/j= uHY49Ymaxrn+xDuocI0j2kUrgNK1iK5URUdNG7w5odpvdeeUY8DkUl3PGOizDDs1orSZi2SR6yU= d9TeVM+AWIOaJqFkGqbuqnHjSIkwjfJhkVjeg05URFVflETqK+a8kOHUO8ssb2HuLQcbIcdnSaq= 1osty/CXWtLZQyuDMgTYFrMWTClxzI8cgBBjKIiOY9qKi9ZMjk0BlKa1axK38iN+h/NvK2NS4XH= 0z36eWOx9xan15cah1hBqM72ZgmGW02JVZayXDrcnymqpJ8uM89w8DJMeJOMYDiseJpGscRqjRz= esbT10mR+UVzHEiSViSc+ysb5PskQCjLx3twqvvelR/Ku9KKir+l8ff8dMXUe++DFrbwIOObS4z= zbs0kX2ZHrMm1yti+Y0rXAWE0MpD/UoVGuCof8YhEarF9SIqSXHQYWkxMubT4y2wRrpn5yNr6xJ= iMcBRvkrboL3vS6Kqjcb6j0qBVYrvbVU6BKAzFY9AZCtiT1One21rW+s/aTCGe5dEk4D8181jch= uN8reGlrO5yyVi8Gce/paXJ8XvrF1hQ3mP5VTo0I76kRQw7CEd0hgnumw5McbyxpI7HuFvI7iFn= eT7sxDQnCiboTNLrjHu5knOH5xdZEwlJBxUllKpVrp4kF5sZUSC9pWOaUbgNa1Va97XNbyIuJZf= HcGQDHsmiCInqGcNfcxxl9KOTy0jZAhv9LkX7kcrVRfuXr+eFgWE1pXmrsRxiAYgSximhUNVFKS= MdijPHeQEQb3BOxVYUTnKMjFVr2uT46VptajUpJGndXIBCkW93p2+/wBBgwsv+TYR5MWNy+STGk= R1JM076PfCQPrT0bLVVZ7jG+pG+U9XhPjyiL96eYzcHdbN2l3U+emtbccuBU7Jx7mhg8qw+nJ4D= Ey7OJNKWSF72tGR4QzlOJEcqPViKiqnThtXjmL4uOWWnpKKgEdjXzSVlZAq2FZHaRWPlOihA0jQ= NeRWuKqoNHP8K1HO84ylqsDbZSrjHa/FHW5FK6bZU8Sp+0SLMcpTrKmQxrJeskjVIT3SKpntVzv= U5FXpviEtI1jdwve+gjTve2/S23fbzwYSB4qckuRPZw3buHXexNHT8mi5IsKsuKiYawo49hIx6V= PShy3FMhFW2EGzp7GFNlOGoglZJAcDkNHNFIJbOs97mdj3AuCPPnHSaXl6zXXOo8PtBmffmvnXT= 8izaNE+mYF1LWKF0T7J93y1xlKhvCtYjFV1/lJtLjluDK7DB6LNdTbHzHH2T32mLwbjF8pvqRlZ= MZX2T5tUw02ZBZBsCihzHEENASisAX0ke1q7RjYLhcOPMiQsSxmJFshMDYxo1FVgj2ARv9wYpoR= RmDlCGTyRgztIxj19TURfnoaUMwcx2k927dtip+G4Fxa/QYMJF4nrHaGedkPLWYJTXlkzC+a65r= nNLWQ5hpx8Lha1g1B5xYIBrIlQKq8uaWymIgiDjBivsSowcEhR6BwrfvDCi0DG17lPA+wyPcQcN= tKOTttc+yOOsjK5MWWGFlX2GgGRguhyjR5a1rUUP+T+x6nsX1O6AVbjeP08M1fVUlRWQDvIQ0Kv= rYcKGUhWNGR5IscQwEeRjWsI5zFV7Gta5VRETrRuyco4tagkVYtr2Wk9eFyBs81ImbOwzHX3SVy= xUsn1/wBrtium/QunwkluD7iAdLjoVWqZnqcJyb3jIBfUAjG/brZd9gRa1rddsGOai2ptET+rZ/= z8/wBDk/Hn8Pkf4dHXT7g4DrCxiRp8LCMFkw5YRSYsmPjdCYEiOcbShOErISsIIo3tIN7VVr2Oa= 5qqiovR16fpn9w/6vT0+P5Oxjmrw/6bB/bI38ZvTq3e1/zd2R/vlqz+fh6Sph/02D+2Rv4zenVu= 9r8du7I0X/XLVn8+Cv8Ay63Rzm/eRyY+nm/5LJ8Yk5U/MTmv9CR/zpq+2E0Ne/2gYJ++eL/zuF1= 0sKr+r6/9gi/wmdc0/Xv9oGCfvni/87hddLGrT/IIHj7kgxU/2+wNVT/f564X2rj/AFhwWP8ACZ= wftlov/Mdt7M/ybiv+Pln4dVjIff0gbufQy8ne7xujQzckTEF2Tyd2pS/nItalulV7E7IbX6ha5= ZcH6r1fZ/s+j6sPj3PX6l9PpV/LpJjWKon5QDbefx5c7cT/AGrGzLx5/wD3/r8dZOgNmkO1xGLX= F7Et641Lj680exZsPi3pDKN6YduGBtWu1/Fbc5fjz8Tk4tcQ8cYUY5t7UHFcXIJ32N7jZtjFN9E= 8daKVMCcjoygJKDtZ8orbdfAjm1xy3VsW2qKPVGmMnn1GwjgnZHkGK62yzFMlgWxAQBHFY248Kk= Vr5tdEFMZJIKeCuAQIxA9N+/cMynHcS4P8rbTJpMeNXm0Ls+lD9S5rGyrbJMSs8eoa8aP+HybC7= tK+HGYn6bjnYjE8ovhQTtaVNiXT3c9vBDI6ogcFth1c0vygm2VtEsZdaxy/d7jo1LaPY35X0sev= nx970ZpIGZ9yrrpNvMr59rHyHwPcwwF2VqrSGAaJ3bL1fyJtN44tH2MGzyPLcqw+41+zF5EbEKt= SwHAyGznOPDbBGyxLOaYMcXuPY9vqY5/W7cu703bxw3IbHHJm6y3UqrOWLKmYvh2VXtQpwuVhWx= baHVuhTmNeitaeEU8YnhVGZ7fC9LQcfdhZJrzs18x/zZmzK6Vm3JLXOBWE2EYgJAqK9xyllXAPe= EqPaGzg1haiU31I0saeYD/LSqnVl3aQ7WfEveHELFt4btwwmyMv2LeZcQTJd5b10DGajG8ls8Wh= VMSHUTobXyJBKeRaTJcr1mes4UdiMFGa4jCiAuzs37QUAAdwpJ6AbDp07+YAMWeUHce4ecxcO3Z= q3VGzr51nG0hsjIchspGEZLBdQYpHoZFfbZBGbMjQ0nyaptiOUKvjSGSpTmegLmO8vbXH2t9k8R= eIWsuUu44HKvLN04JQk1a3ObO01bl2OSMQdY2t7TUSQq+bPuZdx9rz7JRnWEMf0bI6Fkepj0Vlc= XbToavGOTvcFxuljpEqKDjFymp6qIj3vbFrq6f9FDjI8j3vegY4RjR73ue5Gor3K5XL1JXsFaf1= 5vfAeZusdqY1Dy7BsgLp11xQTnnFGmrWWOXWkH3XxShOiR50OPIYjCNT1iajvLVVFcyKqSbsVvE= TexJDEdNtjuO/bftYxFHts80dBcdef3ITfG1MlsKTXGwa3bUfGbaHj1tbSpZcq2dT5LTNLWQI5p= sX6iohHO9TiYgXMQJVaVyN6aR2r3ROHulcW1NmOws7uqqg3Zh48615KjYdkdiS1xt7gsbLkghwS= lri+ZAkWNMaIyepf0fhell+1/xY0Pu7uJ8kdP7Q1/VZZrrDKvcR8bxicacOHWFx3a1HRUzwvjSg= SFWDUy5EIXuFeijK5X+p/hyWkd0jb3bt4wP0vpnZvGJN6ZfheCiga+wavvJFBWYHr58t8WEGbdv= NKM1Z8qAVIEIdfYSSDjPKc0Zjwe+SojyIEEhYqpIFhtYW3O1wBvuB6m9iYmpiHeo7eWZ5JVYvB3= RIqJtzKDBhzMlw3KqOnbKkEaIDJltMrGwoAyEc1v1EwoIw/KuKYbU89VLflKUmNPs+GE2IYUmNK= pt5yI0gBGlCYJZWoHiKIjHOYQZGK17HtcrXNVFRfC9U48wNz8Wtq4ji4dG8MbfjNlFXkaGssl/P= exyCqv6KRWzmFpJNXOoq4bJ7Z7K+fBsBSkIAEadGcErZavBLXuZ3lrkfCvtJW93MNPspGjtoBPM= O9xDGbCfqODHcV7lVz3pHjCarnKqr6fKr5XpyRBXjYXFyVIa2+wO1tj6+oIG18GHW9TJ41ZrZP/= IeI/yCB0dGp/7Ldb/uHiP8gr+jqKept0ubYMc1WK70zIX90uMv/Gb+H933/d07Z3m6DIMo4A5DU= Y1R22QWrsu1idlbSV8y0nODHvAEOVsSEE53CCJrnleg/SNnlzla1PUkHh/k6WMIjCE5Q5K0jHI5= FHrOsajXfgqNdlb1Xw5PPz58/d8ovVktHxd56YpGjxKvn3EyuLHaJrIuw+OmHXIyDE30tYaXW5B= V2ZEVPCKR0xSeP9Lz89au5n8y+EeJ+IeCeIOHs6ppJeE62atlpMzpc1pEqmNRQTwpHLDQ1NlJpW= WRiFKawQDucZZ5fcAcVcPZLxbkmd5LVpHxLRxUiVVBU5bUmmCpPG7vFLWQltImVlA/a0sCRhHeu= iXmB5Zjdnk2O31U2lvqm1kxJ9VMgSyBrrCPKKwTJoQ/puYJUYrlRFc5vqVPPnp9nirz/wCM/Kun= r4+stgQo+VDiAZOwLJnCosxiFGFiPaOrkFc2yCzwvmVUyJsZE+HkaqelPNzNS8uJ0X6LPazh5um= Eqe0cNxrrMMJlTR+PDkeZ1tnkAL3tR3lW1zxtX/QVF+Y3bB7fOmcwKl5kfDcusswiPWVAzfi7tC= BW3dfMRWvbYRYkqNgUYxAlT3RtlU80rUZ6Rsc5VTrneYXMDhnmdFQjPKOfKswy1KhKHMskzKlzC= ltUtG0oqsvr48tqpIyY0IaF1kWxFmvbF9wPwVxJy7mrHyiaPMqKvaBqyhzfL6mhqG8DUE/R6yle= vpkkAd7iRTGxa5IADC5hpP0XKqoqp93j5/BP1/7/AJ+9F/H71SI5R8NO4NX89d8770PpjaUU5d5= 7By3XufY1Dio50O1t7NsS2qzkkefbl18wiMc4aKojKnhq/cy/pVeSGngJTT8oyDknrOsAJo2Zxj= y4VyFw+L48NjyZhWRsT2hHjsRWOP7lJbp4cqTrJyCCSfOM5JVZNXisaqSpBP8ADSAOA0SdDN6Gv= dEnwpQwzIUoTXNUkeSERW+WuVvpexV+A1lIcunKwz09bASVSoh1qrpcEB4ZVjmicdGSVBvcqziz= N92y7MBWxKZKeejnAHiU9RpJB7mOaNnimQno8bnsCFa6hHrZHHrvUcl6+v17tbFd85hjx7GNJbU= Zbb19ZjSSwv8A8RNs/esIUB6RFVSMJLQnsOT1iaj/AB1dvxw7auW8Tu23yv1+eJHzDkRvjT2wx3= lfjjnTBOsTYNeVOH4LSnIgUmuiSLE6vkegQ5FpaSkY58cYXLfkqIq+VRFX7uhWoqeFRPH6vw6iv= KzAKAqAMDZRYGxBtb1tb6/TFlhW7gV23duZz28OWXGbeOG3eoMt2HsekyvAJWTRBsUVxjVBj8uj= tnjCQziVb7msdV2Xtq07oMiawKtKrHtibpbX3e84KVl7p7TmvsilYU26m2oI8Kjw/YOLrOlK1kq= zx2ZYKc0AFmgRSJEZEiK4vk0iEyQ4jnN072xzOcq01tLGtYW35v7Ev8Cymnwi7SaasWoymwppcW= isvtGOI54P0ViSOf6oISFjoz3Bje9qNVacvb675hwkCXl4jhlG8RG/4b8xaqse1WORPTjqKnlqr= 48eFT8F6cjltWoxWJU2cG17qNt/QevrgxCLtIws3zPkjzOgWlbInbFyri3yDhWFXHjiFIk5leTY= sWRXCjhVI4DHu5LowwDVomEe1jVRvjq2DsN8Y9+cc15Is3drDJ9bOyx2vFx5cijCj/av2UuVrYL= F9oxkckX62KpVVURFMzx6vnxIjtQ9ru+4PGz3Ze3Mrp8w3JsWEGlL+byzZFHjOONmttJsQdlYgi= zLa1urQUeVYzHRIwAihxY4Bkc6SYtvmaZNW4Vi+R5bbuI2qxehtcgsVCz1n+hp4MifLQTFVEIVQ= R3tCNPkhPQP4VeldjLJ4MQ8QyvGiAdWkuAirv3b3QOt9t8Md0iR5JGCRxqXd22VUUXZmPYKAST2= AwntkPE7ub8KOcO6dzcXdXWmVw8xyjYZ6DJ62ppsrx+/wbPMmfkwa61rJUoMiHYwitrmyxuZEMG= xrlfFOaGRHH2jz64Wc8du5lxh5qYprl2X7aZrPWBdn4bCralJ+HbQwmUS1Y8+I2Ml0KdRSpLwMP= BA+YMZQSASxLHMx7r4NJc5sa2NgeJ7FzGtqcRoNhVcO4xEmP3cnNiDk2Ryvg4Ne/ZlOB4thx6MP= 5wXOPVgZ32PXjnkmEHHrnTJEfKzuV315LGyo19iq1VxtU1RQ5BbZg6ojh1JVx5WW3ecXdWWIWXA= YmuIUW6rrB8hsU1xmGI1y1pPrUWTdx8PZ9NLUotAoegPhVLSSQoitqdHQO0gWUxmKTWIyzKFY2I= GOek4syKJKV2rLisXXAqxytIyEIys0aoXjDiRdHiBdV+oxRFyjx3vDcvdfU+tNt8XZKY3S5XX5n= DXEtZUeM2britqbqmjIafDsHPLD+jvpvuRVag3mQBF+Qt62zzl4S8rNh8Re2hg+FaPzXI8r1Pqf= ZVLsWkroYCTcSs7WZrkldEtmOkNaIstlXYOCjHkRyRC+VRUTyxxc81NW0Ea3hW8oddlMbFT5RQV= U+RIh0+WCElMB0SqvzQEQJotrkmO01kywrYkqPY3MMYYcwZRELhtj82NdVGK2cTXNxT5XtqWCrg= 4dh5B2Tq65vLvL4+CQ3ssxxowLKhiZMSWGbYVcl7SRae3kRiOHBkPFEjyvNnaFUy+UB3sreGyxj= UQGkLsAqxrcFpCdKi9z7jYmNn+Uqrsa2D3FLFBIGckC/hqi3ZpTYhYwNROnazA4lrrSFLrddYHW= zwEiT67DsZgzopURCxpkSlhAkxyoiqiECZjxvRFVEc1fno69DBIdYcV0lrEkPAJ50EqqNDOYilQ= ar6lViE9XoVVVVb48qv39HVMXiBIaVQykqw8iDYje3Q97fyxbqHYBljYhgCDdRsdNtibg79Dv27= 4y3R0dHS4XB1+Ho1Vb58/PlE8f3/Hz/v/AOfR0dGEP/Y+8Y+CgYir+vx58+E8/Cr8f/f3/CefK/= PXxBBihkPkhCMZitRClaNrSFRvn0o9yfLvT6nen1Kvp9S+F+fHR0dNtufgO533J38+gtfp26nC6= RYGwuCwHp06eWMgnyiL+vo6Ojp2DB0dHR0YMHVe3cpgWh+PCW4p/pxLENia8zDZ2Me4QK7C1xQZ= ECZk+CLIYwjBsuwIHyGSxYU36ZIE544ckz2nR1ecNfODJxYEGvpwbgHYuBcX6EXurCzK1mUhgCK= DikX4eza/9jk7keQINuoIuCDsQSCCDjw+ueNmut7aqxWZByHPsZx2B+dB8elV58apckJL2HgU/D= s1t7CLUUa4/T2NhEu5D6tmOxwCoHCVagsSPLNBZnndtjSgySHx8iz2PJO6vOA7LGmcyGatyvEcv= hsDDfRugEr2zsLoK0tRJinqz0NdApyRVhVdWKEdHXtVZ7nFJU1ENNmFTFGJj7quN7vrJLEFmJdm= YliTqZj1JvDo8hyeqpKeeoy6mll0WDshBACaRYKQBYAC4ANgPIW91nnBDS2fXOPWtj9v1rcdrKC= siV9NLhQohlo8nmZcadJf9nklEn3t3LjT7yQ040mzaWhn+2yfTwJIMLhPb71Bh2U4ZlQsgzm5mY= ODFq+niXFhUEgLV4dQ5Fj1BWHBFpYrlhxIuU2cxUCQJCW0qwtCEfMt7Us06OoQz/ORAtMMyqhAY= 2j8PX7vhyECRRtcBwzarEar73sLTm4eyQ1AqDllL43iI/ieHvrj0FG62uthY2uLYn2Eae2xE8NR= GtRERPhERE8Inz+ro6Ojqm8ONveKKSdySNyTuSficXuP/9k=3D" width=3D"132" height=3D= "70" alt=3D"editorial1.png" style=3D"margin-right:9pt; margin-left:9pt; flo= at:left; position:relative" /></p><p class=3D"Header" style=3D"margin-top:6= pt; margin-bottom:12pt; text-align:justify; line-height:115%"><span> <= /span></p><p class=3D"Title" style=3D"margin-top:6pt; margin-bottom:12pt; t= ext-align:justify; line-height:115%; font-size:12pt"><span style=3D"font-fa= mily:'Times New Roman'">El art=C3=ADculo queda en propiedad de la revista y= , por tanto, su publicaci=C3=B3n parcial y/o total en otro medio tiene que = ser autorizado por el director de la </span><span style=3D"font-family:'Tim= es New Roman'; font-weight:bold">Revista Ciencia Digital.</span></p><p clas= s=3D"Title" style=3D"margin-top:6pt; margin-bottom:12pt; text-align:justify= ; line-height:115%"><span style=3D"height:0pt; margin-top:-6pt; text-align:= left; display:block; position:absolute; z-index:0"><img src=3D" AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQE= BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wA= ARCAB0AOwDASIAAhEBAxEB/8QAHwABAAIBBQEBAQAAAAAAAAAAAAkKCAEFBgcLAwIE/8QARBAAA= AYCAQIEBAMEBgYLAAAAAQIDBAUGAAcICRESExQhChUxQRZRYRciMnEjOpGhsfAYGSQ5d7Y0cnN4= gYOHkrjB4f/EAB0BAQACAgMBAQAAAAAAAAAAAAAGBwQFAgMICQH/xAArEQACAgICAgIBBAMAAwE= AAAABAgMEAAUGEQcSEyExCCJBURQVMjNSYXH/2gAMAwEAAhEDEQA/AL/GMYxjGMYxjGMZ8HDlu0= SFZysi3SAQAVV1SIpgI/QBOoYpQEfoACPuPsGMZ98ZthJqIVORNKUjlVVDAUiab5qdQ5h+hSkKq= JjGH7AUBEc3PGMYxjGMYxmgj2DvjGa4z8AoUwiBTFHt9ewgPuA9u388/eAQfwe//wAxjGMYxjGM= 2sZyHKJynlY0hiCIGKZ81AxRKIgICUVQEDAICAlEO4CHb64xm6Yz4oOEXSRVm6qayRw7kUSUIqm= bsIgIlOmYxTAAgICICPuAh9Qz7YxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjOpd36K1RyP1= zMal3ZTI2/67n141zM1aXUepMH60O/Qk406x490zdALR+2buk/LcEAVEi+MDF7lHtrGMZ5tHMLS= 2tuLHxUXBvS3H+vG1jq0NrcRZn8EQExOGghkpyzK/NnJmr+TeeIXwt0hXTMcUjeAOxA7j39JcA7= AAfkHbPO76oX9by4Of8AELhh/wAzO89EE6hEwExzFIUoCYxjCAAUoe4mMI+wAAe4iPYAxjP3jOn= 3PITRDKcGsu9zaubWIqwNjQa98q6MqVyYfCDczBSUK5KsJv3QSFMD+L28Pf2zkt52dr3WlLl9jX= +61em0OAjXExNW+yTUfE16NjGqRl13rqWeOEWSaBEimOJxW7CAfu9x9sYze3drrTGxxFPeT8M2t= c/HS8xCVtxJNEZyXiYBWNQnJONijqg9esIdaYiUpN23RUQYqybBNydIztuCnTPKqzXum8f9q2bW= jVd3dYipv3cKm1TBVykoUClcvG6QkOB12LMV3iJRIfudEBEhgASjVd4AdVmvdTH4ifZE3riaOPG= jQPDrZ2r9KOX6hmCNpVPsPXr+7bJBm78ozQbpLotWsWkoBXJ6vXK8s5RbPVnbdO4YrNwKwCmaWi= VCnASiQX7MwHAfqUSeaPcB+ggICA/T7++v21OXY6vY6+G3LQmvUbVSK9B/56cliB4UsxdFT8kDO= JEIZSGUH2H5Gfqrkeu2muvy04dhFRv1LclCwO4LsdexHM9WYdN3FYVDFJ+1v2sf2t/yaY0V1MN8= cS38JsNa82bZq9i2drSoTes7S6kZd3cDXG9QkHO1upsnLj1CVpJCvZJzBuWP7qEi1QM9QdMActV= bqSZvEmQ3YQ8RCm7CHYQ7lAewh3HsId+wh3H3++YBOOnbwOkOQcPyjfaapUnuevSxLDXrDITUvI= RFesZPAKdjg6W6mlqZETySqZHSEuxgW71B8BZBFZN6AOMz1QfsXPiBs8auPLABU8hwkt5YD9BU8= sxvAA9h9zdg9h/IciHjXh9rg3Fq2hu7qff2Y7NuzLsJjJ0TZl9xFEsssrrEgA6DOT7mRj/12Zl5= N5lT53yuxv6Gjg49VkqU6sWvgEXarWhCGWVoYoEaSQ99sIwPRUH111n9eM4QGzNcjNlrQXynGsJ= jeAsGFmhhlhP27+AI4HvqxP29/ACPi/TObeIvbxdw7D79/tk/yvs1yjL8XXwU4/ai4pa95d6Vo7= PU+2l99x9PvErQXLutMbtE3mDtUy9e2GIjnKMe8m0Z2HbvE5dNsk+WF6/9aq68whkbnl65A6L1e= /bxeyNw6yocm7MQrWPt95rVdeuDKG8BARay0m0XUE5v3SgVMRMPsHvlX/4wuaiLD0mKRMQMnHzM= U+5PaycMpKLeN37B2ger30SLNnbVRVuukYBASnTUMUe4e/uGMZJN8OQ8eSHRb4LPX7ty+eOKFdT= Lu3jhV05WMXb2w0ymVXXOdVQSkIUgCYw9ilAA9gDJuMg5+G4XTW6KPBUxBHsnRr2gbuAh/SJbi2= IU/b29wA3cAH79u/098mTm9jUCtOkWNju1TgXrg5U0GczYoiMdLKGEClIm3ePEVTmMJgApSkETC= Idu/cMYzmQ/Qe35DkeF66nXFDVfKGY4obUu59d3qNi67INbJZkk2tBkXNjYhIN4U9lTXVRhZVBo= o2VOE+jGR7gHSCTSQXcmFuWQL5ixOyB+m8anZnTBQjsq6RmpyG7AU5VwP5RimEQApgP4TCIAAiI= 5VX2r0bNvc5OXG+eQW6dq1vSuu7TsCQRpkU1I1uF/m6nAlRgoCRWj/mcfC1xm9io1qu0K8knskU= hxBzEN+xPHptzZ2deOt/qqq2rEllVkR/qIQKjtIXkLIIySFVWLfk/Qbr1Nt+I+PeNd9sORHyjya= bi+hocflloXaXtNsZN7NcqR0Y6lCOval2CpCLctiusJX41BaWAlZVspbL35pzT9BdbQ2TsipVGh= tWoPPxLKzLROPdImTFRIkYKSiqkq6dFAAZso1N06eKGIi1RUUOQg9M8NOcWlecdZ2BbtKrzikJQ= L26o7s9iYJxL+TFGNYSTKws431CzpvCTCLxQIw0gRpIH9E5K7ZNVkzIkiFunw9Gr7HQ4CuDzC3q= qxrLddOsJWw8BZKbDKPDeYuMTXjLxiEcg5WADqosJFLzO38ffMP9YUrlP0Gbdsa+PaVB8peOGyG= MPHy9iodmXrq9fk4Z85GGlbFFOYyfc156LV+9aKgKMhCOzPGqJLB6hEG5tdLtdxVtV5b2sSrqgj= C1NDIbssblABI4i/ekKuOiRCT0Qzso/blhanxX4i5Nxfd6zhHkWzybypJbrHi2l2muPD9fsaiXI= 0npVX20hq2dpYpM8kccm0iPzRiGvWl9vma4J3AfoOMg34n9dfjtym2lQ9Jx2p9yVDYuwZL5REIr= sqtYKwk8SZOZByq6mmFiaySLFq0ZuV1nZ68USJJiYyJffJxSe5e/6/T6dv0/z+eb6lfp7GIz050= niDepZPbpW9Vb1IZVIPqwPRH4IP85R3MeC8u4Bs49PzHRXdBsZq4tw1rojJnqtI8S2IZIZJYZoW= kjkQSRyMpZGAJIPX7xjGZmRPGMYxjGMYxjGMYxjGMYxjPO76oX9by4Of8QuGH/MzvJcPi0effIz= h/wAYNFau0G4tlOZ8k7tZ4PZe0Ki4dRkzG0+oMYd0vr6GsTMhnNclr6ebMYZRodOQ+UwMo0Zj2c= uDEia6mqBHPxfPBxFQTAUb5w6P3KIAIGRnJFYn1AfbxkL4g7e4dwDt375Y965nVl469Pyg0LWFm= 0tVuVPJrcT5sto3QFmi4yXgU5RGTQioy9XM71hKLRUQzmXCbaFQjWnzyySySsbErsU0JKXimM7o= 4fcFOn9vXp8aWMlwn1xSqdurRVSscpWrnUYeX2VHr2urNXK7ye2E6Yp2yUtqSzkXqNvO+azKq/p= 5JEzFby00KqXQbUr/AC35ccxuj7zUj33Kfi9x7kNo7M0PB7SstnkVtey+sdpxWrH0bHLtZho4d1= +fgbSzefJpFd1HQkpDmdwrVmvMSyjiwRrfit1/t0VGM2Fu7qZ6c4eSE3Goy3+j7oLiHr3ZMRQ2K= zMqqFac3K/Tvr3MiwTEGz0qT2dZIuEzlbSj5ECHCsj8KUnOpdcjmYlaZ9S12VHRnItGwWddi3jV= rFNJchdUJyc4rHNBFowUlXhV3x2TYRbtRXFBEfLTL3YzgPRB4X8Z9xdejnfx12Hq2LnNM65Dk+2= pNGSlLBER9fb0/dkPXq23ZuoWWj5IUYqGVOwQSXerEOkIGWKoqUpy2u+ffTV6a3EzirsndFb0ce= mXSuLVlnr6xRWx9pDJsNhWazRNbqCiAO7q6buUCTEo2UdsHLddk4aJrkcNzpiIhXn+H0/rKnUl/= wC25jf/ACGg8lz+Kb5MDSK1wI4vxT9RCV3hydh71YGyDgC+oqGq0kCJtniAdzGbuLRaYV0gY4FI= ZeKN2ETJj4dPyEkaDdkEqRqNkQy/kdU5vsf/AH+v6P32OuxuuNAHkWgBAYHdaoFSAQR/n1/r7BH= 3+PxnD+mpxd1XylpO+zb6h5u6N4GnvZGomNcrlBrQ0i3YP0jybJzXp6JXOqCihQJ6g66RFEQMVP= uBvFWg+Hpp/UP5v7m5B8YtN8or9pjS9zhqhM8p94Iz8tPbTrmt6/MT6UdR9TP5aUVGBtOypOTWj= Xc21IivGx0YvJLOl2zNaEmrjXSbiU6vUNsMnRgbGDSDx09FwYiIEdyXqnapFRMJSgYizr05fF+9= +6UofXK/vwSIB+3zn6Ah9Neao/t/F1xDKn/TxffZeM6Fp5Gk9tvyBEd2ZyYotvaij6LEnr40T6B= 6HX995bP6jKSa/wAp7WqiLGE1fHnZVUKBJLpacsn0Px3I7E/jsns/f3khPVH+Gm4Z6e4Q7n5G8W= bTvbWPJHjjrmw7kjdiy237Vb3ew3NBj1rLONrgnLORFnLS7Bg9Vj5uqHrx42aFq6M1csSrMFMO+= O3xE+/9Y/D02zc1ynFLxy4pm/j8LtXbAsYFlH0ivMUNpsCA2Va/UAb5zNU2lmnWgrvSuvnk5CQb= mbF2pJyKqlwvqm/7tnnj/wB0fkB/b+zKx9v7/pnklOpHyuilCRQJKG9d1PbI/FYPF5SfyzizWEP= KP2/d8xX5p40+/wC94UlPD3ADdrwyjMu4fD59JzinzD4SQ/P3nRUCcxOQ3Ke17ImZWx7skZS4Na= jX67c52jNYiHYP5FVr81fOq+9nH84ql69AZBpGRvoWsYUXET3xOnC209NzUVE1NxztdkL0/OR+x= m9wR0XbJ2at7LRG+tex8kc59ZTU68dSULTL7XLG6dL1xw7kCIS8K/WIqk3MxQQtNfC8/wC5H4ee= wfx7s9//AF52V3D+3+/IqPjZnIE4acSmgrCUXHImZWBDubwqg219MFFQQ/hEUhcAUBEe4AqPb2E= cYzFdh1bLV0wfhluAEXpJ80Y8l+RULtun6zmXTZB8FCr8Rty/rXPYiDB0kszey0QlIRkZXm74ij= NOYlkJJw3eIRizNxOv0vukVxDU4gai3Dyxo0Lyu5N8i9WU/am59sciH6uz7KrYNiV5nZloOAPa3= cgnWo+vITBIlstDos5F0ZmD547UXMkVDzx+ootZh4FdF5ByZ4NRJxT3UrDkN5osQnT8pNpFnTI9= +yIuhZpwfngTuqCQN/MECCn39HTUXQC6aT3WOu5NxQ92OlZOh1B8oJOWPJps1BV1X49woZo1jtq= s2bZAxlBFJBqim2RT8KbdJNIpSFYyGnkzuSp9IHqTa+6fm2ZGc3B0l+eMHUpdjrHYV1sE654y2x= 1djwaS9Bt7iXLYW2vIO3w8LJSlWdywtmVfkju2KpX8WsExGn1y+H8/0lOoToTlnSYO5bD6ee2LV= ASMlqJ/eb0/pkPMxaaCOwtUOnB7As5ZEsldFe3UF+5dlH1Kj9u0TckrDkFLbdo+HU6QUutH2K+c= fbDY16wX1MfN3jkXyCnDw6TdcHpjFfT20nINWxFiFXUL5hEREomUAfrncHWo1zxRvvTG5B07lK8= LFawTpLUKNLR7Mk3a4/abUhG2pDa+jzrpOZq5PLMpHRkXGNnaCky1fPo927RjXj5YrGYo81uQ/G= G68AuLGguJWt6vve58zYqtxPBnUK8xOGgoIpYUzl7t28OWUmawMKLpOGknstajvFl1lpVuhALkK= uuuuzy34S9HzitxG1LRa5LVpxuHbkfRJOsbI23sGasc8+v8lbmqxbuZeAlZl9Ax9efHeuo+EgiM= lyw8AkyYeqduUV3zmkL8PByZc9MzqbuOJ3UG19OUa4XzX8BpfT1p2kq+Sl9BK2ydcbGgqnCs371= eLrlH3HIWgr2WcRSZe9mPCrLLg0cyyqfpwAoVQhFEzAYhy9ymKICUxTAAlEBDuAgIdhAQ9hDsIZ= +MAylSAQQQQw7BB/II/o5zjkkhkSWJ3jljdZI5EYo8bowZXR1IZXVgGVgQQQCCD95Ue4ucVdR8F= etdJ0W52VjXaY+p8/a+NhrCsZIsq7voFjo2spSTj+gGSgUD2ivNVHaya8qdk3FLxunRUTW4iKFE= oCHuH5l7dvt7/X79w9/vlOX4kBIjrkzxqaVhB4veVtaPUkkYYjhSYWMrcnBK8izI08Tk7w0iD4G= RG4GXFYQ8sBMJAGwh0ymHLiO4q0dnzEcM1tiJIlCCBYVz3NCm+mQ+SobEcHMdu4tqRfMBwoh/tA= M/SElTqyxXqhohoZkqbPb6SCo6wwWpLaWUBMSidYm+CY/hXXspEQT7JH0V/b2fV3nPUbDlfjjxT= 5o3XJ69jdbzjdPjN3Q35lXZWTo57tUbvWIB72K9p42sbT5AoitWo5I5HWcRRyHh7gA/njNC/QP5= ZrkwzydjGMYxjGMYxjGMYxjOvdqbNrOnaJO7FuJLCpXK4k2WkiVWp2a8z5iOnaDFII+rU+LmrHK= qee5SFRONjHSiKPmOVSkboqqE7Cz8mKBg7D7h+Xt/998YzzvOdbm27a+JC4jc59daJ5QT/GPXdk= 43SV62WXjFvlo2hk6LMyqtnUGEf6+a2FwWMZKtFDFZxbgy/jEGwLHAxA63+I0qe5dpc2tDdUzjP= rfcmz9K6hZawr1g/EOkts1BfX171XcXl5Yt52t3WnQEp+DbM3ftlEbE0auYcsklJx0g8ZOjMk3f= pFAmQA7eAv8A7Q9/5+2fNVsgsmZJVJNRI4CU6R0yHTOA+wgchiiUwCHsICAh+mMZV31t8RrWudN= IZaf4H8UOR915dbBiUq63hLjRhhdQacmZhuRjJXnZ2y2790wQpNQXcLSIembElZ0rRvHotGLp6B= kK/vR5o7noy9dXk5Uebsta63X5rTm0aNTNxv8AX9wXre1Jq037W15g5uFNCRcwCydoj4GXMiRqq= 9K3mS/I1lxkBBM3o+MIOGivN+VxUdGecbxrfL2LVn5px+plPTpJ+Mw/cx/EP65/QtHMXKhFXDRs= uqmPdNVZBFRRMQ+gpnOQTEEPt4RDt9sYzzb+AG0v9Wd8QvyB3Vyvouz9P6L5WO97yeu9jXTXFuj= 2C9P3Ldkdja6sz1snEuH7FpIEZsYuYaqtSSdakXZ2dkYxLhnIItP6PiAtxTnKvqx8E9t0Kh7jku= M0DW6XT6Le5zWN2qVVvNiZ7HnJu/ydIPZIaOdSkcLKSrEeWXO1bNZIzAFo71TEiTxx6QrqJjHpk= jvGDN2dAe6J3LVuuZEfzSMqmcUx/wCqIYcRca5KkDpi0cEbm8aAOGyCxUDB7AZIFEzAmYO/8RAK= P65g7OkNjrdhrzIYhfo26ZlUexjFqCSD3C9r2U9/brsd9fkfnM/V3TrdnrtiIxMaF6pd+It6iX/= FsRz/AB+3q3r7+nr7erdd99HrrKZVVcUixSsG63vva58Y9CQUrEXuVgWrKVhZbkJaqE8StGv9bT= Eiwjn8nC0Vva2EfZLKxIDda0tItKGUM3ZLquQic+Ex31rThjvTmE95QSk1phjs2na5iKO/uFKuz= VhPSUVabK5ftWzpvX3KKJm6Eg0VMZ0dAgkWASmN4T+H0lvlsUI/9CZd/f6tkO/5CHun/aGa/L4z= 7M2YCH39Mh7CH/lh9PbIb4x4KnjjiFHicd8bKOjYvTJb/wAZqpcXLUln1aFrFohkMnqXMxDkEhE= XpRMvKHPH8k8xv8tk1/8Aq3vV6EDU/wDJW2ENKpFV9xMtWoCJBGGCGHtAQpd+vYw/dXjmHx5pfD= rl7oCwX06O4dicUNqNKTRY+rXGalrC6u1Bn42rtmKkPAP2Iry75Qjduis7SUKcf6YqYe+UXOnJx= L1Nyh6NnKjhruyzK6M5TSnLyvbi4pxmxqrcIFWw3hjq+AqMfEeoWgfIJC3dN5OU1w5VXKkwkHDO= VWTVLGJkP6cEDszX1u2LsLWENIMZS5atj6a+u7FJNBcIQl5ayz2uM3KwCfy3rhhDOHx2ZykURZu= GS5g8DtIR6ujF+QVi5IzRSRVCqHF+mVdtFpBK19zIbP2lst8J3b2Wgn6Ms2i6lruqMVGcamd9ES= M5abAEqZAkXDMGL6YsDK+yof0IurTqDpe8bJXpudUCPvXEfa2hL5fJGkS+xKRaj1m4U66WBzaVG= MbIQ8VJieQjbHJTqjV2kkeDmoZ7FuoqSdrA8IlgZ8Rtym291bNQ0PbHE7SG0pHgpxt2CtXGG3Zy= mWGJkd87evzRVn67XFOWjjz76kUyBgHSS9gcM2ZBfTTlB4kgqVqke5RHbbuFx6pd/wCGO169qHZ= GrYDh9WOTNQk5PWDQtvgrBY9zWbXxa+4k5SZn2EhGMIeCRXK8Ri4t64frnVN5aJCI5Kc2jIli0R= j2jFk0YNyFI3Yt2qCDRBMgdiERbJJkRSIQA7FKmQpSgHYAAAxjPN+d8LKL1I+hrwN40aksHpepD= xPr25bZXdEWGu2etWO31Ka2BcbFcaP6+chY+FazTuFQgbNXBdyRUHLhqaNE6Skn5qNlXpgdcDiq= +4ras1DzY2ZFcQeV2iqPWdWbe1xyLI91bJSE5R4hvXC2mAcWttGtJVlYm8WnJrNWy53sa9XXZuE= TE9K5dWMiNGCagKJt26agB2A6aKZDgA+wgBgIBgAfuHf3zidj1zri4qJLW2j020rICAoK2KsQc4= qkIe4CkpJsHRyD39w8Ih7++MZX05jc4aL1CIBnpbRU1YWvASJt9XmucnM/8K3RnQpfXMDao1Vvx= 40g5QhiTGxLNtyyow1fudoq7R5XKtQnMuRR+7dzCZGvAdHckdHdS7qCVW37fmbBW9A8Y7m6p/BP= jJaNfX+LLtbcEbHq/OOV+yGD+qpRLVpARiCle0PDWd6irDJGmLYsxipt6zFxZFtkfWIXX9oarsG= TCsMavNi+Ysmzdk0Qi0Y1yd2RBFAiSCBCNinEgEKQpPCAl8IFDtTr031y9/cT7bZtNbZrMPyLo9= JsMnB1S1vn567sMa62dnJAqrWIrSQa2JBWKFqq3dSrA0quRQp3Mu6EfEGo2W6pamSst5njjs/Iq= yqhdY3X19RIqBnAfshSqsOwfbr6Jtbxx4c5h5Vpcgn4bDVvX+PClLPqbFmKjPcrWzOry0bNlkpv= LWeKMTQTzQFlnjaFpCHQbt8XPwi05tzTep+RtV+YQvMegKuoimRtVp1rnJncmtI+QYOJmrOXtWg= ZNBnMUSTm29lqbyZexoeQ+sca0UduHjZJvkP0Nut4z2BxJqmpeoaF801yG06VhQQvuy9ebBh4Hc= FQZtATrFzf2Z5XBh4y0N2SBYW4Gl5FoR9KM0p8ihPnR2jTt29fEN1qs0+Gsy3DfcLI1gbqKQD24= vGMDWJQxUyHMeNnDxbz1yIAomoJmzXudIxDlDwKAYcONO7j5Gddfe0lpvY88vpLi1SoNe226q6m= Kk0XeufPBvVmM5Py7V8rYJZ49MZ0kg9apw6LeMeOmsSk9STchgzco17NHW17NevzsEgroksS+zA= ENNLIiCKMDtmb7IAJAOTbU/po59BTvcl57Xg4TwbRK1nfb61cobKylaCZYpq+q1ustW5r2ylkZa= 9WGQ14TYkVZJgVKNy3ijzI19zM63C+xLFXIyZpjqo2egcfPxEzK5cV8KYyNKxVnYNnJfLYzFgQa= WiXATJGcsAmBapnKoj5prdpA7AHYfb8u3t+Xt7j7fl+mQ28cOh7xD41bSpG5KfO7jl73r+YJNQD= 6cucYRgV6DZdmoV3HRFcjCu2bhq6cN3DU6wEVRVOmb90whkyoAIAAD9vb/w+392d+gp7CpXs/wC= z+E2bFya0zRN7d/MEJBPqP+WUqo7ICBQD0OhpPPHKvH/KeQcbPjY7hON6Dh2p41FX3Ff/AB3il1= clpBLXj+eUetmCSGWxJ6wtNb+aV09nLHXGMZvso7GMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGYjc+= N9WHi7wt5P8hajHt5W16g0rfbzWWLxIy7FafhYF2vDnfokEp1Y9tIi2dP0ynIY7RFYoHL37hlzn= Er7Rans6k23XN7hGVlpd6rkzUrXX5JLzmE1XbBHrxcxGPEu4eNu9YOV26gAIGApxEpimABBjIut= Taj5IRGpuDG9NYbptl3vFla6fsvLom4NqXScpWzdfbIpTOS2dPVSpyz2ZqdGtcBZJNrYteRlDhq= nEoNGxqoYE4V0ZEsPO1OYu8qHrfRW7KbtrcO17Fc+q7TdchyYqMzY4LjDsXSl52/P01/pSIoVo2= A4Y2SCiKeieuN7HVdZta0lYIM07X7U9mm61jlrG2teIjPXlP1Vq9fbexbfqTTEXFQlI1/YC1ord= aIqrdoyoDC3T8dCs5+1oUFjHsEYH1r1E7xyxZS1lPPS7RB8TBFl0OdCsdQ1zQpN7cjXGodW7Wgt= zceqM9sdNdxGgrzXthJbFYSFQFWli7sqaT718GihsRzbk2VdmZlmwBq6kV3pmM6B4R6joesee3W= kt8Zc7nSkdZX/UNlZzto3DtKTpsa4n+OSs5OWbYkRM3ZaKuzGJdvHUqia5FlSQLZEiUIpFotGoI= Y6a15R7yptz6QEghc9822W5Gb5tuv8AcG8bFMWmN0TylpdopFrsSc7T9XXq9zM7DNmci0rs9RZv= 9ndCatotB0WsoMa1MJRBpokem7rb9oXJK7P9n7Wk4rl7Tq7U+RtEcvKslW9kq1ygyOt0p1dy0rL= eerr6SrckZOVaVWWhYx04aMzFaJIpqoLdG1zo36zg4HjfEv8AknyUtMjw+tsHYeMk/ZJjXjx3qW= HhIeQgDVCNjUaA3grBFysQ8aMZGTtcZN2EG8FBoMJZk3aLIOmMwp5q72snGPqa85N/05khI23Uv= Q+ibnWWrpAzlmafieQuzVYlZ63KYDLsmr8W7t4j4i+Y2RVKJyd/EHMtz7a2pxR40dL3lPW9q7Ru= 983NuLivQ+QEdbtjXO313b0JyTrqBbsq2pE3NPanW5WLscm2sdNPTIOAQrjdh8jjG6FeXcRp5Hr= N066FeeSWwOR172Lcri92jx5DizedeTcVTlqRPaV/Ek5aFK26TSgkpr1riRsMim5miShXyrUyaf= iKoTzR2qu9OKjQkRx7rNz2fszcOsuI03HW7QOrrsnTxjK7PU6GdQet3M3Nw9djJ+4OdcwzlSOp6= 86/VVTV9PKTR5iZaNZFFjK88fuPlJyV6TvMvrDsOW3IDUfImjX3e140nQKzsuajtH6t1tpK8OK1= Eadm9IqH/ZzcXlggIx+SZsNwrEnZHlgk46RTdoenI3P3/wBINHZ2zuRG1dD7L5F8ob5p+E41aT5= ZUys3jcWxYy4Qlq5kw5LrKQUrsGBs0XdbfC63YNSwdYTl5r5c3l385OhENpFdmZhF1prml0hJGg= bU1fzX5rb80Cw35yItu3uWXThhNH7AgdKUraAXxd7Oa6dzsPqOxXZnU15WAhpC5x8BsKNZWSXRc= O3URCJOXMK0t8Q/G3Su6LhrbmpxZ26817I2vRsFryIvmo0KjPUXaOkBFKcobF/BWCGlYhZKrKrn= dVGWjE4yVikXjyKcqLx6qkcVjI5NP8zNgv8ApsdSdTbNpkrdOcTNxcpeLdU2HPLkXsFyhYJ+Wu6= 2e2CSTSRLL2VsjbYevyUqcnrJd3Hg+fHXkXLpdSpC95BTRSxb+vVKn1y6M4GAg3mxCxyk1b3f4c= imMPHSEU5nVpGNqcom2jmyvzisRkZPA7A7gJb+k8BbJXWcita8HeDmvuG2onMopKb427Ytp7Mnp= t4i/tV8ctZRW43S43F8mk39RM23YcvBPii1atGCKUStGRzZnHMkGZKm4/Qf5gPv/P8Az7B/L2yo= +c7F32kVWJ+hVrIJOgO1mlPynokEqwj+M+ykMPYj26JGfV/9EfAKsPjHYcl21JZZOTcitSUfkLi= OXV6yKGgoliDKliGS/Hf7inV4WaKOT1JVGXuuHve0K5FO9iHn3dhi73ZZivW+Ntgms8NcH0Iwhp= dULVHTJnjaXX8FjIuwfLlCVjXRDvot40ekTcJyxdH3lXT9f829L1GEq7bW9T2Se41i2oBNOZRlI= 3K4MGRK4SPcPkiyDOBZOa/Fxlfh5N9MvGL2amFfmrkZECpYXRWrRn+mZO7QQSRF3T+aDavGXUUb= t/BG2XTsaouUy66pC+EX8awAqYj/ABe4Abv3LhFDyE9T5mGtMFJFiZuvSsfNQsnGybQXsdKxjpF= 6wetTNHBl01mzpBJdJUgdyHIUfEHtkbgs2NVaoWQxcdV7n7+iSnydyIHbtkDNGVboj2P23Y6z0N= veM8e8nca53xtooak4m3vEjJWdoYo7UWujj11mzWhZYLMlKO7WmrmaORq/Q+EqR2fVeIACHi/X2= 9//AN/x98+mR19NbnTUucnHivXRF2xabSq7RjXNt1NJQE3MRamzUqaku2aGOZf8P2UqRpWHcAKi= SYKOY0y53cc6KWRMvuAD+f8Aj9/78virZhuV4bNdw8M0ayIR/wCrAEKf6Ze/VgfsEEH7Bz4acj4= 9tuKb7acc3tOSjttNcno3q0oIZJoX9SyEgB4ZV9ZYJVPpNC6SISjA5rjGMyM0uMYxjGMYxjGMYx= jGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGM2axtpV5Xp5nBPU4ycdQ0o2hpJZH1KMfKrsV0o56q37= h56bR4ZFdRHuHmlTEncPFm84xjKvPFOqMdN8aZLjpys6Um7+SPNyRVuMZuW+SWkaTtLXvKi9zMv= LmR2c85VXOQCnx9JtMe4jVDfjmYgpqhxBfkDWrCpDtI9WaDpw8YpThZwj4/8brG/j3U7rCkHaWA= 0U7dPYKNmZiWkrNLQsE9fETduoCvvZhxDQzt0kiu5jWDdwqikZQyZc5ewd+/b3/POk+Q9G2JsvT= l919q26sdb3K6QbqtMb4+i3M2NVZTAejl5aOi2khFLOZpCKVdkhjDItEmsodq+VOom2FurwkZkR= 2VDIyozKikBnYDsIPYhQWP12SAP5PX3mTSgis3KlexaiowT2YIZ7s6yvDUhkkVJbMqQJLM8cCFp= XSGOSVwpWNGYgGhh1f8AlSnyo5pX+XhJD5hQtZm/ZfR1UlCqNnLGtO3BJiVbmIodI6UtYVZN43X= J7qsTNBN2EvYIuu4f4fp7D9/8/wAvvl2bUnw5nE2pmbSG177s7bsmUSqvW5nzKmQDtUR8SpgaQq= as2QiphERBSwrGEoj3MIj3zGfq7dHjVVB4+x26+I2vi1Z7p5s6NsaoxjiUklLPRVzis5tHmP3L5= 04mqmt4nT1QTgLmAcPVFlBGIaJGp7Z8X3sq3tvbWH5GZrMkCSGWb0LD2VfUGPqFPsASElE9VXvr= Prj43/U54O1E3CfE/F5t3/r4YKfHaO+ua1NfqBZWL4oZbL2rEd4Ns73ZaR6SIti4HkZUEjDETjD= qkt26DXMGQO1MqvF8gvxuwUSQK4WSLTYjVRHjlIh1EgAU491JlOIKE7JmVHuIiJRjl4AcDrfz33= KbW9Sm3tYq0DFrTl8vzmvlfsKvGiB0Y5Erckqkm8lZd8AN2DAzpuZVBJ+7A5kmKoDZ+6V+hl7x0= X5zXbVkQZXecLv1ZoksZNEjmVmn01U4JZRRYSJJgIwEWAKqGBMpEyHOYC9wLIL04ODdY4LceILX= LYjOS2HPAlY9q2xAvdSbtztEoLNWi5ykVGDgEPBEQyIlTA7dud6qmV2+dCbc1uMf7Q8ensJ1Tj1= ERs9H1Mje5mih/hu3Ew9z+QqN9glRlO8g/UofHUXn3V6Wz7cw2PlbaRcY9o454qNd6dfW7DbyRy= o8TpRbUeteJ/dJbdiv7xSQJMuRz8TeiNtHhrteL2xp7mg+Zv0BK0sFee6pIrXbhBGVIo6gp9kS8= EBdsqBfEg4SMk7YuPA5aLIqk8Q2GESnKmUFBAVAAPGJQECibsHiEoCJhAoj38ICYRAO3uP1z6FD= sHb9f7fYM1ye0NbT1kTQUo2iiZvcoZZZFDEAEqJXf1767Pr12fz/AB14c5x5C5Z5H2UO55jsYdt= tIa4qrfXV6rX2ZIFPccdmTW0qZtCL7EJs/K0KsyRlVYjGMYzOyFYxjGMYxjGMYxjGMYxjGMYxjG= MYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYzb5GMZyzB5GSLdB2wftlmb1o4TKs3ctXJDpOG6ySgCU= 6SqRzJnIYBAxTCA+wjm4YwQCCCOwfog/gj+jn6CVIZSVZSGVgemUg9ggj7BH8EfY/g51zqnVVJ0= rQa7rLXcOlA0uqtVmcFDomMokwbru3D06RDHETmL57lU/c5jG7m9xEfcexsYziqqiqigKqqFVQO= gqqOgAB9AAAAD+BnbYsT27E9q1NJYs2ZpLFixM7STTzzOZJZpZHJeSSR2Z3diWZiSSScYxjOWdO= MYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjG= MYxjGMYxjGf/9k=3D" width=3D"236" height=3D"116" alt=3D"logo_catalogo3b.jpg"= style=3D"margin-top:2.35pt; margin-left:13.85pt; position:absolute" /></sp= an><span style=3D"height:0pt; margin-top:-6pt; text-align:left; display:blo= ck; position:absolute; z-index:2"><img src=3D" AQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA= QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB= AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABhAN4DASIAAhE= BAxEB/8QAHwAAAgICAgMBAAAAAAAAAAAAAAoICQUHAQYCAwQL/8QAVBAAAQQCAQIEAgUECg4HCQ= AABAECAwUGBwgAEQkSEyEUMQoVIkFRFmFx8BcYGSM5eIGRseEkJSgpMjM4Vlh3obbB1homNWeW0= fE3dYOHl7KztNX/xAAcAQEAAgMBAQEAAAAAAAAAAAAAAQMCBwgGBAn/xAA6EQACAQMDAgMFBgQG= AwEAAAABAgMEBREABiESMQcTQSJRYXHwFIGRobHBCDNC4RUjJDJy0VJ0wvH/2gAMAwEAAhEDEQA= /AH+Ojo6Ommjo6Ojppo6Ojo6aaOjrwWRjV7K7sv4Ki9/mifh+Konb8V68u6e3517f7O/6/wDr0y= Pfprno6Ojppo6OjqGXNHnTo3gzgAuabcsjzLW9lnDwzAcaiGMy7LzxmscSleMWUIIFWV7ZYpLS5= sSRwgmSRRRqUeQICTIBJCjkk4A9SdNTN6OlS7H6SvaqaR9UcTQG1ySOQX6y2wRIY6JFXyOn+Fwe= KFsjm9lcxnmaxV8qPf28zs9gn0jLJMzzfD8QdxapAGZTk9FjrzmbPOneE25tBa5SmwOw+NszoEJ= WVIlkjSTyeRXs83mSzyJf/A/iP+/j9YOmmlujqr3mT4svHTg9tOq1FtrD9yX2S3GH1ebiGa/x3D= LWljqba0uagaCcnIdgYsa2waVRGSTRR18o7YJBnMKfI+SKGybGL8PK8boMnr4yYQMipqy8CiMZH= GXGJahwnDRlRwzERMIZDOxszIp5o2yI5GSyNRHrWQQASCAexIODjvg+uPhprOdHR0dRpo6Ojo6a= aOjo6Ommjo6xtxZQ01TZ3BDJZB6qvMsiGQNY+d8AI8hUzYWyPjY6V0cTkja+RjXPVqOexqq5Kxe= Hvi48cObW2Z9N6ow3dNFlA2K2+XSG59jeFVdGtbSlVoZULCcf2FlBynPltB3DxLWpA9jJlkJjVr= GySASCQCQO5xwPnpq0zo6OjqNNHR0dHTTR0dHR000dCqie69eL3sja573NYxqK5znKjWtaiKrnK= qqiIjURVVVX2RFXpebxEPGsrNRW1zprikymy7YFdIRXZRtGxjjtMQxE2PzRT1uMgI5IMoyASRqr= OcW92P1hDGQqNeTKUOD6faeztwb2ui2jbtC1XU4DzzMTHSUUJIBnrKgjohjGfZHtSSN7EUcj4XX= mt07tsWzra9zvlYKeHlYIUHm1VXLjIhpYFPVK59T7MaD2pHRedMNK5E79/u7f7fl8v1+/5e/WpN= 4bu11x51lk22tpXzMfw7Fg1JNK9NZyzCH/AGAqmrDYqSH21oSrBK8OJUWaeRPM+OJskrEFMr5x8= ws3vSMhv+R+3yLWchxSJXZtd0wQz3KjlbX1NKXX1lfCxU+xAEHBBGido42p7dTy4veLFmHwJGhu= ccK8huOGcDNx7JDcmGSyznExCnpG24htovJYZELXPVpckRksuQgvgiOoLYYsSIEreNd/DPue1U0= FwkrqG/RU0kU11tNoaanuctGrK1THapquL7PPVGESeSsqxeY+AiSMQjaapP4htv3OaahSiq7LJU= RyxW26XMRVNvirGUima5RUsgmhp1lKmVoWmCIGLMoHVrqG3vGH5OZryfpt74DdEYThuFFFAYbqm= Yh5eN2GJFER/HBZyJDLFDdWeQDwRPsjIlZJVTtgbRECPChLc1zwt5p6t5qasCzzBS21mSVzBhM+= wE0qGW8wy9fH3kGnRiRvOpy3tlkpLuOCIexGa5rohjoTAhk8OdnBMvjQdUbT1TdrtDits1YrTWO= za6SOxjrxrNFIExfKDBG+gy1GiV0Ydg6MWG4ige9IBjoTQRox8beSe1eKu0qTa+pL2Squq2Ro9p= WTuklocqonyMcdjmSVzJY22FSc1qd2+aMkIhkJ9fOLYDDExbb3L4TbL8RtlWyr2HFSWyutdG1Na= ZVjaEzGn/n2i+xnMqViT9YmlqA1VTVRkZzJDK4OrtueJ+7dh7ur6feclVcKO5VaT3OFpPNEXndC= RXWzuGMUlK0IUxxwutNPThQhWSJCP0dEciqiJ9/f+jv15dQz4Vc1NWc1NXC5zgpUdbk1XGMJn+A= llRS3eG3csSq6CZiJG82nNfHLLS3UULBzxmubIkB0BgY8ykd5vdO3bt+Pv/N93/H2/P1w1crbX2= avqrXdKWWiuFDM0FVTTr0SRSqcEHuGU8MjqSsiFXRmRlY9m225UV3oaa426piq6KriWannhbqSS= NwCPiGU5V1YKyOGR1VlI15L8l+72+f4dIDeMvvK53Pz33GARYTkY3qGxH1Lile9yejXR4oNDDk6= xRtRGeqdmMt+S+VyOlkh+Ehe9Yx4mMf4d8l/Qv8AR1+bnz9DKq+cvLuCwa9Jf2ye4jfLJ3VyiWG= f3liE5O6d1Y4Aod8a/JY1aqL2VF6qphl2PqqnHzOPePz192mi+Ffge8Uq/QWvcj5E4XabI2vmuL= 02WZOh+S5DR1mLEX4EFnFi1XWY9Z18SrSDkxAnnGSmEG2UJc8TxxJIBIJlUng8eHrjl1UZDS6Fg= Dt6KyBt6sr8ts9lUawrSYjAiEjmySSKT0SIY5PJLG+N/l8r2OaqotiOFXNXkWHYnf0k0BFNd41R= 29RMM9r4JqyyrBTAJYHs+y+F4s0To3N+y5ioqeyp12fqkySMSS7c+gJA9OAPQcfXGGlqvF53fwS= 1vycxeh5McR8n3tn5GpMbsa7MKbZllh4oWNT5Nl8AFE+sEIhjlmDsBrMxxisV8jD2RKqpC1G3iZ= Tv7TXH/jvR7h2LdDa61hUYZjBQqHyT2BIoptSI6lx4CGBsp93bvidCCKMJDMSXMxX+XyJJIxTf6= RD/AJcOCfxfMK/332L1tLx6Nn3n5C8GdNDGkwY43T7dk24EcsiC2VuRXUONUU5MKOSJ8tOKBfNF= c9rnRpck+VW+de9vlhvJGT7Wc85wAFPAPbJP6e7WR7D69FP5k6mTk/0kXj4BblC4hx+29ktNDI6= Ma2urrEMXJLa1eyTNqxysldDFL7ujScxk/kVqyQQvVY2y64f+Lzg/L2i5CXtDprLMLj4+6sP2ja= D22UU9o/IwwQ7gx1UA8OuHaEVI2okYhBKTRNWZjlj+yqOX64b8s/Cg0PpfHMa3NxMzzde3yoZT9= gZtkmGa7yetmt5yp5I6zE4MgzmNaygqQ3DgDujrgS7OSCSzsIo5yUGGua4w8huEPIPjpzisuIvG= 5dDn4toHNQc0MnwvCcUIyES2wXNJ6oZkuI3Vu4yEKYAqV7DVgbE+ZjoUkV0nlmSNVBxG49oAMWG= O6gnj3jOPoCPTt9/4cfr+OtHp9JR1Inz4wbGX3/z9xn/+N1tPT30h/jLn2b1OKbD1dsbUdTdFjg= QZmYfRZbQVZJMrYo5shirVrbavrEc5ElOAAuXQd0fONEO2QiKmnwN+PGl+SPJXZGIbw19RbGxqn= 0xYZDW1F+wh4odzDl+JV8Z8SDEDvSdgZ5kCK56t8k70Vqr5VTvnjq8SNB8XNlaMn0RggWvAc/xD= K5cio6ck6SmmOxy2q4ArEYQ4kpQyphrR8BaDSRjzIMPL6DSFImny6IPM8vDAkZU5yOQCPo//AII= wcfL8/r+576cW2TujWOotZ3W4dh5hUY5rehp4rw/KSZ0mAdXktjcC4D4ZJprIizfPBDVhgREFWR= JA44cM000bHUO5n9I+45VN2WDhGituZlTDTSRQ3trZYriPx6McrUIFrPishKjGl7eeH414RXpua= 6cSCRXRNr28Unb2Vfud/he6uW1LfV5xq6XO8rR8r/NZm4Li+E0OKtJf8yIxY8svZVjkVW+swWZz= XSRRuZPvwm/Cz4mZ3xB17u3d2s6zaufbZ+vMgfLkxdm+rxuhFvrGmo6WmrAzhAmueHVstbCwJgm= sZTrIgRpDARhoG1qkaJ1yAkliqgHHYj5Hn8O2o+vr8dSv4W+Lbr3njlWzdcVGlstwiPENXXmc2h= N1lNRaQWtWLOLWFVMDK4ASYcghtgqtIc9zGNav2VcqKkJfCU3pwK2LynNx/jZxByjRuxG6yyo6f= NLjZ9nl4ktAPZ47HY07aosmaJsppE4MzCkb54mivYi9pXItz2GcLOLvG6r2Ll2j9NYlrrI7jXuS= UVlbUMRrCi6h4MhrgZVJMIZ6DihYJ1RrGu88Tftdu6Kqn9Hz/wAvK0/1IZ7/AC/28w7qQqMsrL1= qAuQpOeQBnIBOf+9T6H7vw9f21cryg8djXHGHfmytDXOgM3yuz1vdD0xmQ1uY0NcDZyEVNdapOM= EVVzzwMbHYMhVkkr3K+Nzkd5XJ1pui+kkaILthB8j467YpKaWVjDLOqyTEsgNEjc5EdNHVEfULC= vIi+ZzEsoHqjVRvmd2Rez81Oa/hE6n3tmeN7U40Ue+tvj2XpbGyPF9X4JkLgsiFghElrL3JcpuK= NbG5BgggFMiBdYIBJD8AVNCUPKPHTvzo5ZeGHvrShePcc+J2V6V3LWXVLZYtl1fh+A4nSTBJYDx= ZFVZMmLZdYT2IRdJIZIAySrJkGuIAJI5hh3lrJkkaOFBhkBOAWyAOQMnB7D4YPHYY50Hyz9D/AK= P4/DTqWkd2635Eayxbbup8hhybB8uCUyqsY43jzxvhleMbX2IcqNnAtK0yKYOwCna2UcmGRi+Zq= I5dr9LufRwr6zO4ubtoCSZJq2h3m8qrhkVzvhFu8GxZx0UPmX97gkmroyPSaiNQiciXt55XqrEf= XzuvQzIOQpwD8vrGo0dcL8vn2/Ov3e/6/wDHrnrhfkv/AJ9vf7vf8fw/P1jpqiTxsedlzoDXNRx= 71fbS1eztwVRh2RXwMvon4hrZs0tbO4CZqpKNb5gbGXVBGRd5AqyvuponDmS1pMa1vCvhnsvmxt= qHX+Eo6soaxo9psLOzB5Z6vD6KeZzEInTzM+NubFYp4qSpSaOexninkdJCCGYWNK3xunZCviAZ+= l18Ule3Dtdtxf1/P6C0SYwGsihK77PofXjrn1PJ9n4z4nzL5/N0wn4KWs8Nwjgjr3J8eGEffbRt= 8qy/NLaNrHFnW4eRWWMggzT9ll+HpKijCBHDV3owEuPJjjZMcS6TtKku8Hg/4GWW8WCnhl3Bu4U= shuDIsix11xp5atZpz0lXS2UcLU9LAT5f2kdbIS0+eQqm1zeKnjJdbXep5I7JtlqmMUKuyM9FQT= wUwhi5DI9wqpfPqZ1HX5DBVf2IsSd4z8BeMXFvEwMfwDWdBYXsQrYrnYOV1lff5zkhMkcbSirC7= NGkeJAQ5iK2np466kF9/hq+N75ZJIE+JN4R2A8gcZstm8dsVxzAN40kE5pFLTCCUWN7QGRr5Zq6= zEGbBW1+VOcr31l8kMKHSr8DdSPhlHOr7x+uHNRyKi+6L/X/AOfXLlp37u2z7gj3PTXuuluwm82= omq6maoStQtmSmrI3crNTSLlTDgLGMGHy2RCvSFz2Nte62FtuT2ehhtnleXBHS00MD0bquI6ilk= ROuKeMgMJQSzkESl1Z1ZFvhjzNseMdnmfFblZhZ+a8acysD8U2frHKQJ5bjXN04hwljfUdeX6ZQ= RIJcaT2tYM4YpJhorammFuhInldQ548DLHjEXR7W1faTbI4s7RQa21nscRFMSuGuIFOr8cygmJj= GQWLRlclefJFBDcwwyOa2A6EsOFsLkZ4ZfGXkzurA93bAx2ePIcXMikyutp3RBVO0a+vh7Utdmz= YmNnISsJYM1xY0kRh9SySkNllEcLIFL/ZWmtebU1TkumcsxqrM1/kuNS4wRj7BIRwAq9o7Ya9aw= eBkcdbPTSQil004TYZqwsMQgN8Mo8Tm73Pj1Z7duCy7ksFpraSa8RoPEKzl4xa6meN440rbenLG= 6IqPL9rUQipp3ip6pWm6pItJp4JXiusl1sN6udJVJaZCdj3XoJuEUDBpGo69hgi2yMwhNKWcwTL= JPSssTBJPz2eN/I7aHFfadDtnU93LV3dTKkNlWyySvpMooppI3WOOZECx7WH1NgyJqOa7tOGS2C= wAmGOGHIjfU4e8qcC5haUx7b+CvQVxfmqcsxmWeOawxDLgYR5LWgPVnbzem0kcyvJVkaHVRgRjW= RrM6KNAzfGrD9I7o2hqKynUkrXmbZBiylq3yKZBV2M8AZat7qjVKDQchzWqqMdIrUXsnVqHga8i= LbVXLFupCTpUwvfNQRSGVz5f7GgzHHhDbjF7aKNyL/ZT4m2tK701Yssds183n+FgSPa3jnsO1bz= 2e29bTEn+MWq2R3SGsiQK1zsoiWomgqCAGkMNMz1VK7dUiMjQgBZWKa28G963DaO6o9qXGRxaLl= XvbZqWRvZt92MoghngU56FlnVYKhQel1KSn2o1y6OvyX9C9JX+PTw7yvWfJA/k7QUpResN2Q077= +0DFc4LGdi1NSNSnA2T4WuYKzIwKsK6BJIcxTrGS5jb3eOivdPavfv7/1ff/V3+/t1g8mxbGc0o= rPF8xx6kyvGrsSQC5x7I6sG7pLUKZO0ollVWUBIJo0iez4CYJI3fe1e3XA0chjbqHqMEe8HB+7s= NdxaSe4keOvv3jNqPGtN5HrXENx49hFaPR4Zc297b4zk1XjwieQCjsDRBbYK3BqRkYFUuUAIsUG= KEWYkqOGFI5p4B9Iw2DmedYbiE3F/DgIcpymgx6U2PZV1PKJHc2otc8qOB2KRtlfA0lZWxukY17= mo1XtRe/VxFz4QvhxXtiTaGcXMQHJLkdLLFTZFsDHq5rnL3VBqihy6tqgo09/LCGFBCxF7Mjant= 1xSeEN4dWO3NVkFNxtpgrejsgrerMbnO0pXCWNcTGWES2IjOJYJHQEwxytZNFJE5WokjHNVWraZ= IDn/ACjk+5iPd8f2/U6aXK+kQKi84cE7Ki/3PmFfpT/rvsX5/wDonUrvHG435bmXG/iRyOxSnKt= q3WWuq/CtiuChmInqaHJKbGbLGrsiKKN6xVQVuLbAHlve1kE9zWo5PI58jL5N/eH/AMROUOaBbD= 3tp2uz7Ma6gDxgK6LybN6eWCirzbCwEAaLjmTUwL2QmWp86TSivJcpDmPmdGyJjJUwYtjsGNwYf= 9UBEYwPTQ482jPhSxr5aSANteysKgP+JaaKoTEGljM9f14vM2dZPM5VjzsCLpBzGCDk8NkAenPY= f2OpJ5HwxwfgAD+mkkeHXNPw0cL0rjeE8q+ElFmmzcWjnq5diYxhuNW6ZrUxkPlrLO+ZY3NOSNk= Q4ksddZSMjMhsnBx2riWEmkCw3F8XuSfBHdOiOcGN8NdBGaUNpuOWcXecSS4vR47BfjTYbmAFOx= HVF1bPKmClcY5EmZC2Nk6q17lcqNnTk/hJeHVl1wZeWvFvBxjjpnzkR49a5piNX6sjlc5R6PFMn= paQJquVV9MOuHjRV/wfl22jpzw/uImgANiVeotO12HAbXxWfCdgDjZNnFmmRYwTCaPPVTSXmT2k= oUckNgYxSKt4RjfWVzCGuYxWnkjYEgOGJU8tlRggkY+Q9fh276jSxv0cdU/bc7b/ADaAtU/lTPM= G/n63P9JUVPy+4rp+GIbK7/y3OL9MKcfeBPEvivllpnGg9QV+vsou6KbGbS1EyXNrmQujnNCspQ= HDZLklyHG15tcHP60I8ZCLAjGzJG+RjsvyJ4T8YeWB+M2fILVgOxTcOEsQcamLyDL6RawW2mGIs= ImNxnIKWMhCZgx3q4tk72emiROY1z0c80ecJB1BQMEYGcYx78fn+Y1Ofazz3B95/bS3viDcasu2= n4UXh/7xw2pMu5NDasAGzEGugeQWLhGfY7jCl5G+KJHSyhY/b4nVxm+RkiiB3BJ8iRiilzR9F8O= bxusY4ocfaLj/ALo1bl+Y1uCF27cHynBC6RbB9HdWxd2+lv6y/sKqJJKuxsD2gWQR0vrVsoYM1f= DIApZjduEa4wrXWB49rHDqAWpwPFaEXF6HHHyFWQYVAEMgg9Y+W1nOLNgaMnovU8gmSViqkz3+Z= yrCjMvCg8PLPL0zI7/i5gUNmfI+ctcaNyzCa+SaRyvklbSYZkVDSQvkc5XPfBXxue5VVyqqqvUL= InSUkUsAzMpBAI6j2P3fnx251GtJ8VvFf03zwsdsaz11rvZOIWuMamyfMDD8zZjLa+cGJkdU4Ud= aS9tCFKWexikRJII4vSZIqyI5GtdQB9H0/wAvG1X7/wBhDPu3t39/rzD1T8Pw/Hv+HTWGi/D94h= 8arzIck0jpyuwW6yrGy8Rvzhcnzi3fYY6dNCQVWviyHJrceFksw8MizjRQktWNGsma1XIvq0N4e= 3D3jJm8mx9G6ZrsDzWalOx6W8FyjOreV9PZTCEGh/CZFlFvXo2eYEV6yoIk7PSRscrGuejiyIok= AVsOuFBIODxkk8fhj46aR7w+31vonn5ldhzX1jc7TxHEtpbSg2bg7nerYXN6W/JIau3mHLsKyG5= EiyAqtyFRibCEW0CYkrlMhkaORMvmXyx8LDaHHjN8K40cS59XblticWfi2bPwXGaZlVBXZXS2N9= GtjXZJYFj/AFhj4lnXIkQkiSqX6Mjo45Hva2JvbgBw75LZJHmO6tD4hmWWtgiGlydst5jd+cOO1= GDQ2ttidtRHXEYsbWxCNtZzUFiRIx/TZ7daK/cbvDY/0Y6X/wAe7Y/586z86MlWKyZUAcOcEjHp= nn+wGmq+/o26p+125Cp/301f+41P/V7dMedR748cVdB8UqC+xfQGvRNeUOT3Ed/e14lzkt0w+3i= ChrojHzZNc3RMLmBDxQekPNDAqN86xK9VcshOqHYM7MOASTz8dNC/Jf1/o60nyA39rLjTrDJNsb= YyEegxbHx+7Uc9jrK7tJfN9X4/QAueyW0u7SZqQiBQ+zWpKUS6AAUsmHdbvkvt39l9vx9vl0qr4= 8ujOTJmV4/uom7sc144VYo9XXUNSLLELqi+IZDAUXkQA7nxkw5NOjUDy2ZvlZO6PHi1Cd9Vpae3= 8OdrW7eO7rXYrrdobRRVTlpJZD0zVZjKsLfRMymFayrGUheYhFwxRZpjFBJ4rxB3LcNp7XuF5tl= rlutXTqFSNATFSh8g11UqkSPS03+6VIwzMSoYxx9cqfXyWH1l4y+npdy8egXY1yu0MDYhZFp26N= CdkGa62lNIMAbVksSBls8UiSUqjNga2Ia1Ps8etGQy2FMXJFPwufEnuOGGVE6I3ZFZt0fe5MT8a= hQpLbvUuWEysDs7OMF8aGPoSJ4I/wAo6RI/VDJimtgIPjX2A1jVPp7cOw9C7ExzaersiNxnMcYM= aVXniOX054VVELrbEZf3o6rsYPOLYAkNfASO9zHsVfKqXTbL1dqjxXtVXXIfj1WVOB81MEqmE7v= 0YNLGPBs8cWJqfldiMUixISeejFUU2NXSTFJ9RX3lsFq7Wx7KvW1bZta0y7L3LFNcPC66ThLVdZ= HMlfsa5TyEwQ1lThpBa2qZWagubjFJJM1JXF6WVWPJVp3LcNw3OLdm35YqDxFt8QkuNvVVSj3hQ= RIomlpIAyqbitNGq1tuQ/6qKNaqi6KlGVW56C9p8npavIsftALuiuwRbSnt6sqE6ts606CMkM4E= wd8kBIhUEjJoJ4nujlje17XKi9+sv1Qh4GmG8vMV1Rkrdu/HUuhXlEQapxPMhD48xEuYDpWXx1B= EW+Iimwp5DSonBWEDmHXXrmU8I0HxhFhfcnsn4fr935vw64g3fYItr7juthgulJeYbfUGKO4UT9= cUykBwr4yq1EQbyqmON5I450kjWRwoY9j7Svs25Nv228z22qtM1bTiSShrEKSRsCUZkzhmgkKl6= d3VGkiKuUGdHZPwT+br4La0Apaywt7QqEKtrAirA8wiRkUAoQcDyCiZpXuayOKGFj5JJHORrWtV= yqiIq9feqp96p/KqdLY+NB4kVfR0V5w/0jdxF5HewOA3VllSUj4sfpZU/f8AX9cTA/s64uG+VmU= SMcrK+qV1M5khdialb9GydnXXfG4aKw2qJiZ3V6yq6SYbfQq6iorJyOFSNW9hSQZZSkSZdxqneO= 7Lbs2xVd5uMijykZKSmDAS1tYyMYaaFe5ZyOp2AIjiV5WwqE6Xf5XbRC3ZyT3dtSt96rNtkZPc0= 6q1Wq+nksZYaqRzFRFa6avhHlVqoitV6oqIvfrbHhwV9lY85+MUFUknxUe1KIt7ou/dgYSEFHPc= qfKNgcUyvVfso3v39uoSonb9U/4dX7+Ahxrss53vlfI24r5W4jp+nJx/HTZopWQ2OwMrEcPJCI9= zfSn+ocZkNJsGo5ZBZ7mjkVPLO3t+iu/6237P8M76rlY6Wi249mokcgtLLNRi2UMWBjqZ3eMv0g= 4AZ2AGSOCtk0ldujxBs3QrPU1l/iulY6DCxxRVQuFbISoIRFSNwM4Bcqq/7hhvhv3p7d/b5fh29= v5+3f8Al6rw8T/ldsLhlxeM3TrKtxu1ycfOcUxpgmViGHVChXn1l8VI4cA6unUhvwkfovQhGN+1= 5mP7p2sPb3+9O3b+b8fb7/v9+/8AL79+qUfH5/g/rP8A1ua5/pvOvzAiAZ0BGQSARzg/vj9dfo+= Bkge841S1/wBIk5of5jaM/wDDWT/82dZWm+kW8uRbEae81lpO4rGSMUoAWsympIniRyedkJzcjM= 9CRW90a9w0zWuVFWNyJ262T9H+49aN3lXclZNxaowTZkmPG66ZRPzTHK6+WpZYQZS45lep8E3wy= FOFHcR6Xl9VYYvP38je1pPiHeFRxYzzjPs/IdT6fxLV+1tf4heZrht1gVTHQpZl4yFNcEY3b1le= sFfZB3wgs9cyUiBSQC5xzR5u0EkE/wBTtAsnQYuxA6h25x8QeM/lxqNSl8PvxD9W8+tfXF5ioBO= HbCwuUEbYGurQyEw2lWzildW3NSdGyFLjG7OQYwcY9BxiRzBCBDg4HfCymRL294zdFqjmiRw6n0= TbXB4+zcI1uudR5wIEK6XM3Y+kdr9SOx6eZIwPr5vnF+sVcR8MvaaJZURi6Pgq7ZtdX+INqIEQ2= Qen2gNkesckEav71Yh3tVMfTwytVUaij5VUUJjH+72qO5jezZHo62XkRzl1Dh3iYlaQtOEGhMwy= 6Pd+r8WXdl0I52ePsb52IIHkzpUrJE+taL6xgSvVCvb6uG7Pj7IjcGhCyMoVnXp6h7QUj55745x= 7/XnTTQqfJO/z7J3656gdzs8QLT3ArAK3J9hQWGUZdlMpgmB66oJh4LrJiQI4nGlkmFI8eloK5x= AzLK4mhLkhcUPCHXnlStGWhY76SnsZ5Uzqzi9hUASvco8R2fXxpTI+6+VJiR6QGGV6J/hOYLC1e= 3dGIi9kpSKRxlVyPfkAe48k4/M/vpptrqj/AHn4ztFpXmQbxHI0Tb3xoee4bgy5tDnAYAj5MvZS= OZYfUr8eJlawH65ajoFPV0/oKrZYlkRGx04a+OpsPlFya1JoO20LhmK12yb2wqCsgrcpvTzqxgW= PXN02YcQoKMeZ8klWwdWyva1rJXORfM1E66Dyk5zahwTxIbPS9zwg0FnWWQ7Y1vQv3JkAjnZxMb= dR4wod/JL9WSd7Gl+OgaA74pfKgECI5ns1uaxsGKvGT7BbAYDHbnqBHbn1+7Tj1/XH7HV0HiPcl= M44kcSNhb21yBQWeWYpY4WJXh5MKWXTSx5FmNJj5qlDhGAEvdGHYzyQKwqPyTtjc9HtRzHaG8JH= nFtbnZp/Zuf7ZqMQprjDdltw+tgw4CwABmrVxikuVlKisbKzkeUpVjOzzxyxxpE2Nvp+ZHPdVF4= 4viFZWlvubgN+xtSrjD4tW3KbGW2sfrn1UZjGwPQSq+H+r1Z8Uz6t83xHm9FVm/xnZnVb3h6+Kt= m/ATXWc69xjUOObFEzXNkzMiyub22qpwJ0oqyk+Bjirxp45IvTrI5/UeqP88z29ka1qrmsJaEnp= HWWBU556SRxwTz3z8+NNPwdHVK/OvxUc14iaf4r7MotRY7mhvIbDW5Ra1VleWwA+NTLjOKXyiBT= BCzSlxpLkco3qEtjejBWOVFc9/lrGX6SXtln2pOL2CIxPdyrmOTN9u/v9p1b2T9Kovb8F+S1LFI= 4DKuVPY5A9cdiQffn3aabhX5L93S1OU+L/wAkaTxI4eIYmL6vfriTkjimoVtZ6a7dlCY5eZJTU5= ZaGNv2g/WkY9hM+Gb4D4dsrY3PGe1HMdPbw4fFY11z7myPC5cPK1dt7E6tL87D57dl9VX+NoVAA= RfY3cfBVs7215xYUFrWGgxkA/HByQknwySywLWbC/hzxv48+u/9+8Y6zjj9qRXXlYyRk9j6dj7u= 3pydNPZp8k7/AIdHR0dUaaF7/cnf83y6wWSY5R5dRW+NZLUgXtBfV5NVc01qNCbXWdcbC+AoIwQ= hr4Jx54XujljlY5j2L2VF906zvR1kjMjK6MyOjK6OpKsrKQysrAghlIBBByCNYuiSKySKro6sjo= wDKysMMrKchgRwQQQQSPXSVvijeFxkHFK+sNw6drT7/jxenLIWPF6htlqq0Nl+xT3Hb1JyMWKle= jKLIHedB3+WmuXRGJXGXNVWodv7D0VsHHNoavyM3GMwxk1hdeeHJ+9zMRyIQBYDr3hPrDofMOcA= Sx8BI73xyMVF6/SMyLHKTLKO1xvI6qvu6G8BJrLiotBYTa+zrjIXwFBGCztfDOORC90csUjVa5r= nIvzXuml4n/hXZJxdvrbcWlKuxyPj1cFSFnV47J7C51OaQ9z5Ku2VEfMXiL5H/wBpL9/nkCYqVN= 4rJ4g7K37Z8G/Gak3RSpsbfT08twmgNFQXCvCNTXyBkEf2CvEuY/txU9ETSALWgdLf6kAz8eeK/= hLVbbqX3hs1J46COZaqroqQss9mnVg4raLy8OKMOOt0TmlbLc05xFfFwe8WXj/ygxWmpc7yKh1D= uwcaEXIcNyOwgqqK7PYxrH2eDXh8sYlhXnvX1mUxREV7WSOmFlgNFggtjrDs03xpbXVHNkmc7V1= /i1HBH6sllc5ZSBDKzt3RYnSmtWdzk/wGQJI+ReyRtcqonX5syL7tcndFT3aqd0VF9l9lT5L7f0= /n6+iYsolGoSSQQjE7MSaeSVGp27dmpI5yN9vbsn3e3V95/hb2/W3aWstO4K60WyeVpXtjUkVa0= AZuoxUlU88TpEOVj+0RVEiqAXkkbGarT/EdfqO1x0lxstFdLhFEscdxFTJSiYqoUTVVMkUivISO= qTyZIEYnIWMHhlrxAvG/gvKy51Jw1IPHHOjnr8g3gcHPWGfCytdGQHruqNjjOEfMxfTflNsMMTC= 31Fpq9kii3DFpSiijiSDTiSDDDJpSiyypnzkkkzvdLPPPNK58ks00j3SSSPc5z3qrnKqqqr6P1/= T8v19/w6kdxl4o7q5bZ6JgWnsVKtZEmgW/yUyKYXFMSr5ZER9nkVwsboRYmMR74BIvWsj3MWEAM= qRfJ1ufbW09m+FlgqBRCnt1FDH591vFxmjNTVGMEebWVThAccrDTxqkSs3TBCHfnUu4Nz7q8R73= A1YZ7hWTP5NutdDE3kU4cr/lUlMpY88GSV3d3x1TSkKOnC8cePGx+Ue2cY1DrGqlPvL8pjj7B8c= iVeN0UL2La5HeEo1WCVlaO9ZHuevqEkOgAEZMcUNDI/1xf47YPxY0thmmMBGRlTjIHmsLOSNrDs= kyIzyTXmR2jkVVkOtTUfKqK5WCjNGBHSMUWCJmnODPBTVvCPWseL4lDDfZ1ewik7D2KaJFHcZRZ= xMd2GGREe6sxyvkdI2opopXMharyipCLAgkqWciJ/s9k+/29vx/R1xL4z+LUviFco7damkg2ta5= WekRwySXOqA6DcaiPOEQIzpRwsS0UUjyPiSVkj698IvDBNjUMlxugjm3JcolWoZSHS205Kv9ggf= +py3SaqUDpeRAiZjRWfnqk/x+f4P6z/1ua5/pvOrsOqT/AB+f4P8As0/729cr3+753nf+b5/o60= pF/MT/AJDW6F7j5j9dQb+jU/8AZXKz/wB4av8A/wBbL+mJ+SmW1GB8fd2ZlfTRQU+Naqz24sJJV= YjPQCxmylWNEerWvkncjYYou/mllkZExFc9EVBThh4iO++CUGeD6UC14azYstHNf/l1jtteujfj= 7LCMFK5a3IaFBmuSyIUhJUJWRUiVix+VyP2Fyo8WvmNy7wCfVexMjxHG8Aspx5r/ABrXGNz47Bl= KhkRFhQX51hbXtuWAMXDES2rgsBa2cmKCcsQiUYZ0P0SQu8pYY6SV5z6ALzj1+7v8NMduRz/b8O= /1xnpPhbUZuReINxYCAY90w+0qu7mbE1XK0KhHMuz5HduypHEGCQ96/JGNc5e6d06lRzG/hvbD2= 7f3Umi/b/4muv09Tb8A7gdnIOwTeZW0MaOxvHabHbLHtMg3YUwNjkNxksHwd3mogxLY52UdZjzz= aauJlh9G3JvySA5FbUudLCTmN7+N7YfxpNFf/k111Z1hpXAIwI8Z+OeRqB3Ge3rr2+Pdmd1lPiD= 5Dix07/q3X2udb4zQwPcrR4B7ql/LQ2dE7+Vsk9llBDZpkarnMHhY5XNijRrYei+AHE/TmqsLwC= u0drHI5KHH6sSyyjJ8Ix69yLJ7hgUKWeQW9nagmFzGWpvrGPi9b4YVJWiiRQiwxRNX3+kGcPc7T= auP8uMOx2wvMGvcOqMO2WVVCzmyYvkWMzmQU95cMha941Rc0RVfVxnK34UUyk9IqWKQ8Ns3TdGf= SI9s601diOBbG0HQbVyPEqWvx52dw7EsMQNyAKoFiAAOu6t+I5RDJeSiwRraWApo8FgWshbQBny= vatLIzxReV2AwwHBzgevHr3B4x31PoO3r8/v/AG1Gnh5W11N439RUVAIlZVVXKze9dW1oA8QgNe= AEuyxhAghYGRwDCijxRwDjwsZFDFGyONjWNaieXO/+Gluv9f2lv/swbroXh1Z+7a3i56l2g+rbR= v2PvXZudvpWGLYtqH5bSZ7fOrWnuGDca0Fx6jIWogqkJEkqjwq/029+53p/fpLr3T/2/aW9vfv/= AIvBvzfr93VxB6sHv9nYHPvyO+noPmf/AJ0wt44uG4h+5/bpy38lsc/KtLjVkSZN9SVq5Akf7I2= Kien9c/DfWPk+E/sbyfE+X4f957en9nqGn0dzX2B5fxu3mZlmE4lk5Yu8GjDF5DjlPckjjrgmLy= /DwT2IZMsUPqSPk9KN7Y/O9z/L5nKq2P8AjIYNkewPDu35T4rVl3FtXC4flT68KF05T6nFM4x2/= vZ44md3v+BpgTjpGsa56xjPRqKvSvHhn+K2V4feJbIwK005+ynjed5LX5cJKFmSYdbUd0NVx0x7= JXT45kY9mCcGJWrHF5K+cKcWZ/qlNKRkFCBmp2VcluvgZ5xhexJzqNMz+JNz3438IKDCKPPdTU+= 5s/vQSiMB1igOODh0+PhLABPb2VpbVNzHi9I+aFlfXoBSmz2M4ko4wqQAEzjUl3fjs6TyOosqG7= 8M3UVhUW4RNdYBTbBx9GECFROhnieseiEkZ5o3qiPjex7F7Pjejmo5NdePFR5tnuyeNnKR2OWYO= uNucbcBhrZle6xAx3JXl3+YHYwXYxwQxIUlbltdONPKMElp6RkgsHcQhsWyde+N7xvw3BcQxMrw= 5dfTFY5jlNSFT1mTYgPXkk1leOGQYIMbqgsuCEyWF5TYCTDCIvVWOYwp7VIklIx5at0Fy3LYk6c= EFRjGQeP+P3+umof+CTaen4nGnVp4ZKmrvK/cozqz4p5SxVC6tzW2DrJyvJAprRSK+vd60kMaSz= CRzLCx3ZG5zYX8OeN/Hn13/v3jHWK8Gq2gv/FT1HfChMrBbs7e1wNWsc1zK4ey1RscyEFr44oY3= NFjnbA10cUTFbH9mNjezUy2wk/v5438ejXiff8A594x+b+v83Vh/mv/AOufj6j19dNPZdHR0dfD= po6Ojo6aaOvisa4G2CKrbMMU+vOHmEOBNHhLDMGIYsc45I07HwzwzRucyWKVj2SMcrXNVqqi/b0= dBwQwJDKQVIOCCDkEEcgggHI1DKrKVYBlYEMpAIIPBBB4II7jVDnKvwJNE7buLHM9DZKTojJLKa= Ys7F2163+tiipVkke+uqfiBbPFFnnej5Ias4ylGiRIa+gEZ7LWYV9H75cxHugF2DpMsBHqjbBbv= KoFVnde0jhXYq6Vq9vdWIrlT5Iq9unFe3v37r+j7vv+f8/R2/Oqfr+fv+v8nW3rJ46+Jdiokt8F= 9FbTRKEh/wAVpYK+eJAAoUVMqfaJAoA6TNLKVACrheNarvHgv4fXmrkrJrO1HNKxeYW2plo4ZGO= OomnjJgQt/UYo4yTyfitboT6PZitXYgXXI3cZmVDDujnIwrWgElDXmvjkbJ8Mfl1w2e0eDMiLEV= FWU1UarXOcPbDva16MA6j0tq3ROHgYFqPB6DA8Vruyw1VEG2D15vIyN5tkZI6U+2sp2xs+Js7Mo= s8lyI4giRUTttHyp7/P37+/t9/z9u3b/Z1z15LdW/8Ad+9JFbcd7qq6GNuqGiXopaCFh2aOipli= p/MAyPNZGlIJBcjXp9s7F2rtFXFis9NSTSKVlrGL1NbKpwSr1dQ0k3QSATGrLHn+jIyTo6Ojrx2= Ma9aAB20ddKz3W2vtqULsW2ZhGJ7Bxh5Q578dzTHqrJqV5wfqfCGOrLkUwJSRvVk9CdYVli87/I= 5vmd37r0dNTqLn7R/hn/oo8dP/AKM69/5f6ytLw84nY3ZC3OPcZ9C0dsDKycKzqtSYGAeJPG5Hx= zDFjUUc8ErHIjmSRPY9jkRyL3ROpHdHU5PvP4nTXrjijhjbDDGyKJjUZHHGxrI42InZrWMYjWta= 1E7I1ERET2TsnWkbjjHxzyHNH7IvtEaguthvtAbt+dWuucSPy51xWKOtbarkRVTLbLYV/wAIIgR= ilqQN8MP6MjPRj8u8ujqBx2J/E/X18NNQB55c+NS8FcZwe121hmYZpVbGtbehBCxMOiPWKWpChM= JWzgvbOthUeWKdrI0jWdXPRyPY1ERVpKtfFp8JOxlNsS/D6DtLMj1p3zHaS0SspRTkc9XEFyHSy= eaWT3fM9JHorlcqPX5sZb64r8f+T9fQVe+tZ0uya/FjTLDHxbom3GjrDT4WDFkQLUWNc9z54I2R= uSZ0rUa1PK1qqqrGn9yU8Of/AEV8EX9NlmX9H5Tdl/lRerFMQHtK5bnlW6Qe2BwM9u/Pu92mlgP= B815e8gfE3rNyYthkGK69wPItm7ayACkDYLjeF1+S1eV1+G4fXOHgHBgRlxkNdX1tdBHC59PVWJ= A0DIQpPTcjvOMXHPJ8yk2LkmiNP3+fynhWsmbXOuMSssrfZ1qQNr7B+QGVM1q40FowyCEqV6wyD= wei9npM7ZvUOitO6Bxr8j9L62xDWmNun+KnrMSpQ6phxisSNTbQiGP4y2OWNrY1OsiCi3Ma1izK= 1qIm2OkknWwYZGF6Rzzjvye559+mvCSOOWN8UrGSxSMVkkcjWvY9jk7OY9jkVrmuRVRWqnZUXsq= duo12XDDiJcGk2Vrxf4/WNgZNIQWcbp/ASSyZ5nrJLNPPJQrJNNJI5z3ySOc97nOVyqqqvUl+jr= DJHYkaa6Vc631/kWHw6+yDCMSvMFHACq4MNt8dqbHFoaytiigr6+OhMEmrGBAwwQwiDMGSEeOGJ= kLGNY1E0j+0f4Z/6KPHRf8A5M69/wCX+pR9HTJHYkffprQuF8WeNOt8kAzHXfH/AEzguW1TS2Vm= T4jrPDsev69h4ZFcc0K3qqgQ4VpgBZQRTYZ2IQIRMPKj4ZXsd7iOMPHEvNk2WVobTxOxm3g+TJn= s+t8RlzBMjEIiLFvkyN9S63S4GJghngsvjPjIpoo5WTNexqpvTo6ZOc5OcYzk9voaaE9kRPw6Oj= o6jTR0dHR000dHR0dNNHR0dHTTR0dHR000dHR0dNNHR0dHTTR0dHR000dHR0dNNHR0dHTTR0dHR= 000dHR0dNNHR0dHTTR0dHR000dHR0dNNf/Z" width=3D"222" height=3D"97" alt=3D"Log= o_cicncia_digital CON ISS1.jpg" style=3D"margin-top:10.32pt; margin-left:26= 1.7pt; position:absolute" /></span><span> </span></p><p><span> </= span></p><p><span style=3D"height:0pt; display:block; position:absolute; z-= index:-1"><img src=3D" ICAYAAADzq38MAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJ= zsvXmYHVd9p/+e2u6+9b63Wr2oW7ss2bItyZYXGTBgGwzYhoCTCeQ3SYZhBhIgPM8EsufJDDHhl= zCEJRPMEowNAwYbY2wsL/ImS9a+tKTe9+57u+++1HLmj9vdkqyWLMs2CVDv8+jpq1t1q05Vnarz= Od+tRCKRkLi4uLi4uLi4uJyFdr4FQgiEEL/Mtri4uLi4uLi4/NKQUiLl+W1F54gkIQSqqmIYBqq= qoijKm9pAFxcXFxcXF5dfNlJKLMuiVCph2/aSYukskSSEQNd1vF4vqqr+0hrq4uLi4uLi4vLLRl= VVdF0nn89jmuY5Qkl55cquQHJxcXFxcXH5TUFRlPNqn0WRJIRA0zTXvebi4uLi4uLyG4WiKGiad= k4s9lkiSVVVN1jbxcXFxcXF5TeKBUPRK1FeuZKLi4vLmUgpyeZK5Ir2q65bLJRI5y3eqLoiUkI2= VyRfevV9u7i4uLwelsrqd31rLi4uF8RxbJ7a3cfzJ5PYjlxMmT0zwFFKiSMlvQcG+dHeaWzKAse= RkoXV5Cs/L2x//rdnCquF7TuOw0v7hjg2kceRp7+Xr1jvzG2f9f3iF2e3xcXFxeViOG+dJBcXFx= cAJBRLNortMDebpj9exCpaCE2jqyWCT4P+4TniOYd0PE/B56NYNBkbSzKRLBGO+FjRFGZkOIHj9= VEX1hiczNJSFyKTytE/lUcKQWtjhLqwwXQ8zcBkHkVX6W6J0lgfRfOppDN5+kZSZEoOdTUhWiq9= DI7MkjElmbxFbU2Y9toA+Wyeo0NJSlLQWh+mJmwwMZliKF5E01W6WmNUBHVcu7mLi8uroX7qU5/= 6HJxO/3cz21xcXM5EOg69A3H0QBA1m+RfnxilpTbAyVPTzKJSiCd5/MgsdREPB07OoIaC+M0cvz= gYpyLs4dCxCUzDi17M8uMXx8mkMvROmyyr0nlw5yDBiI+5eJI9/RnqQioPPTeM1+9hYjTBWF4wN= TxJEoOBExP0z1kEdMljL45QUxPi+Rf7OJ6wCasOP983TU9bmMeePMm0qWI4Fs8cniHsFdz/5BBV= FX7i00lyikFLpQ83usDFxeVMHMc5pwyA625zcXG5eCQ0NFWxbW0969rCTCbyHOibZePqRraur+f= qrgiOZXPgxAyZos30XIF80WbPyTla2mppCTg8cTTF1rW1xIJetl3WQEPMQBGCmXiW8bFZfLEw16= yv55btHWxaFkYAuVye3skiW9Y1cM2GJrpjKkcmMmi6xhWr69myphaftJhM5nj2+ByFvMlMusTcT= IqJZAlN2vSOpAhEgyyr8v57n0UXF5dfEVx3m4uLy2vC61VRVYGmKoCD7YCqCBRFwWPMW6IVhY7W= Cja0hVFW1uDzGahCUiza2KZFvuSQTKT50a4hViyvwO8z8GhFHFuiKAqKEFi2xamx7HwsEoBAU5R= yqq6qULQliiLw6CqapqAqAseRGF6DjT1VRH0aV61tIOBRWF4bIpPJs+fIBKemi/zuW5bj01xTko= uLy4VxLUkuLi6XjKZqdDcGeerlUQbGZnl4zzSKptJeH6B/NAlS8vL+QZ4+PseJ3nGmHA/vubKGZ= 14eY2g0SVpqXN5dRWEuS6rkEK0OMTGS4MRYmiee66dvtogAAn4fdQHJi8en6RuaYVdfiu66AMor= dE7A76M1LDg+nscqlnjo6T4O98X5l5+dwggF6KjzUTSdf5dz5eLi8quHG5Pk4uLyKkhMy6EyFiD= qV9G9HloqfTjSwev3sraripBT4pmjs3Qvr2BZQ5QNXVUEpMXzR2cIVEbZsa6aE8MpLt/QTE9rFK= tYor65kgrF5IXeBPVNFXTUBehoqWR5lc4Lh6fQImHevqkeTUB1dZh1nZVMjM9xcDjLW67tpKchg= GVLqqtChL0qpi1pa4qxsTPG0GCcI2M5Nq1tYmNXJa0RlV0HJskqXm7b2kzM5xrRXVxczmapmCSR= SCQklKtN+v1+dF3/d2ugi4uLi4uLi8u/B5Zlkc1mcZzT1mbX3ebi4uLi4uLisgSuSHJxcXFxcXF= xWQJXJLm4uLi4uLi4LIErklxcXFxcXFxclsAVSS4uLi4uLi4uS+CKJBcXFxcXFxeXJXBFkouLi4= uLi4vLErgiycXFxcXFxcVlCVyR5OLi4uLi4uKyBK5IcnFxcXFxcXFZgot6gZFlOwyOp5hKZM96p= 4mLi4uLi4uLy68CqqqwvDFKVdSHEOLVf8BFiiQA04ZcCSQXt2EXFxcXFxcXl/8oqDY4UsBr0DHu= C25dXFxcXFxcfuNxX3Dr4uLi4uLi4nKRuCLJxcXFxcXFxWUJXJHk4uLi4uLi4rIErkhycXFxcXF= xcVkCVyS5uLi4uLi4uCyBK5JcXFxcXFxcXJbAFUkuLi4uLi4uLktw0cUkXVxcXFxcXH4zkRIsR2= JaEgToqkBTBBdZuPpXFlckubi4uLi4uJwX25GMJixeOFVkOG6hqYLOOp0NrQbVYRVV+fVVSq5Ic= nFxcXFxcVlESonjnH5P68CMxZcfT9M7blIwy9Wog16Vq7u8fHBLgOqwetHvQvtVwxVJLi4uLi4u= Lti2QzyeZe+eYV5+eZTkXIHK2jDDgTZOJjVMW9Jdr5MpOIzN2Tx5NM+KOo2b1vox3gA1IaVc/Lv= wGUAIcZYI+2UKMlckubi4uLi4/IaTyRR44P793PuNF5mYSGFZDiDRY1FqrqtEj8aoi6hc2eFhMm= lRsErMZiXPnSyyfaUPXX198UmO45BOpTh6+CB7dr/IQP8pcpkMmq5TU1fP6jXrWL9xEw2NTWia9= ksTSm+ySJJnfP71NMW5uLi4uPzHQEoJUiJtpxxpLARCESCU8l+Xc5BSkkjk+MI9T/KD7++jWLSo= qAjQ0VFFOOIhKX3M+j0IRXDDSi8blnnIFHQkgiePFckWHKR89f1caP/FYpEXnn2G7//bNymmZ+j= pbOOaDZ2EwmHMUomxsVF2/fR+HvjW19ly3U289/0fIhqLoarqG3cizsMbLJIk2CWwMkgzBcUpsA= ugBRDeWtDCoPlB0fiPIZoWrux/hLb8+uM4zjlm06WRnO+aLJhhL247Li4uvxE4Dk6phDWVIndgk= MLxEZy5LHg0jGW1+Ncuw1hWgxrwIVS38s2Z5PMm37vvZR5+6BBCwB13Xsbdd19BU3MUTVOZSdv8= r4fTHBkt8e3nssxkHUYTFodHLRRF0FFnXJIVybIscrksxUKBh3/0A/Y9/xRvv+l6Nm65nkC0itn= 4DNn0HMFQmK0V1UjHZujEQR747rf4m8/+CR/+w/9GXX0DHq8Xr9f7po0HIpFISABFUfD7/ei6/t= q3IiXSLkB+GDnzLHLiIcgNgZkHHBAqGGEIdiLq346o2AyeWoR6Cft6PUhZbo9TAmsOzAQYtWBU8= usglKSUpFIpZmdnicVihEIhFGWJB4KUOIUMdimHEqxEUc4NupNSEo/HSSaT1NfX4/f7z1n+Wjql= ZVmcPHmSVCrF+vXrMQzjnHUcx8ZMTmHm0niqW9B0z1n7kFKSTCbZt28fPT091NTULC6XjlOWVkI= s+rKXPHYXF5dfH6TEKWaR48exxscZ++IB5h7ai5Mtnn4O6CqergYa/+pDGC21GMtqUMI+FEX9dX= jsvy6klPT2TvHx//Z/6e+P88EPXs4ffnQboZBvUfRYtuSn+/N8Z1eaeNZGV8qnzZKCxgqNj781Q= nej/poy3KSU7H3pRf7vd7+JpghUafLe93+Q9pUbcBAc278bO58i4teQdhFfuJJY80o8/hCFzBzf= /8aXOHh8AH8wxOr1m9hx8zuJRmOv+3xYlkU2m8VxnMXv1E996lOfg/Lgouv6azdfSYkszSInf4b= svQdGfwS5cbAKIC2QNjgWmFnIDkHiBWT6GBgx8NYhFJU3vadKCbIE5hSkD0D8EZi8D2YfAV8neJ= r5dSj2IKVkfHycb37zm+i6Tmtr61lCYcEKIx2bzIGfMvr4vaQiHURjlUuKpBMnTvDXf/3XrFq1i= pqamsVltmVRmJpG6Bp2voCZTqN4PIgLiBLHcejr6+OrX/0q119/PV6v96xl2WwWBcnUSw9x9BcP= oNT1EI5WnNOuXC7HF7/4Raqrq2lra1tcXkpniL98EEc6pE/2Ucpk8VbEyj3r1+Da/qZhWRazc0n= GJqaJz87i2Da6pi32Z9eK6IJ0cNIzWM9+B/Nn/wC6iu/m95A/PkJpeBqccj0frbGC2k/ejndlK3= P/9hTW5BxaRQg15D2vVcmyLCzL+rW3WJumzUM/OczPHz1GZ1cNf/zJ66mpCZ11zIoiaK5QCXgUc= iVIpork0llaY4K7t0dZ3Wyga8prGsVt2+ZrX/oiXc2VvO3W27n62htpXL4CFI3BU8eZGRuko3k5= FTVtBMO15KbHScQn8UWr8QcjdK3ewKqV3VRHg+x6aied3WuoqKx63dfKcRxM0zwraPz1udukRJY= SyKHvIAe/jSwkODMOackGmxmYfg6ZG0G0/39Q/3ZQPa+rGedvnwNWCvKnYG4npPdDYQSsJEgTjC= rAfnP2/e+AoihEo1E0TSOfz591oaWUZDIZxsfHWdbaAr4Y+4dnaZ5JsKz93G0JIairqyObzVIoF= M7ajplM0fvXn8dbX4dTKIKm0vGx/4weDp+3k6qqSjQaPS3UzmhbOp3mySef5KYdNxLp3kJYqSAc= rVjc35nWIb/fj9/vPysLAikpzMxw6rvfw9vQQHF0HH9FDcaH34+3qgLV43nNN88rMyverN+4nE0= 5PmKWJ1/cT+94jtlUGseRRIMellX5Wb+6k2ShxLqOVvw+n3uef1OREpmdw/r5P2K+/BNkLonaeT= W+1a20fPE/M/yJr5F+/ABabYSGv/wg0VuuxJyYwy6UyO3rw55JEbn9KjzL6xDauYYBIQSZTAYpJ= dFodN54IMHMlSddqhfEr76lulSy2bNnhGLRZtu2diqrAkveUz5D4S3r/FzWavCFLx3m0V8c4fId= 7aysrcGrvzaBBJSvn2Vy+bYbaF91GWL+XGazGfpP9hLVNAov7CUvwclmKSRniC+vJ1jfji8QxBe= M0Nq1loraRvYfOIjj2IsxaG80r0skSSuLHH8EOfANZCmFaTt872mHvCm5ZbNCTUQ95+RJAL0CQq= twxn+G8NYjKjZf0ApxaW0zsU+8gJj8GsJ7CoVsWRidP9zl4rYrwXEkRUti2mCoYGgCVX1jL47tl= DMLFEVBvIYGK4qyONuWUpLP5xeXHTp0iAMHDnDHHXfgbdvIdX/QhREIY9s2pmmiKAqapmFZFoVC= YXEmJaVcnFmpqkohmUSvrSa4fg1OsUTi2Rfo//q9hFf1UH3tVrQzrERnsnDzFQoFJicnSSaTRCI= Rfv7zn7N//z4a6uoI6Q7+cIyBwQEC8QT9/f0sX76ciooKjh49SqFQIJPJUCqVGBsbY3R0lGg0Si= mdwdqxndoVXczOxJk7eozdn/ofNNz8Fjre9y7Ui3QjS8fBnj/WZCqFpusEAgE85xFaC4KvWCySS= aexLZuKWAxVVVB03R3EXwOO4zA5HefffvosLx0d5dDhY9h4kAg8SonOjhYef+kQl3U2sHZ58y+t= XRJwpMRyyn9NB7I25EyLpCWYNWGyIEmUbFaENbZWavg097q/mUjHxnzuO5gv/RBZyMw/1gWKquL= taqb5nt9j7C+/Q+StlxN952a0oA9rIln+rWVTGJpG/Hg3sQ9ci1YbPec+VVWVSCRCPB5nYGCAur= o6fD4fiqJBfH85fCS0DBTPr7Sl2rYcshkTIQS1tSG0JQQjlA/RownqYyqNIRszESeXqAbbvrTDF= yAUBVU3EEI5ayKciCcg5GPFtm3oPh8CyM5O0rfvJWzbQjA/lgiBoqio6nym25t0GS5dJEkbsn3I= wXuhlAIpsR344YsOiSxsWy2oiSzxO6FD1dWI7j+G+C7kwDcQoR4wIm9sZ7MczCePUfjuAGqrxFi= vonfbKBG7rFq1MIQ3gFF30SfXkZBIOzx+yOTpXpu5rCTsE1zbo/L2DQZB7xvT/pJt8ouR5yhYRd= 627Bo8l2BpcxyH/fv309/fj6qqTE1NcezYMRKJBOFQkGhmmAgZHh9XCUcrmJ2dxTRN3v/+97Nz5= 85FkZROp5mZmeF73/seqqqSz+epq6nh0elR3uHZiBEMM9KznOV9w8x99RtUbrnygvFKUkoOHz7M= 008/zW233cZnP/tZbrnlVnxeH9FIiPFdP8DOzPClJ/q45oYdrFmzhs9+9rOsWrWK6upq1q1bR39= /P9PT09xzzz18+MMfZt++fWQyGXbv3s0HKz7Iid4TbNu6BVFZjXaRAX0LFim7VCI7HcexLEQhT8= l2yBo6/ooYFRUV57gvbdsmPhOnNJdEtx1UVSFn2SiqQrCudvFm/lV+kP6ySGey/PDxF3js+SP0j= aVBiyHnpwhF4WVieoZoxM+Ro31MTk3StqwN+CVY7aSkN+XwtydMhrIl4iZkpEquZGHlTXxFm0C2= iANsWl3BuoiKV3stU5uLawNcwhzvVc6NlJJ8Ikd2Ood05mfiUuKrDhKo9JKdzJI4mcAT9eGt8BK= uDyJsC6e/D+KzoHugrY2i1MlM50AR+Cv9+Ct8KIpSnkAkC8wNpansiqGdUUzHNi1KGRNvzDvf1I= tzbUkpsfv3Yj35L8hC5txDVgS+9gaWfemjCENDMZaYIDkOhVPjZJ45QuQdl4Pn3AmNoihUVVWh6= zonT56kqqqK2poa1Mr1iPgeGNoH9TeCp/JX9v4WCmhaWaDkcqWzCkiej2ymhHQkuq6gXHLG4HzW= 4Sus716PF4/fz/jUJCfGBuhYtR5D15keH2A6U8AXCJ1jUHkdiXUXxaWJJCnLVqSxHyOzg/Oz6XJ= jpRQ4jizfyFIiEYs3XnkNC1JHkOOPwPQzMPsCcmonNN3ymiwmF4UNZATWYR3zmAdRpSOuq0S7ZS= ueuhtR/U0oiuei9islxNMOX3uiyIkJh+tWarRUKQzN2DxxxKK9RmVT+xuTLOhIhyOJPjKlLDtat= uC5hCzHYrHID37wA9avX093dzdf/epX+cAHPsDIyAg7dtzEwfu/QKUzTmouyGwyzR/90R9x7733= 8vd///cMDg7yk5/8hIMHD3Lffffx2GOPEQ6H+Z3f+R2eeuopDh4+jD8U4pldu1i9ejXbb34bQdP= i1D3/iGNa523Tgniqr69nw4YN9PX1MTg4iKIIvD4vfr+PsZEB2mtDRKMRbr31VkKhEPl8nqeeeo= rf+73fY8WKFdTV1XHw4EFeeuklenp6SCaThMNhrrnmGu655x4+85nPsKx9OXOmSe//+Tah9jYi7= W0XFG7W3Cy5U6eQloUjQTV0fIaB8PgwTZPswBBj6TS1jY1o81apUrHIaP8AnnSWYCiApoEs5HAy= SWyzRHp0CNXnw9u6DC281Izh15OyeHTOCKAXiw/fMx+qC8GRmqaVY9aGx3n5xCST8RzLGqpRhCB= bLBEN+FAUB0OH/sFRIp1t7N13mJbmFhRFKW9nfiYq5rd3puXdsmzkvNxa6IOKoqBeZJaTNG3kqV= n8D4+ypm+WpniahkSOqkSeilSBUL6Er2RxoL2K7//5WzEdH7ZlMZdMEo1E0LSlnwvlqsbljE/bt= kmlUsRisXPEgjRtrB+dwprIImIG2tZGlKgP64kh7LEsQoC2oQZ7IIV6XRNKyMB6chR8Kvq1zRcU= HgLAsTn2rX0Uhc7K27tJD8wwfiJF+xXVHHvwJC3bW3HSBYafTtD97g40VWAnp1A++jG44VbEH38= MRYW9//t5pMfPlk9eddY+naJFZjJPfjqDmSshPCrYoCgaQnHIpUx0j0rTlmb8Ue8F9YaUEmmXcM= YPILq3s/BolIBoXosU809zVUEN+s74ISghH/5N7UjzdIhFyXLIZEqEPOcKqYVjiEaj6LpOb28vs= 7OztLa24q/YhOqJwan/A3U3QHQ1qEY5xMN5RQiHUEBRWJS30in/E+rpTirl6e9PN+D0Oo599rLF= 7b6+FHjD0OjorGLXrj727hnmtnetwe8/N6mm3ERJOl3g0MExhBC0tVXi9V168pUQAumcfUyqprF= 9x9v42v//ecYfeYRjR45QKpmMDA/ztne9h/ArgrMXZYUQvFmmpEsf1Ysz2JM7SWctJuYk8TRUhc= svwAPK4kgNgrcOAq3lUgDpY1Cag/wYDNwLZhKsHHL0AUTD29742CRNxQkFsGJhiptWUbxsJVZNB= bKgIgem0fQsNfWtRCPnmltfiWXDruMWgzMOn7jZYEWDhqqAIzVu2yTxe053dlksIouFclC6z4dY= CIZ3CmDn533aAVB0pBSUrLL7ThGgKgLzTDUvwSkWkIUCQlURPj8oyqu21zAM3ve+93Ho0CHuv/9= +UqkUUpbdd8lkksOH9rPisho0TWPNmvVEo1GCwSDDw8OUSiV0XaeiogJN0zh8+DCtra3s2rULgL= Vr19LY2MgnPvEJVq1aRSwWQ0NgZguc/MKX6P6Tjy/pclswqfb19XHo0CG2bt16+jgch8mJCUb6T= 9JZtfKs7IKFQcRxHBzHwbZtSqUSnZ2d3HnnnSiKQj6fp6+vD8MweGLnTnq6u5EIrHwJ2zRf1V8t= pSTY3YPweMoPWsfGKRRxigWU2TnUrE1+cpq4bRNrbMQxLWYHh4hkMuiGiu4xUCNhFK8PYRjl+ix= InHz+rNnSbwKFQpEnnt2DY1skklmu2riKwaERphIpljXXY5klKmIxTpwaQNc1Nm9cTzDo58TgOP= 0DwxQtwfRcClVRsW0Hp5jCLmUoKTHypsHI8CgvedNcu/UqxqZmONU3QFVVFSf6hgn4fFy3ZSMTM= 7M01lWDgKd3vYQQEAoFOHpykMpYmCs3rqO1ueGiElXkYIq2fWP8nZal8OhBcCQyWYJieWZYvtIQ= TpsUshZ5G+KJBH/xuc/x2T/7M6qqqhb7/pllMHK5HC8+/wJr1q0lPhPnf3/pS/zV3/w1Pp9vUWA= KANPB/MeXKQzPofh1tJYw3r/YivnlA1jxHPqyKHZYp/TlAxhhHbGyktI/7EG9rQP9muYLjx1CoH= sNNK+GJXSMsE79llYKc0WKc3nmTsWJ9VRTv7ISPehFUQRCUVEiUVAVFH8A4fWg6RqaoWJpCobvt= FVGIFB9Ot6YilA1vNWn48iEULBLJopXR1EF0rKxLRtVUy9smMn1ogZ2ot7ypwh/Kwh18dw6QkXM= n2M4O6ZRrQkTuXMbqqqVM2WLNl97OY6vP89/iflRlXOtkgv/DwQCrFy5kr6+Po4cOUJzczOVlcs= wWt6LGH4AjAoItmJPPYcTf6nsMSm3ACXag1J1JUL3I6WDM3cYJ/4yatPNKPNWKGmXsMd+hswOL1= x1hL8BpfYahBFBzuzGntoFim9+sUCpuRoltgqhXPowbhgaN9zYxcMPHWHXrn72vDTM9us68XjOL= tZYDimwePCHBzl0aJxI1MfmK1vxei993wJBKZ8hn4ov7sNxJCqSu3/3IxzYs5uTJ44TjcZ4z113= UdfQRCEzSxGxOMEpZpLYVumS23AxXNIRSsDJDROPT3Hvz23u3yWxbIgGYC4rCfqVcqdpvxul+fZ= 5v62KzPYjj/5P0COInk8iJ38Bx/8OsqegMAWBNzDOQFVgw2qKzZXk66IUFEG+UGBuJsHY5DRHe/= vJ5Ir8zgc/xIZ10Qsfr5TkS5InjlisblZpr9VQlPKxZgrlh1kyJwnokmB2itKunVhHDoKu49l6H= Z5NV4CYQ8YfRs4+Ve58lW+FyneSKgV44aTF7j4bjyaoCgkqQva8VU5ix6fJv/Ai5oG9CK8P746b= MdasA+38Cn6hFMBXvvIV3vOe99De3s4TTzwxv8xhdHSUydEhxNoI6czZ5mpVVRfdSKZpYts24XC= YdevW8a53vQtFURgdHSWdTnPFFVfw6KOPcvnll1MXjaEoCpH1a1CWGHgcx6FYLC6ari3LolQqEY= lEkFJSKJYYGBgkl8szMTmFaalks1lUVcXv97N8+XImJyc5deoUpVKJ7u5uent7mZycxLIsDh06h= K7rfOYzn+GTn/oUl69bR30iTfNbryfavvy8MW8Lg5EaCJZFqKqiCAFSRegGajCIXlmFtCy8mTSF= qWkSp/pQgUjAh7etFcXnK88UlxBiitcHzBe4O8/1upDgXRwsf4XM+Y6U9A+OIByTwdFJDh4+zqa= 17YyOTrLz2d1ctqqD0YkEK9oaMG2Fb3//J/z2nbcwk0iRyeXRVQ+RoAe/38v0+BjJ2TimWg2aRK= KQzmSYzfiYmJpk74ETjE9MUZdM89iTz+PzecikE7x8dIDN63somDYzUxPsuHYLg6PjPPLY01y3e= Q25Fe1nBdpfEAVKX92Pcm0jnrtXYj4+CJoKaQtnLAtJE2yJt2jh5EwKliRgO+SyuUWxb9s2U1NT= jAwP4zgOy9vbGR8b42tf+Wd+6+67WblqFe9573sQQtDb24t0JLOzszQ2NlAfK2eWaje1YFzVhPX= F/cjZIiig3tmJcdcqhALmg6dwTs7iRD2QLqGtrrwoL5CYn4WbmRLDTw3ScsNyqpZXUJzLE6r2cf= Bf9jDaVU33u7rn+/dCn4T56fDCuD3/3Rk7FWAEPehelexMEd2rYRdNhKZi5Sxs20GYYJVMpO1Qs= aKKYLWf8ys7Ccm9yOmfQzEBPX+DCPVg2ZKhoaH5uKFyXGaxWMQwDBRFwePxkE6n8fv9RGMxEgWb= L++d4Yt741xWH+R318YIGucXzEIIvF4v7e3tjI6OMjQ0SC41RaNvCqPyKlRvFQDO9LPI7CBq4zs= ABZkfwTn5z4jQcoTWiiwlcU5+BWkVkZof2fQOUD3I0ixO37dQ2t5fDgqXFjJ5FCIrQA8h4y9Cth= /R+A6EUEFoCCN8gfN0cSiKoKOjmq3blvPgjw7yF3/+MyzLYfOVrYTDPlRVYNuSZDLPzidO8E//9= Ay2Lbn11tV0ddW87jIrAy/+mMyJJ5ESJuMp4nMZLNvBcSQuc0e/AAAgAElEQVTBgAe9aJJK9rNr= 6OXFCYYiFLqW1eAxNIolk3wy/qbmx1+iDJRYmWFePpHnu085RIKC268WxFPwnSchGNAgug7RfDv= STCJHHwT/MpSGt0PH78P4zxBaAFSjfIuZGcgPv6EiSWga+mUb0PPdjCRmOTgyQv/BU4wdPUJyeg= bLLgfYXuyD0rQhU5DE/AJNLbsPdp+yeOywjQM4tmRjZYa3nLwPpf8Y3muux0klyd77VSjNoS8/C= bM/RVTfBnYROfQFTNNh9+x7eXifzeaOcpD7D1+yWNtqYzSVXTeFxx9B2/0Sniu3Yp48TubLXyDy= 2b9Fa2g696rMZ7AVi0Xi8TgzMzP09vYSDAYJhULz8UVxjh07ipSS6bkM2awglUoxMzNDPp9fFCO= /+MUvmJmZwe/3s3LlSsbGxujt7aVQKNB7vBdHOtx1113867/+K9/77ne5ddVanEKeuhuvQyzhXp= BS4vf7ufvuu/H5fIyMjBAMBvn0pz+Nz+ejoqKCSDhE7W9/nNqKEO9PlGeAlmXxvve9D8MwSKfTz= M7O8pGPfIRoNMpVV13F5OQkXq+XWl8A1bKpC0f4yB13MPH0LtR0nvprt13QglQsFjl16hS5XA6A= cDhMS0sLmqYxMjJCPB4v9xEhiITD1NTUMHniBIViETXnpUoImpqakLbN2NgYXq8XXdcZHBzEtm2= EolBVWUlDQwNCSsxsDjXgZ3BwEFVVCYfDi7FOC0LItm0ymQyBQADLssjn8ziOQywWOyso/8xgx8= V+L067lBbWu9Cy2dlZIpHI4v7PFGVL3RsXK9Zs28Es5Fjb3Ubf0CRHjvVTVx1l4+pO9h08htfrJ= ZPNUbIkUxMTZDLZcrC7nacqoNG5ciWqoiCsFIVQiJGZcsyMFAJFCCzTwiyVaG6o4WTfIAcPT5HL= 5dnQ00Y2lyNgKDzx9G6aGuqQsohpmdTV1mJaJonkHOls5uJFUsiDnShS+uI+qPSgrqrA99FNqA0= hzL2TFL9xEHv/DB7LRiYLFGxnXjCcPRMfGxtjYmKCvlN97N2zh/b2dnL5PMPDw0RjMb7zrW/R2d= XFP/z9PfSs7MHj8fD4Yz/nd3/rd4hIiXMiiVUEIjoioCMdifVgH6W+NMYfbkDtjGHvm0KJeiGoo= zQGL+rwJKevuREqV1aWjkTxaKy8azWxPeMMPDnIgW8d4upPXIEvMwXZfNnLcTGDpIBgfRhRmEBk= MjjhKIquYekKQpNIS4GSg6KaaMarlISRNjJzolxeZm438tifwoo/Rfi60XWddDqNEGLRQriQzh2= NRrEsC4/HQyJn8U97pvnn/QniBZvhtEmq5FxQJC3g8Ri0tDQT8Djk4v2cTAtqmpdRrfiYvzMRVh= JKY+XnjjmF8NYiFKNsRZp8CgLLUOtvQp74CjK2DiXcjhRqeaJVHEGoBtKRCH8d6KHT58NMIEqjC= D2GqNmOMGJvSCxUOOzl/R/YyMjwHC++OMiffe6nXL1lOavX1BMOeUkkchzYP8ru3UPMzeW54YYu= 3nfHBsLhpRN0LhYpJY5ZwipkyyEPhQzZdJJC0cSRUMxpgERVVHRdJZsv4jhla1OxxofqGNimjbS= tNzUu6ZJtZXYxw+Ehh3wJ3rES3r9NIV2Ex/ZZIDQILgfVjxx5EDnwzbJlqWYb+BvBW3PGlgRIB2= ml31A1aEl4KZ7hgf5JRjJ5ZrNQCi9HrK7CMz6IPngcXkNNKI8GsaBgMikpmhKvAauaVWqjCgVT8= v3nTZKj01gnjhJ+5614r7kBaZawBvooPvlDtEgKpfa9iPoPlW/00iiF0fs4OHkLq5oM3nmZjgAm= kg65BZ95Not1qB8jVoHZexRnahLjsssRHu953UehUIg777wTVVW5/vrryWQy1NbWsmbNGlRV5aq= rrkLXNa7d0E112MsfXK/g9fnwer3s2LGDQqGwmBW3du1aPv/5zxMIBNA0Ddu2iUajrKutA12nqb= aOD915J7NHjjH5nQfw6/o5PuYFVFWlra2NtrZysO2aNWuWHMgdeyNSOtQ75Yy60dFRrrzySvL5P= MeOHWPt2rVEo9FF95sQAlUIxqcTDH71mxyreoTg1DT+5W2s/MMP46uuQrlA7Ek6nea7992HqioY= elmIXXXVVWzbto0ndj7ByZMnCYfLImLZslY2XraR+370QzRVwzAM4ok4t99+O2vXrOXRRx+lubm= Z6upqvnHvvdTV1ZbFQqnEHXfcQVtDI8n+QQLLWxkcHGRF9wr6B/rLlrRCgcrKSizLYmpqitnZWV= atWkU+n2dgYIBUKkVLS8tiAc25uTnC4TClUglFUcjlcujzmXizs7MEggGQ5ePzejyYlkU0GiWTy= WAYBpqmkcvlME0TVVUXMw0XYmNqampIp9OYpkk0EiEzX2Cttrb2VV1UQgia6yuZnraJRSJ86I7N= 7D98mFwmx4Z1q2lprEfgMDQyjkKJG6/djK5r1FVGqaiqYWR0CmX/c1Q1tuAPxqhurKamqcRA/wC= JZI6qmgp8agHDMAj4oa2pFseqIBzy0dPZRq5k0dO5nD0HjtLSWM1cOk/vyT5Wr1rJ9qs2IHDIZn= MX7wX1qagRD3avA2N5WK2grapGbY6grqzGuKYZ87lRfH/7AnqmRNY8N5h0IRZveGiY8bFRxsbHu= e7666mtqWXLli0oqkomncZxHEqlEtdu305VVRX//OUvMzMzQ1hK5LE5rIE0nk9sQlSW3S5aexTt= ykaUmBelK4rz9Bh2bBplWRhxsYNY2dCJFtBpvLIJT8hg8uVxVL+G5jVou7GDSHOIA989hpWYwv6= Tj8M7bkU4AukJIhVl/lzO38+cK9x9US+ecBHn2D5AQVg2OCayUITaFsgkUFZvQAloFx73pYO0kv= MubAvmnkOe/DxzdZ/hwQd/waZNm0ilUvT29nLFFVfw7LPPsnLlSlatWsXExAR1DY385EiSrx9MM= JkvW+wLtqRgX2RnkBLVKVBVEWPO8DPdP0w8kSRWUY2xEHfkrYPIyvJxalGc9AA4FrKURJ76OqJ2= OyJ5CMdM4Yw8iOj8COgh1J6PgVMox8g6JZypp5ChToRnfrz01kGoG7QgKEvHDV0KqqqwYkUt/+O= zb+Wezz/B00+f4qcPH+Hxx3rRNAXLsimVbDwejTvuvIzf/fCVtLTEXqd1W54xYStX61YUlXSuhK= YpOLaDpqqEQz5y+SKpbIFwwEuuYGJaJpr6CjH9JoY0XLJIEqqHkK/six+cgukUDM1IZrMQizhgp= csrBpeDpxqCnUgtUI5DsnOv2JgA5fWp0ldiO5LDsxl2T83ND8IK+EPgD+FU1KKv3kSDYROtqX31= YxUCrwFvW6fxb8+a7Ok3uaJdoz6qUB2S7B2wmU477GhW0Q9JsKxy3JCigGUiF6wEsnS6toZdAsr= vE7IdUOYzGK0zYv6kEEgJ9mAf3ptvw/Offh80vRwPsEQHFUIQDocJh8Ont7FEptmC/96yLNYpym= IWW1NTE9PT0/h8Pvbv38+WLVsW44EWtqOpKvHhUY7/1efJtzThFEtopRIrPv3fCS5rRQsuXWfjz= Nnd+SiVShzv7SWZTJJOpxetLdXV1Yvt3bNnD8Vikenp6cVq4G1NTfgPHaGQiJM6fgw1EMRobMRb= WYkRCl3wZi67FUvcdeeHaGxs5NChQzzxxBOsX78es2SyZctWtm7Zgqqqi1mCjiO59d230tHRwa5= du3jkp4+wvG052VyOYrFIqVTCMAw+8uGPAPCTh37C4SOHaa6qQc6bkqempjA8HnLZLJOTk9TW1D= I8PEw6nWbNmjWcOnVq8TqZpsnMzAw9PT3s3LmTcDhMIBDg4MGD2LZNQ0MDPp+PUqm06NI8fPgwA= O3t7ezdu5eenh76+/vRdZ1isQhAbW0tx48fp6GhgYqKCvr6+iiVyv798fFxBgcHueyyy0gmk2Qy= GRKJBJs3b6aiouKC19HrMXjrjdeQy2bxeLz4fD5qaypxHIlh6LS1tWLPu1vLZSU0AoEA3e1NLG9= rYWQqzdhUEpw+mro3EK6swTZLqNKB44eJhr10tkSoiEXp6qphTU8X+Xwey7QwPBqBQBApJRs3rF= 90d6maQjAQZPmyZjLZLNFw+Lzpzq9EMTT0yiAlJssF+4/OYh+PozaEUHQF0RrBemkCPWPhy5jMl= RykcbZQmpud5V+//i/0rFrJbe++na9/9Svz90S57MaZ97PhMQiHw/j8fjRNnw9MB/XGZhSh4ByN= I69tRigCsbEW/d0dYKgonTHsTBGeH8O4rRPh017V0iClJJ8soGgqiukweXAK8iaZWUnDxgiDT49= Ts7qWUqLIsuvb8dVWIro6cKamEW2dcMNWMHTyU2l0vxfd8FKYLeL162e9K00IoFjCqmtAtS3EXA= rbW4GqA0UbEQoiA95Xf7/awlix4PUz6hCNd1EseaiqquLw4cOk02muvvpqTpw4wcTEBJWVlaRSK= V544QXaOzq4oS3Ew30pHupLk3dAU0C72AFfSlA9lCyF2eQshuEhtvAOsflnuBQaQinXUZLCgFIS= aWVxRh9ChlchAstwhICa7ThTTyHSJxFaEGf8p6iNt4KiIuwizIulxUNXDIRadkXKbD/SU4PwVpX= db68TXVdpb6/ib//uFnbvHuTnPzvOyZPT5PMWgYBO14pa3v72laxaXU8w6HkdWW2nkdKhYc12mt= s6EUCHlGy2y29OQErmsmULkzJv1Q4HAmjz4SCaVi6Nk8tmOBj/8cIWeTOCty9RJAn0YAObugxqo= yWePw53f8EmV4SiKcAxYXYfZAdQqrdA9Nswf3GdyZ2Qn0DMp1yX0w68CF/jG3hY5dNly7OLFmqa= SlvIx7b6Cq6ojtAS8ODTzn0lx1JoqmDTco3+KYd/ftxk51GbxpjCxJzD/iGHa3s0rrysAUbXkLv= /WzhTE9jxaaxTJwj+148hqg4ix/8FzGmklYHZR/G1fZ71QYNv7bJwZAlHwpNHHa5aMR+4FwpjbG= pD/viHOLMJ8g/9EPPwfkKf/jP0hqbzCqUL/R/KD8ajR4+SyWQWA7qTySSVlZXkcjmWLVvG5OQkz= z//PFNTU6TTaaanp+np6SEWiVB3sp+SWSS3dz+KoRPq6kQNBdErXt/sQkpJNpslFApx6tQpRkZG= yjEAIyPohoHP58O2bXK5HLOzs4vFKdMzM9gv78MeHEWtjmFnUuR372H2yDHqrrz8VQcKx3aYicf= L8SAnTuD1lV1mtmMzPDTEvkAAXdfp7OxcHNh8Ph+hUIienh4ee+wxCoXC6XR/IJvN8uKLL2JaFk= NDw7zlpptQFwZlAXV1dazo6uLAgQMkEgka6htQFIV0Or0odBfPpRCEQiHC4XC5HlMmQygUWgysd= xxn0Uo0Nja26FqIRCJUVlbS1NQ0797KUF1VjWEYFAoF6hvqOXL0KKZpEgwGF61ImqZRKBaJRCOE= I2FGR0YX62TZ9qsXX1UUBZ/Xi9fjmW++QFFOfwZA18+qug7Q0lDLllVNTM7MceBwH0OJIskXnqC= irplkqoBZyNDYWE+wNMna1W8hGo1h6DqGrhMMBha3s+Aq9Pl8Z21fCIFhGOUMMpa+N5ZEU7Bjp2= MA5VCGzMceI/Kj96B2VGCPpijcfww1USCQypHKmWBAoZDn4P4DxGJRUuk0k5MTvPXmt3HixAlyu= TxCKFi2w8jIKFXVVQtd46xs2zObqIQN9K0tFP/XS9hvSSJtB+t7x2H/DMZ/WoNoCIJfw+pL4umI= gv7qrjCBwFcVYP0fXLGYAQggNIGiKUTbahg6WUJpiBCIaBRRSXzgM5SmElS977cJN8RIpiSq388= VH78aAaie8rBSfvYuZB0q0LGSqalhHCFRqxUsKfBFDLSAQWVHtOxefVXrvooSaEUKFalXIrr/El= FzI/5kDk3TuPLKK8nlcgwMDLBhwwa6uroWn2+33HILhXyehopK/uf1jShijB/1panyKoSNi8x0F= Aq5fIGxsYUMrzaCweBisUkRXQXTT+IMf2/xDCst7wU9AsJB6/kYiq9sGZJOCcffAFYO/E1loTT6= wOlr461FBJeXJ9bRlZAfxBn5HouB3bU7EJ6t5Qy4NwBFEYRCHrZv7+Saa9opFW1My0bXy+4uTVM= uukzDxRKpa6Oybe05j2jbcbj3vh+QyRfQVIWrVnZz7fLVeHXjtA6SkEnNont+MZ9az5uS4HZJIk= kAarCVnuWVfO6uPN9+0iGVhZsuEwxNQ9GUBMwTyIN/Cm0fRIR7kPYYcvTHyJEfQKgLOfU4MnmoX= G8p0Aze+iX3JaWkVCpRmi926PF45k1tF9FGIfDrKtU+D5dXR9heX0F72IdPPR3/sWApMU3zVV/L= EvYJ7triYWWTzc4jJgeHbWJ+wX+9yeCKDg1d8+Dc+SGU6lpKzz0NAT+hT/4p+ur1COcypB5DTn0= fFB06v4BRcRObohqmI9h5xMZrQE+TQFcFKyvasWUzwfWXISNVlHb+HITAf+fdqDV1r8sX7TgOg4= ODbN68maeeeopkMkkwGCSXyzE0NERVVRXJZBLTNHn55Zfp6upaPF8HX34Z37FBikOjqB4vOA7pg= 4dIHTpKqH35RTzkzo9hGKxft47UyBjFgQkanz2IdmSQ6ne/k9rrt6H6yoPq3NwcDz30EGvWrKGn= p4fcqX4OD42gOBCoroVYjFzfEAP3PUC4qwN/5bmvNzmTfD7PA/ffTzaXJRgM8tH/8tFF0dB7qpf= pmRk8Hg8VFRXnvMNOKMqS/vB8LsfBQ4dwbJvsvItr4Q42dJ3WZcuIRqOsWLGC1tZWhoeHaW9vx+= fz8dxzz1FTU4Oqqvh8Purr6hDAM888w9q1a9E0jb6+PpYtW4bX6yUUCrFv3z48Hg8dHR0MDQ8vC= iSv10tdXR3BYJAVXSsYHh4mGAxSX1+P1+Olo6ODcCjEoUOHFsVULpcjHAoRCjXg9/mprKxkcHCQ= QCBwVnHSV+PMc34+6+KZeL0ebtq6kWQyRdDvo79/iMR0nrHRcaqqa2htaiPqzLD9qitY0bViUQR= dzLbP/P413zkK0OAr/y3XeEVO5ZGmjZMqkvurZzF/3IcqFMLpIkkTPF4vV1xxBc8/9xyKqtDS0s= qWbdv4/ve/z+rVq3nb22+moiLGbe9+Ny88/xzX33ADN+zYgeHxsHXbVvyBALqmsXHTJmLVlei3g= 6z3o1xVj35nJ06hiHZzG+pAEhA4KoiYB+O3V2JMZFHWVSMV4AI1y8onBFRDI5GwGRoF05SoisCx= HXQv1NWoPLPboLrJYfCkYPM2h2MvBBjPG3RndJrikt5DktpWaKhVyWYU6pvAzNpk8w6FkqBQEHS= uEFSEFPSAQWY6h+1IVEND6CqZmTyVXZUX9+JZoUBoPdLbBF1/jqi+CRSNaFTn3e9+9+IgvmnTpn= Pj6hZj8qAp4uFvrmvAlGMsi3kJXISgXJjEzc7OEg6HicVir3jXqUBtfCuy4S2vaHNZ+qqdv8/iK= C4EKB6Uhh2LJke1+4842/54etKl1F4Ptdede/EuYhxwHIlpWpimg6oIDI923vIX5UmgQFHEWZZW= R4LlgK4KHGc+i12UPTay/BFdFdjz9RIBNEWc/8W386LmtK45Lb7K10hhNpNFQZAvlkjl8mUJf2a= duoVfC1n+9yZxydlteGrw1Gxi28pJrl5hz8/MOEPlOZA8iNz/6XJQmizXeRAAs3uRc3vLG1INqH= 0baL5z9yMl6UyGhx95hCPHj+Pz+XjLjTeyqrt7vhZK+QHgOM5iRoNt2zjzM5g1FUG6Qm30RANEP= PrppkmJIyVyPqZlcHiYhx95hJtuuIEVXV3nPW4hBH4DrupUubKz3IFOX+DyOmo4gu+291G44Xby= FmhehWwWND2CjPwWRf8H8OrljmhIweC0zcSc5Peu1zFt+IdHirRV6byldQuKMj+r3HEzvhvftnh= DvF4lr6oqmzdvZm5uju7u7sWUfykldXV1RKNRtm/fjqZp7Nixg5MnT7Fjxw6EEKxpaqH/gU8iEO= h+H0Z1FZlT/Yz+4EGqt12Np+rc98C9FmQyzejf/xPZX+xCFnIgVGb6BwkWTJp+6z0oHoN8Pk9FR= QXj4+N0d3SQPXwUphM4io2Ihf8fe+8dJ9dVH+w/55bpZWdme5e02l31XizZluWKexEYTBzgZ1oI= LSHhfSnml4SEQAKYGl5KXhsbAhiwcQVjjI3BsqrV26rurrb36eWW8/5xZ9eSrYrt2JB59FlJO3P= rufec8z3fCl439sAI1kiCgfWbab7m8jNm3A4EArznPe8hm81y9z33TPk6uXQX115zLRdddBGq6m= gc+/r6sG0n+s80TUZHRtA07cVcOMVBubKqir/+wAdQFIUnnniCjZs2Mr3G0ZZ6PB5qa2rI5XJUV= Tnm3rq6uql3evr06YCjkdF1naqqKiorK51zGiZen5eGhoapd39sbIwFCxZMZQVvaHgxAMIwDGKx= GAAVFRXU1DiLkclUCu1tbViWhdvtxuv10tTUNPV9oVAgk8lQXl5OdXU1UspTFiY+EcMwitnincH= ZSTvhmFpty0bTNaRtF80TAqTEME1s28mrFAj4efM1a6gIbmCjnibeEME0bTQrzbQawZz2VcyePZ= torJyCYaAqygkLm8n+wVTuNsN0HIR0XUMIZWqSFOfTlyRoFUEUVXXKHwDCo4OEzL9toPDjDoQpc= emw1iXxhzVcusLaSy9D1zUUVcXtdpPNZFiydKljVjdNJiYmaGmZQWtbK9K2qb7kEibGx1m2YgVj= Y2OM42gqcmaBgRsqcLl00ukh5LUR8oU8+pwgbleMfCGPz2eS6e9GWxPAtn0Y2T4iQzmqq6vPent= CQCGv8MI2k8ZamyNdCu0tNkf2wqKFAk2DUEjQPkuwZbONV0AkqLB3i8k2qeDxw/Aw9NWDmjeZSA= mO7TXJmYK6aRo7tptU1CqUR3VqV7w84OScn8MkwflMzPoCSS0MiZ3O8waCrgoi3gYmMzi/9Lhxw= 2J/ynEKnpxS37+qigZdQVPPrCGxbZtMJkMmkyESieDz+U6tVRHKGeSWU2n5xblpP/7IMVVKyeBg= gp/9dBeDg3EiUT833zSP5mlRFOXlgRyT9zQpWzpfCbpHDH65q8A7VntI5yVP7ytQH1XYeMRyxkr= V5sq5OhuOmAzEwa3DiukaK6a70E+VfV4IVN3F+FA/cpY9ZTKUxShgKSXzpjUzf3oTWzoOs7RtJp= 7iHDXVdlJSyKXJZrJOup1XUcN1In+cJkkIpB5E1N0Mo1vQcoOn2OjEX6yiHvkl0qsQEGpD1Fx32= oSOm7ZsYdfevbz91lsZHBpi244dTukIy8K0LMKhEL39/UTKymisr6ezq4tkKkVFeTl1sRgHjxxm= N9DY0MDg0BACJzlYKp12fFqqq9mwaRMjo6MEg8FzuHfn5k7fD5yHd6jX5sioTcQj8CiQscEywbI= ha0mmV6ksma7hcQk6h212dFnYNkQDChe1a47qWbzkuK8SQgjKy8spLy8/43aWZbF3714GBtazY8= cObn3LrcSffY7cwBAIUDwePPW1pI/3kD50hJ6f/JymO96B5vvjampJyyKx9wDJbbvR21rgWCdaQ= y1SKAz96jeUv2ktvroawuEw7e3tTqI+w2R8207U2ipEPIkWixCaMZ1g8wza3/8uNL/3lCkJTmgM= NE2bcixvaWlh48aNXHPNNQAcPHTI2awYpRYMBjENg507d9LT28vGjRuZP28efr9/SlAXikI2m2H= 9888jpc2hw4eYO2fulAO5UTA40HGA8fFxIpEIdXV19PT0OG1Q9EOaFLxSqRS6rk+ZyGzbdoSs2l= ri8Thut3vq33Q6jWmaU6vbyWcw6fvjcrmmfJYmBeNJs6Ft2wwODpLNZtE0bUrDWigUpiL2hBC0t= ra+TJt2InsPHHYK0kpBKpUmXzCIlYWoriqnt2+QxoZaBgaGqKmunFrZdx/vI5XNUsgXWLJgDhXl= USZSeVbObyWVcmoH6rpKIBiisrqOeCrHsa07EMKZ3MJF/yJVURGKmAr/VoTgaFcv0jZpaqjD5/U= yFk/gcbtwu134PG6qKiteog04xSuCQKkPIF3FGlWaQIl6sHcPYz/ZhVobBK+KO+zjwvkR9KiKqS= uEwyGn3d1u8rmcU3MQST6Xx+PxYNk2Lk3DMEz04rPxer0opoXX4yWfz01N5qZlotoqLrfbGRsUR= 4sgiwKhqmm49En/JadYuW2dOoji5V1AUFMPf/kXKoqqcZEpnfxVBWfCmtbsxLgIBZavVDEKEkVR= yRec3G4Iga7huNBYjlph8QI3UoJpgCIt3B71pHfyj8WZewIMInn2yL+SNyf9WwXzK6/j4ua/Qin= mTTKkiSIUNKEigcNpg7/dPUK22CyqEFxS4eUzM8uctB+nYXLBAC8mlvxTSclhWZJHHt7LvPnV3L= 5gMYcPjfDDH77AbbctxLIlhYJJXW0Zlm0zMJCgrMxHRUWAo0edqN6mpiguj4un9xU4PlJgX69GZ= UihZ8zCrUNtGcxv0Hj+UJ6n9+ZJFmBps05NmUpVWOV0wY+qorBkxQWsf/Zp5ixbjcfvpOGxbJtk= Jotl21yxeAFCCK5dsRRdVRlLpvDoOj6Pu3hvJp0du9HcPsJlr9SR/PT88Y7bQoPQHKi/Cdl5H5j= nroafwlOBaLod4a06pRAggX0HDtA6cybtra1Ma2qiZfp0fvPMM44WpLWVp555hiWLFrFx82aOHj= vGC9u3M2f2bEZGRwkEAmzesoWZLS3EEwk2b93KnFmz8Pl8bN+5k7raWp7ftIlYcfJ7qQ/DH4sQM= K1GwecXeHXnx7ChYDhDXsGCmqgzsDRXKLz3UjfHR20UAU0VCuXBM61GXh3O5YUSQhAOh1m5cgXl= sRgynabn/gfBspyB0e8j0NRAvn+QhtveTGBaI9K2XtGqxxgeQ5omarQMOV6Ge3ozFAwKx7qxso7= fj8/nY9GiRSAlmfEJGm5dhzvgZ2TbDox8nrwBi7gAACAASURBVJo1F+EKh/DEzt5x/H4/F198Me= FwGI/Hw5uuuoqjR4+iqirz58+nq6uLsfGxomZJp6amhosuuohMNksiEefC1atZtmwZHo+HpUuWU= FZWht/v58ILLySRSCCA5cuWs2jRIjweD7KqAqEqhEIh3G43brfbSWFQVTUlyCSTySnN1GQ9Pbfb= PVXYNxAIoGka6XSaiooKLMuaEvQmtVGmaU4JbW63e0pQyufzBAIBzKL2Rtd1gsHgVHSby+XC5/O= hqqqTwkCIqbp+UsqzOt9PTMTZvG0PlmmAUEilMyye24rLpbPphZ1s2b6LTDaPKiS5gonH7SKby2= JZEtM06Osf4KJVS9nbcRjTyGOaFvlcnmgkRN6w0LftYSKRpKm2ilhFFQcPHSKRSoNQcOsamqqha= irVlTEqYxHiySy5bIpf/eZZgn4fCEEml8PjcrF88TyuvnLtWYUkBChzy3G/ew6Kz40S80KdD21O= BYEvXor0a0i/jurXEVEvil9HVQTN06a9LM/V2dIqvJhEctIsc+ZcWadL2XC+E4amCzT95Gc75TI= Wevn254qUcO21AuUsmprzQSCYEb2Q7uQ2OkaewbIdbaFdLFYupWQkH+e/jj/FiugsFpe14lJ1JA= IDgSElAkm9T+e2Wj9B7fSmtsnACUVRpnIw/akISOCk4ohPZJk+PUYk4mPW7Cruv38XDz20B7/fR= TTqY+OGLnI5E49H4/jxCS64YBpHjoygaQpD7SlqWxsYSVpc1Ormmf15rlvovBhSwtEhk0RW0jls= cuU8NxsPG+zoshhKwlr/6dtKKAorVl3I0796hP3bN7HggstQNUdTZJgmEolZ1C5Pan6tYsTbpGN= 3amKUZ3/3DPOWryFcduZch6+EV5AuUyBcZdDwNsgNIPt/VYzYOkfcEUTDmxHVV3E673wBhIpFBr= PZLD19ffzmmWcQUjJvzhzqamvZsm0bC+fNY3x8nNGxMS5ctYr9+/eTzma5+frrmT59Oh2HDxMr5= pi5dM0afv/881Mrg4rycmKxGLlcjrLwq1M6QghBZZlGRdmL9zGJnNrG+VxToToiqC5TpjZ+o3RB= RVGoq6sjFovh0nWSu/agCGj+q/+PTFcP5sgIoTmz8DU2UHfTdWh+3ysaQISi4G2qR1N1spt3gZH= HHHsegODCOeghR9N3okOzN1KGd9VyBOBvrCebTFJWV+dE/pzDtQT8/inTohCC5uZmGhoaUFWVZc= uWsWTJkqnJRymadq655poX0w+o6lTuouXLl0+d85abb5lSXysnmIRcDV4onmfyXoQQJ2kxJ01wc= OoJcnJCDAaDaJpGsBjBN5lRfXKfE9XnLz3WZGHeye/D4fBJxzhx/xMn37Mlj1swt52KWITxiQmk= tLAsSXVlBbHyGOWREPFEkkI+h2XbRdPVCQKCbTmRcOVR3nnr9YyOjVIoGOTzOTweN7quk81mKRQ= K+Hw+qqqqmdPayPj4GEe7ep2Jr64Wl64Q8AUIl4UJh8tIJOIkUymymSy6yzWVO6eiPHZuyfCEcA= Siz62hmBYf1GLtqaJm+XSd9lwCKc72/Zn2OZvf1+uNEKCdQQj5444pcGt+Vta+g3RhlJ7ETizLK= YckpSRlZfn3gz/mZ73P0uCt5Mvz/pqFZS1MJcFEEnNpvLcxwJygC+00kVqTJnVN0/7khKNJFEXg= 8mgMD6eoqgwyNJRCURwfo5aWctraK/n8vz6FaVrU1YVRFOjoGGb+/GoiUR9/eK6TXqWCgaRGqlP= QP2ZyaMBASqcrtNVozK3XOTxgEPUreF0KK2bo1EdV/G6FM3lTR6Ixrr75Vn75yMPUNs6gsmEGqq= IQCwXJDQxgjDmLU2nb2IaBp74et8ftmKuNAhuefpyCrTJ/0RJcrle5WscJiLGxMek0poLP5zv7q= uqlSBuZG0R23Yfs/pkT4n+maV4o4G9ANL8TpfYm0P2n3d5RxR/nu/fcQyAQIJ/P01BXhwRmtrQw= p72d79x9NxXl5UzE48yfO5c9e/dSVVXF/gMHWL50Kce6uhA4JodCocBfv+999Pb3c/8DD9BYX4+= qKFRUVJBMJnn7rbf+SXaE/w6klFjZLLZhIFwucn399Dz4CI1/cSuucBh9Muv0KyQ/PkHnf9zNwI= 8ewEokkAp4GuuY8cm/o/LKS1DO9H6eMPG/5qq4Eqdk0lw4mcdqUps1mcndNE0myw/IYi0qp885P= kSTfljg+DdNHmtSozYZZDG5sp/MMZXL57FP0Kjpmo7uck05qDomk7zjM1L8fdKMWerzf5rY0mIs= e5wNvXdzbGwzs8qvZGHtO/iXAz/mRz1Pk7MLKCjMCTby5fl/jVCa+fDucco9Gh9sCnFJuQe/ppx= y9nnpIuJPFSklhw4N8/Of7UTXVbJZg2uvm836544yMJCkrMxDQ0OETNognsiQz9nU1IWZM7uKUN= jDb5/txDOjlVWz/FSGVHYfL7Cnx0AIwcwqDbcuWDZN55n9eZJ5m8EJm5E0uHWFRY0ql85249FP3= 365XJZ7v/ctlHycm9/+bqJVTtR2fPNmUvv2Yefz2Ok0ZipF5Y03Epg7F4lkxx+e4MGHH+P2936I= tllzzqm80LlgmibpYk64SV65kATO5GRlkRM7kV3fh+H1YBdOyu8kFEANQu21iIa3oQRm4iTJONN= hnRd1bHyc4729+Lxe6uvqSBQT5IWCQSbicXqLYc+V5eUMDA0xNjZGdXU1oWCQnp4eLNumurKSVD= pNbdFxtX9ggEQySW1NjTN4G8ZUor4SZ8e2LMxUGj0YOLesu+eItCVGOs34phcYe24TalmQqisvJ= dg6A+U0hUJLlCjxPxMpbTJGgsNjzzJuTvCT4RF+evxZDNs8aaHUGqjnb9o+Sle2hlur/Uz366fV= IP25Yds22axBOp3H43Hh9erc/X83MWt2FbNnVxIKebFtSSKRw+vVUVUFXXfq5+XzFkJTcesKihB= YtiRn2I6GUHECljTVSWVhWk4SCbOYmNOlCdy6OKO/l5SS8bFRvvvNr6IV4tx2x19R09SKbVrIXA= 5O0Iwrbje2NPn9Yz/hJw88yrs/9HcsXXHBHyeznIbXTkgCR1ACJ/lVrh8Z3wvpQ2ClQYtAcDYiP= Btc0RfNayWBpMQpeCXlMEqUKPE/CyciSpI2MvxuZBePD23iQOo4OVlAlSo17ggXl8/n+qpV1Psq= 0ZRTa4/+nHnpmNrZOUo47CUSOX0Qxsuj3E48zolm3peXPzpx2zON3ZPbxCcm+K/v/yfdHTu46eY= bmb10Db5AeEoDXcjnGOw+yCM//SEdXUN84G/+F7PmznvVzaCvrZBUokSJEiVKvE5MTrg2EsMyKd= gmihC4VR1VOBmaS4sthzda4WynFFaGjev/wBMPP0jQLVm6bCm1jTNIx8fZueMFDnf2Mmvhcq698= Raqa2pfk2svCUklSpQoUaJEiTcck/6ME+PjbN6wnu1bNpGYGMXl9tDSPoflq1bT1Dwdj8fzmgl3= JSGpRIkSJUqUKPGGZdIXOZvNkEom0XWdQDCIrr/2QRanEpJKnrAlSpQoUaJEiTcEkxGFfn8Avz/= wel8Or24CixIlSpQo8aph2RaFYl6nEiVK/PdTEpJKlChR4g2Ibdvs6zzM1x+8h1QmXRKUSpR4HS= gJSSVKlCjxBiSTz/LYht/ys9/9it9uf37KV6NEiRL/fZSEpBIlSpR4gyGRJDNp9nYdIp3L8MTmZ= zFM4/W+rBIl/sdRctwuUaJEiTcIpmWSNwpOzT8hiAbCuDSdqkg5lrTJFHIIwKW50F6lUgwlSpQ4= PaUUACVKvMZMmkmktEEWozf+RAtmlnjtkFJyeLCbe5/7BZa0mV5eT62/gj1HDrJ6wRK2Hd9Pz8Q= gZf4Qd1x4M9VlFa/3JZco8WdFKQVAiRL/jdi2TT6bYWign/7OIyTGh1FdLrzBMqrrGolWVBEIhl= BVtSQwlQAg6g/TOdLHru4OfC4Pb15+FW+97Fr+9bHvsuXobgAum3MBLs31Ol/pny+2bZNKJVBVF= Z8vUCzPIcnncxhmAb8vgKI4WjzLtkgmJwj4w2il2pJ/lpSeaokSrwHSthns6WbHhmfJp1PUTp9J= y6zZKLKAkBaqlSKb1NFUFa8/8IqqWE86856q1EBJ+PrToswf5K8vfRuff+x7dI30cqD/KCOpCQ7= 0H8OwTOY2tPLOC28i5A1MVak/HwqGycBonELBPOHTycJcAoEE8fL6XFIKpJDO91JMbu5sIZ1/Zf= FHnLirFEhhIyb3AYRwCqGKEwugT24OSCGL1/JizTAhBJGwn7Kg92X3PKmpnaoZhnSuSRGIP6JKW= yaT4jvf/zfCwQjvuO3DeDxepLQ5eGQPnV0HuWLtTXi9/qlt7/mvr/KXb/0Q5bGqMx7Xtm16e3tR= VZXq6mqUV6EwuGEYdHd3Ew6HicVipf7+GnCeQlKxiG0Rp0udouDd1NYv50zfne3cJ573fwZ/TpE= sr+CZSclJlRbf4AOBtG2OHz3MH554CK/Pz+ILVpMb2sfo7vUo0saywTZyKG43Zc2LaJp/OaovdN= 73dWK0k2VZpFIpkskkVVVVaJqGckIF7RMHz1MVozzVsc/0/YnbvZoD85RZ8iReXnPrz20ysG2bX= f0H6Y4PEPWF+crtn2QkMc7x0X6EEHzwsrczs7qJsD9IT2KQJw8+T1vFNJqjNajKuQvYQ6MJPvuN= hzl2fBhbWFNCiUBD2CoKZnFMFwgUEIozCjnVywEFKRVsxUJioaIWpSUB5JHoKFIB4RSdxQJEHgU= FKRSEDQomthBIoSEwkWgIKYrzicCSElvaqKqCUAQg0DWVd69bzU2XL8KlvzhtSSkZSh5gW/d9tF= VfS33ZYjYdu5uxzBGWNd1BdWj2lNbnXJ9Db38XqqKyc+8mRsfeSm1NIyAwTYNCIX9S/5ES0ukEl= mWe/qBFfvnLX/KhD30IXdd59NFHaWtrO+V7bNs2tm1P9a3TaZqllDz++OO85z3voa2tjR/84AdM= nz79nO+1xLlxTkKSlJLx8XH6+ntRVPWkZYOUzjJCiKJULE4QhCRIW2LZlvOwFdXpS+LF723LeSG= EqqAqygnVhou1XCwbiURVFBRFwUaiCpVpzc24XK99mvLXC9POMZB6jkT+6Ot9Ka+Ycu9CKgPLOF= 9BSVoWVt8AhYcfo/D8JtRYFNebb0JftgTF63nDCUtSSizLYqi/h02/fRy37mbJqlUURg/jj9ZQO= 3cNutuPtG0y8SGGD29nonMX+fEhpi2/AXeoAkVVz7mytZO6P0tnZycPPvgg9913H8lkkiuuuII7= 7riDBQsWEA6HT1qxmqbJvn37SCaTNDU1USgUqKmpQUo5td2kwBUMBgGmzA2apjkOxYpCPp8nm83= S3d3NrFmz8Hg8r0obpnJJfr/3SeLpMecekUT9NUyvWYjHFUBVFPxuFz63C5f252OmlEj2Dh3hS3= /4AZZt0V45jc9e/gHC3gCWbbN65mIGMiN88JHP05sYojwQ4TNr30tjpJrz0UFKCUGvm3/88E1UR= AOYSDJ5gwceeZ493cO859a1tDVWY9sWqVSeJ/+wi+e2d+L1qnzg7ZfSOTDO/Y+8wAWzG7hi7QJ+= /NhWDnf1c+GS6dxy5VK+cd+THO6ZQEWgqYJLVrVyzZr5/McPfoNlm3zgtisIhoNMjMX52j2/pnl= aFe+4cTWmafNfD2+kdzjJHW9Zzdbth/n183un3j3TtjDtlwrPYNkFtnX9nPWHfkL/eDdzaq/mV7= v+DcsyGE0O8OYlXyXkPbOG50QKhTy79mxmycLVtMyYzcYtz3DjtbejKK/8Pdu7dy8jIyNkMhnuv= fde7rzzTvx+/wnPRlIoFFi/fj3f+973OH78OCtXruS9730vM2bMOMmcJ6VkbGyML37xi4yOjtLd= 3c34+PgrvsYSL+echaRDhw+ya99ufAEfUkrSyTQjw6PEEwkURRCLRSmvLHcEFwS2lGQzWUZHRhk= aHAKgqqaaqupKdF3Dtm0S8QSD/UMkEgk8Xi/1DXWEy0IoioJRMBgdGWNwYJBCwSAai1BTW4PL7S= KfzlFRXk40Gj3LdYNtS0xTIiVomkDTnJfdspzPwflcUSYnA2cfAEURL5uHpXT2tW2JpoliCvWT2= 8o0JZb1ovLjRBTFOZ+qnrnTGVaKfcPf4+jYT0GCLRUKBQ0hJLpuIaWCZekoioWqmkjbhW0rKKqF= ohQ4Fy3USQLp5GeT9/GS30/12bnOT4tqPk1FYNn5iUhSYo2Nkf7Y/8ba34E2ZzbmvgOYf/sJvP/= /J3BffzXiDRbdUygUGOjv4+COTeTyOZavuRLFTFMz+yJ8ofKTnLW9wQjhykZGu6bTu+O3dO/4De= WzLwXNQ0XF2R1yHR+JPE899RQPP/ww/f39U6vI4eFhvvOd73DBBRfwzne+k3A4fNI17ty5k5aWF= h566CFisRiGYaDrOlJKotEo2WyWnTt3smzZMtLpNJqmkclkaGtrw+VyEY1GWb9+PYZhYBgGbW1t= r1obpvMpntv3NFI6K+mjAwdxaW6uWnwTVy1+C2PpAgd6h4gG/cyuq8Sta38WgpIiFK5pu4iNx/e= woXMHnWO9PHN0K2sblxQFU8HD+35Hf3KEgMvLFS0rWVjbhnYeWhJw+q4v4GJGQzmGbXLg2BB5S5= LNGwR1nZl15USDXnYf6qKhupK3XruSjmODSAQzGyrwenRciqQ85qelqZLqaIBj3dBUXUZbYy01s= TDjySwL2hvp6Rtmx54urr9kAQCq5qayPERVLEyfsBAauBWFxooy8oaJWxeowibg1jhwtJeKiIuL= l88hl7fYf7gP5RTPWVE0WquuYDwzTHv1pYxluskaEttWGEuNYVj5c24b27YZGRuku+coK5atxeP= 28u27P89Fq66iPFZ52v3OVd9/++2386Mf/Yhdu3bx4x//mOuvv57ly5dPCT+FQoEHH3yQO++8k2= PHjiGlZMOGDaxfv55vfOMbLFy4EE3Tpvr+97//ffbs2YMQgiuvvJIZM2ac872WOHfOWUiSElRNR= 9N0+vsH2PiH5/G4PDQ0NGBZFts3b0N161x6xaX4fT4y6SxHDx7BrbtpqmskHA5z9NhR9o+OMn/B= POITcfbu2suCeQuY1tCMruts2ryJaS3TqKqpoq+nn9GhEebOmYuu6wwODrJn5x7mLZo3ld3pTIO= jbduMjZls2jTC7l1x8llBU7ObSy6tQncpbHxunI6ONJaUtLeFWH1hiKpqN6Yp2bJpFFSbJUuieN= z61Goml5N0H8/ywpZRerrytM/2sWR5jKpKN6oqEEJimiYbnh/j6adTmKbltJ9iACqqreL1qDTPU= LlkbTVVVW7OaJaWk9o2jcNHm9i1txZNlcyfM0LQX8tEvBXdlaGyfCe6uBBkDFv0oXoeQ1EHAMib= OoMTIWojE2iqhW0r2Ag0xTrxNGTyLlJ5D7pqEfZmyBQ8mLZC2Jue8jGIZ7xIBGXeTLH9z+Xt+eO= QQOHJp7G2bsP3za+gX3gBcnSUzD//O7n7foTrirWIE1ZhrzeWZTE0NMjoYD8jvceJVFQTDPmIxJ= rxBCIgTjYZCSHQXV7KmxdgmwX69jxDdrSLrmGD8KpVuNzus07+hUKBzZs3EQgEmDVrFoODgzQ1N= XH8+HFaWlrYunUrN954I6FQ6GXHMk0TRVHo7e0lEAiQSCRQFIX+/n6WLFmC2+1my5YttLS0cPTo= UVauXMnTTz/NunXrOHLkCMFgkM7OTlpbW1/1iFi35ua65W9GSPjyw58lZ2TZdmQDa+ddxbSKesa= SafrG4zTGwrj10w9htm2TSCSmqosbhoHf76dQKKCqKqZp4nK5UFUVy7LIZrOEQiFyuRy6rmOaJp= qmkUwmiUQi5PN5CoUCXq8Xv9//qghnEknGzNOZHiZt5HnzkquZWd7EcGoMy7aQvOhv49Fc3DL3U= mrDVbTXz+RwZpiwmaYlUI16Hv4tAsdCdrx/hPsfeY6sCWPxLCG/Gwn0jIzxHz94iqsums/Vaxbh= 93lJZfMnv8PCWURWRYPMqI9RHvI544QiqCoPc9t1y9i8/Qi/eHIbyXRxvEBO1eVyrqL4/0lrXfH= Qlm1j2iYet5fFc6dRU17GQ/YW1FNocxShMq18GQ3R+YDCHw79AKPgwpIWBUPBsAxMazK/lESIoq= b2FEs2yzJ5Ycd6vF4/E/FRdE3H7faybefzXH7JDc420n6JUCQRpzAHn4rKykre97738fGPf5ze3= l6++tWv8sUvfpGGhgYMw+Dhhx/mU5/6FF1dXVMmPdu22bx5Mx/72Me46667WLhwIQAvvPAC9913= H6lUiurqau644w5CodBZr+G/A4nTTgKB+mewgDkPnyTHZjw2MsYjDzzEupvXccsttxAOh7Esi97= eXu75/j08/MDD3HLrLYyOjlIWLmPdLet49NFH8fv9vO+97+M//uObdHV2cfDAQYycgaZqbNy4kZ= tuuom/ePtf8OP7f4yiKfR293DLzbfwi1/8AiEEM2fOZOaMFvqO91JVWXVGy42UkmTC4Nvf6eGBn= x0nEvHi8Wg8+ugQ9/+sn1h5iH07xymv9COF5Gc/HWT5Sh//8i9z8XkVfv2rJIc6h7nrrjJqqh3N= 0fHuHI89MsRjjw0ST2YIBwM8+EAfVbVd3LKumauvqaS8XMU0YcPzE3z3OyPMW+gl4BNIkUVKDSl= VMgnJ0XsmuPqGCT7/L3MIBM7wCCY1PQh6ByrZf7gBtwbRsgoa6prI5doxrBS53AQez1K8ei15+z= CG9VuE4uzeP1HO7/e3c8XcndgIxpNBhhMBWmsGUFULRUiGE0EMWyOR9RAJZEm4M3SOVBL2ZvG6s= uiajVszODRQQyyYJNzQ9dp6hRVNufaBg+hz5+JauQwRDIDHjX7hBeS/9T3IZMDne8OY3PL5PIcP= duBVFSzDpKZhGh5vCFXoWIUC0rJQXS6kbWPncihF85RtGIQqWxgL7iU9fAzLiDE82E9dY/Mpz3O= ik7auu/D5fDQ1NVNWVsaTTz7JihUryGazXHDBBRw7doxwODxlugZwuVwsWLCARCLBNddcQzKZxO= 12YxgG6XQan89HNpvlyiuvxOVykUwmWbhwIbquU11dTX19PdFolH379rF27Voikcgrcjp/KY6zr= sCtexDyRe1uJp8mnUtQE1Vw6ypqMY+QYVnop/HZKBQK/OY3vyGdzmDbFtFoDE1TyWSyeL1eNE3F= 7XYTj8fx+fxs27aNFSuWc+BAB7NmzaKzs5P29nYeffQx1q27mf7+AXbv3sWCBQu47LLLcLvdr/y= GJaSMHP/e8RgbRw4R1L28reEC7pi9hr19BxFCQWIjhGBF4zxaq6bzrWO/5Vu7f0TGyvO2hpV8et= ZNqOeRF1jg+GbPbK7jb+54E6l0nm/95FlyeRMJRIJerlg9n1kzGhBFE/KkvkQUfQIFCi5d5aYrl= /Cmi+cR9jmuD7aAVCbHviMDdPaNYwFKUZCVk3+kABSELHq5ihO0MQK8XjdLZjfw2+cP8fW7f8Os= mTWkkhlqa2KnvB9FUdGFFyklfr0Sy/JSsPKMJuP8fv9PkQgMq4CUNmX+KubVX0xdpAVdO/n5pTM= ptu/cQDBYxradzyMAj9vD7/7wOCuWXoKqaiSTExhGHikdITmdTiEl6PrZ3wVN01i3bh0PPPAAv/= vd73jiiSeora3lrW99K1u3buUrX/kKXV1dqKrKokWLWLhwIU899RRdXV2sX7+ej3zkI3ziE58gE= AjwxS9+kYMHD6KqKnfccQeLFi06dR+wLPqzCQzbxqWqxFw+fJr+mmlfpZSM5jNsHOthWbSOSveL= iwnTthkrZBjPZ/GoGlWeAG5NP9laISWGtNGEckrN4evBeTlum6bFtq3bmD93PjfccAO9vb3k83l= M0ySTyfDuO97Nx/72b+k6egwQrFy6klwux3333Ud5eTlXX3MNy1es5PEnHselu3nbW97GI488Qj= KZxDRNIpEIFRWVDA+P0NjYyMjICJFIhOuvv56vf/3rXH/99WzbuZ3yWDkviaV4GR2Hstx73yDXX= zOdD36oAo9X0NGR4yMf3MPuPRP8y+dncPnaKJYFjz4+zL994TBrLopz3Q1RMobC8JCHQs4xq+3Y= meIzn9rHyJDBtTdUcd0Ns6ms0OjuzvPz+3v58pcO8swzw/zDP7VSWaFj2BaxmMUXvtBCXa2byfA= PKQXJpMU//EM3Tz81ysTfG2cUkiY1OELYVJXnuHptr5O/Qbpwuw7jLe/BsBRMe5hsYT2GzGFYNq= qrgOYC01bY01mHoqjs7m7CsgUNleMk8152djXi1gws20UoVKB7KEjUn6Jv1MOBVC1V5QWSOUFHX= y3RUJZCQSB0hTKZflUFJGnb2INDWMkkAEowiBqLIXQNz4f/CpnLYSUS2EeOIdxu7EIBTBMsRxNm= Z3NYQ0MInw81FgUhsBNJ7OERbNNEqApKNIpaFkIoqmPGSWeRSIQtQdqOWVRVEIqG8LgR2vlP+tl= 0itGhASrKwkgkoUiEzN4Ojn3/HqJXXEV85y6qr7qCzMFDZI91oURD+Ge1M/jQL8Drxf+m5RSMCX= xldezfu/uUQtKko7ZhWgxPpLEtm5r6ZhrqqgkGAtTU1FBTU8PMmTOprqlhRms76YIkPjRBLOzD7= 3WjqiotLS2YponH45lS9Z+t3EUul+OGG25A13UikQgXXHCB40tY1AycbX/LslCKfoXnixDgcwcI= eMMYlk0mbzp1zXoGiQR81MfCBL2elw2qlmUxODhIPJ5wNHe6i1mzZnH48CHGxsZwuVzk8zn27z/= A/PnzOXCgg5kzZ9Le3kYymWD9+vVUVlayd+8eLrtsLSMjoxw9eoy6uvqi4PDKEUJQ5vKzpnwWj/= du51BigIlChuWR6QTcfkfrU/TFCbh87En28sOu9fRnx5kRrOKqqgXnbXJzkCQSaXZ09JDNmOTTB= dAVJArl4Qi3XrcSYUte2HGYLxOmEQAAIABJREFUsbEU3sBLhQAb07TYfeg4Pf2jzGupY2G7D4lk= YGiMe372LNgKM5srqYyFimfE8f3GBmyksLFw+p9d/FEUgd/l4u3Xr2HB7BaefGYbm3YcwbBh0dz= Tm5MmJ+KG6Bx0rZxUbpBktoDPXU7X6H52dv2evJlHUzT+0PEY65Z9hAWNF+PRvc61ScmhI3uprW= ni5uv+Eo/HCwhsy+S7936RPfteoG3mPIZHBti99wXaW+dTKOT5xWP30dYyj4A/eNYWF0JQWVnJp= z/9aQ4ePEhfXx/f/e53+clPfkI2myVZHAPb2tr45je/SUtLCz//+c+58847GR4eZtOmTbzrXe9C= 13Xi8TiFQoFly5bxvve9D6/35VF/TktLnh3pJqDq2Ei8qs6aiia8mk7OMkFKPJqOlJAraty8qiN= E5UwDCbhVDYkkaxloQsWralhSYtgWlrRxKSqKEGQtEwGoQiFpG8SNPF5Fw6e7QEq2j/fTlU3Q7o= +xcaKbteVN1KshMqYTLOBVdTJmgacHj7K6ookyl8ex4NgWLkXFpWqvS8jWeQhJEiOfZ6Cvn0998= lP89Kc/JR6PEwqF6OjoYN68eaxdu5YrrrySHXt3MH36DAqFAsFgkMbGxqInPxTyeTRVQ9d02tra= WLduHRs3buTzn/8806Y1I4GW9pmYhiM0BYNBJiYmMAwDkLh0vag8OPOgfOxYEsuwWH2Rh6YmD6o= Kfp9K+8wKDh7LcMVlMWqr3UgpWb6kDJcWYPfeJFdfG5kyL0pgfLzA5/91N3298I1vLWDJUj9ul0= BRLGpqQsyfH2D1byr4zCeO8IN7+/jghxqQKKi6j0jEjcej0t1bIJdzLnlkyKC/J0N9vYLPd/YJQ= xS1AB1HNDZuqkYoMGeWQSjUglGYj6RALPoLIuG34taC5M1uEtbWqf1ba/uIhQ4xkvDh1iSKarOo= KUW64ELYgrJghoF4mEVNo3hcBcfnSiqksj4qQgki/gS6ZuFz5xlPBaiJOA61QhR9riad+E93/Wd= 7qwsGyb/6G+xtO0FIlPJy3B/9AJ5bb0Hx+8ne+1/k7/4BcngE4XIh3W7UyYndtjFe2E72w3+Pun= gBvi99DiUUwvzRz0j/211Iy3KEpOZG3P/7Y7gvX4vM5TB+8ShmIoliS4hFwbSQ2SxKNIr7yrWI8= PlFmkkpSSYTxMfGiYWCzn0ogkhrK6MIfDOmk+k8Qqazk3zXUZo/9jccuvNOXOUVyJEJhD2KW19D= XmaQQtKxdw+Xv+m6U16DZUv2d43y+MZjaIqgItqGJxYhnx0jFArh8Xjw+EJkbC8zllzFz589QiJ= TYGZDGTdf2ArS4tFHH8UwDEKhECtXrjwpisayLNSi83gymSQUCmEYBrlcjo6ODqLRKHPmzEHTNI= 4dO0Y+nycSiVBWVoaiKFiWRSaTwTRNVFXF5XKRSqU4dOgQCxYsoLy8/JzbdRKP7mFl24WEfTF6R= uPEs1nHlC2guixIwO12XsOXCGqKolBbW0c0GiMej2OaBqOjIwwMDFJdXY1hFPD6fAQCAcLhEEuW= LCYUCrFz5y7mz5/HqlWrCIdDNDU14fV6KSsLU1Nbg9/vPyly8KWczypdSomuqNzasIK8ZXBv57P= ksRkpJKkQTi4kGzk1+YwWJihz+5gVquWDLVewMNI0dZxzPa8T0QbH+kb4wYMbMSXY0qIiGgQk/c= MjpDJ5GqqjbO3oJlHI48U1Zf4v/oVp2WzcfoRNO4+gKpIF7dMQCGoqI7z5imVUxELU1cYIeF3FY= cIZVKVto+squuZibDyFZVoYpkkqk8Wlq7hcOkGvlxVzpzOtNsLn/s/jHO0dO6d7qww3sbT5Wp7Y= 9WOSWZN9Pbu5YfG7GE3G2dezlZy0yOR6+Mnz3yTojtFWuwhVUZFSMhEf5+JVVxGLVk4J81JK1t3= wTjoO7SYULOMtN72bp373ML977lcoimDOrMVcetF1aNq5mZyFEFx00UV87GMf45/+6Z9IJBJks9= mp72OxGJ/73OemtLe33347XV1d3HXXXeRyuZOcsxsaGvjSl75EXV3daZ+9S1GJuX3UeALEdA/PD= HeSsy2OTIxzLDWOic3sUAV5y2SikGMgn2JNRTNxI8/h5CiGtGkNxihYFofTY/TnU7y1fg6j+QxP= Dh4h6vJxSUUz+5PDCAkJM8/SaC0Fy2LDSDcTRo7V5Y00esPsig9xbc1Myt0+Kj1+PKrGRD7LsyN= d9OVSrK1owrBtNo/3kZcWayunsXWsH0taSEVhdayBqMt7Tu38anLOQpIEbOlEmvn9fvr6+rjsss= swDINDhw5x+eWXU1lZSaQsgrRs/D4f69c/R2trK42NjbS3tzMyPMITv/41i5ctpvPYMZ599lkWL= 15Mb28v3/72t+nq7uahRx+ipraa7Vu3s2bNGgYHB7n77ru57bbb2Ld/P83TpxcnybOEJtsCTdHx= em2EcGZzVZW41BwuYaJrkw7XApcOmpLDKNg4xi0LgQ1SYWw8z/7dJqtXz2DhQj+q4pjfLEsBbFw= uwaoLwkyb4edAR55s1kaRCkLkKeQN/vHO57j/p+OYpg8FgWkqeHw+vvDlOfj959D8xdu0LYFhaA= jVxpYCiQq4nCQMUkHT3Lh0P6btBquYL0Qq5AsafSNhptcO4tWN4mD64qGlhIrQ+NQznjpt8Zeq8= Dh2cdvayCiH+2sIebPoqvEy+UgUP5CAIuS5BbNJG6N/AO+lF+P66AfIfu1bZP/P/0Vdvgzjl0+S= +8JduN71l7jffCNWdze5f/8aTMSRpgUFA/OZ32Md7cI2TazjvSizg8iJONLjIfjD/0RoGtmvfoP= cP38Bvb0VpbEB17ob0RAI05gSRCTCcQR36ciXagkUBXEWDUg+l2dsbIT2thakLcmmM+QNQT6dJr= lrO3o0gvD7yUwkGHjySbIjY8SiEdx1NUjTojAyjLc6zGgyRWI8fhodqaRgWOzpHGF4IoNbV+gaL= PDwhuOsmlPF6stvIhSLoFVZfO2hfXjcKlURL6YpOdg9zkg8Q8Sv0dvby8jICM3NzXz961+f8sNp= ampiaGgIwzCora1lZGQEVVVRVZVIJMLAwAC6rpNIJFi1ahWJRILdu3ejKAqZTIaGhgb6+vro6uo= iFArh9XqJRqOMjo4CMGfOnHN4IU5GVTTWzr2Zec1Xsb8/zmgyjWU5mpVcwURVBHkjSzqX5KXeIi= BZuWZpMYCiGGyhqsxdPMvRONo2iqJw4dqVCCFYtHI+ilCYs9gJzW5fMBMhBB//9MfQdI3m1gaWr= FqIqqrEc+OQO/lsAkfj5fP4UcTZF0C2tOmbOMD6Yz/EsgvMKVvAkxf9HcNGntFcEsNKO3dRHHcV= RaHdV8vjqz+Olzy7ex7ngW0/RlddXNn+YSK+2rOnbBCTY7lgXksjn/3ozeQMm0d/vYmekSS2FCS= zBt/7wa/4+w+u46YrV3L4yCiGbTgmcFtii6LJzHba0LQNLNvAwtGWB31uFsxuoDJahkCQNUxsIT= nem+TOrzxAwC24+U1LqanysX1XH5/6ygPYCLp7h1m5pI1MLsc/ff0hJjIWtq3SPTDBuQwmQgg0R= eMtKz5IJm+w8chT7OvfQ7jj16yeeSMdvQfJFJw2PT4yyLP7f019rIWQtwwhBJdefA2GaZAv5Kae= p6JqTGtqpbmxFSEEM6a109TQgmEU0HXXVHj+uQqojkZT5/3vfz/JZJKvfe1rJJNJhBDU1NTwzW9= +kze96U1Tfn5er5dPfepTaJrG1772NTKZDFJKGhsb+cY3vsGKFSvOqp2V0qYjPkxBWtT7wijA08= PHuK56JuOFLM+PHsevaLSHKpgVrkAXKs+NHmJlpI6cZbA/Psxl1dNpD1fw0569dGfizAxEiXn8X= F45nbF8hpxlcl1NKwkjjxQQdnlYHKoiYxlsjQ/gU3U8mkZQdyMQhF1eR/DXXLypeiY744McSk+w= tKyGpmCUK6pa6M5MkLTyLC+r5fcj3Qxkk5TpL9cYv9aclyZJd+n4/D62bt3KunXrePzxx5k1axb= Lly/n/vvv55ZbbmHT5k1UVldRUVVBYiLOXV+5i2nTp5NKp/nHz/4jM9pbqKipwBvwsHXrFrq6u1= i5ciW/fvLX7N6zm1UXX0g4GqJ1dhv33HcvK5YtZ+myZazfsB6EYO7CuRSy+WJvF6ftO5P27xMRS= MJlCeYtUPF6XvJiyROdah11MIC0wbAF6zeM89GPDqMqhpPXo5jrQAL5tMb+AzYrVmpFDZSNxERR= JW+9bR5XXuUCbAQKmazJA7/o4zP/ew/Tm+ayclX0jN3fGeCLJo3J3CUSNEVFKsqLEXRCODlFFDH= VLAVDZ/vBFnzhLEOpKE3lg0xkA7gUi4KpEPBlGUsGcakmPneBeM5H0J0la7jIGRp+V45YME3veI= yIL4W0FZJ5L4MTJv0TIXxui2TOTZkvRTrnwa0VAIWC5WJaRT+xUOKcQz+E24NaV4u+cAHWnv3Y+= zsofPc/0f/iNrz/66PYBzrQ5s/D++//TOaDf0f+t8/iuuoyzA2b0W6+FnvfAayt29BmtgCOH4Ra= W41SVYn7fe8m894PYezYjae5CeH1YvX1Y+7ZhxKLYQ8NI/J5pM+HUlmJHBzEtiXCaWrcixcgqs4= cRqyoKsnxOAjVCW443kX9gmXM+Pu/Q3j9yHweX0M9lWsuJtXZRfW3vwWWTaBlJorPQ3/HelyxOg= 49twvtNI7QEkhnCxw8PsZEKo9hOmHRQZ/Ovq4xCqZFLDTBrmMjaJogmzfpHEjh1hUKlk3nQJyy6= TFmzpzJ1VdfzaZNm3C73dTW1mJZFsePH8flclFdXc3w8DCqqlJeXk4sFpsyrTU2NqIoCj09PezZ= s2cqck5VVQYHB9E0jba2NqLRKLZtc+TIEYQQU9qX80VKm6FkmrHUMPOb25DVMbpHxukeHieTL9A= 5PEY8eYCHNv2QgnnukUyvBZqqc9Xim7h8wbW4tLP7qChCIeypQsFF99heekY7yBbiLJr2dnKamw= nS2NLR2EjppFlxqzoaBn84dDdHh7ciEcyuuZCA+9T+Oqcik7M43DdERThEMOBFLxTwel0UTIP+3= hEyBYNjIzl++NAGrlmziFlzatmy6wjH+kbpHRzDkgajE2m6ekeYmEgjLZXBkSyHj/czMZ7AlJKO= zn76h+OAgmVbKKYkZ9gcH06h6QoHe8eZ0zaDvYfH2HNsGEUKYmUeWhqjHO0Z5EB/mrHxnDPOSlB= V5ZyGEiEEHt3HHZd8nHXL3zMV3WaYBlXhmRzs2wdSYgjY2bWLqxYME/SEEUIwER/jG9/5LAC65s= KWNrFoJTddezs11Q2Oz5Vts/fANh589F4+8v5/IBatPG//nsn+8PGPf5xLLrmELVu2UFFRwdq1a= 6mvrz+pn0xu+5nPfIabb76Z5557Dtu2ufTSS6eCJs56fiFwaxrjuRxN3hCWlMRzGTJGgbDu4aqq= GWQtk2dGOjHHbK6tnsloPkvGNCjT3awor+dwapy+TJzu1BizA+VM1hZUhKA3l6TM5UVRFCJuL2n= LmBIcdcURMRQhMIppHJJWnp8f30uNN8jccCUvjPcznEsT8/icbYvzXX8mQd40yJgGF8TqqfYGX5= dI1nMWkkzDqWnSPmsW93z/+3z5S1/ik5/8JG63u5jGPcUzv3uG7Tu38+a3vYVEIkGsohxF0/h/7= b15nFxXeef9PeeutXf1vqm71WpJrX21ZFu2MUJe8IIBGYc1IcOYDAPJTFjC8iF5GeYlLwmvZ4BM= 8gnkhYSMGQI2dhwTBxnwbstClmxZkrVLrVar1Wt1d+11t/P+Ud1tCctS29gszv1+Pq1uVd2qOnX= q1r2/+5zn+T2DQ2dAwKIli0km42RGxwDo7lnA6MgYO5/bRTQaZc26NQSey8ToOLZp07Ooh4NHDu= L7Pul0mrq6WnKTU3iuX10Sm5YN50egkNOB6iqWrfOf/nAxtXUxYjHtnG1BR8xMhxKgqvcLUX0FT= frEIimEDFDCn63IUAo0JJqWnX7MjBFbBMPQuWRjw/QHO2P6B3YcHv7JGAcPlLn0MuYUcVFCgaye= uEFDoQiU/2LIPwgIfB/P9xCzRoAK23YwNA8ldY6caUEpjUS0TKGg0VY7yYHTHVQqGrWxMr6UTBU= iNKemOJOLk5Mm+XKMsm/h+ToddaOcztSg/Gq11sBYCiU1ihWThkSOo2caMDVJLO6TLUWoS2TnGE= 1SVPbuI/irv8XbsRN90QIC34NiGXPL1fgvHKJw+8cwNq7H+uwn0ee14Ty9A627i2BgAGvr23BzB= bynf4759ptmUkyr+4aUaMkEwjTxR0dBqeoynG2jze9CxGOIZLJaMRkECDuCithIVPUDDgKwLx7i= jUaj+J5DX18f8VQNo2dOUtm4iYZLL539Ys9MRbStbTYKF21vp5zLoI/UoCVaeH7X33H1dTed/2C= gquatGxY3sXpBw6xnke9XP/u6lE0sYtHRVIPj+ahpYQOga4Jk1MQwTa6++upZMVQul2f3IU3Tzu= lZ5HkeiUQCKSXZbBbLsrBte/Z1r732WiKRCPl8nmQyyeTkJNFoFF3X0fWqzceGDRtwXZdoNDrru= zRXDM0gHa/jxJknMbUplra3UxOvZXFrI34QcGpsEs8PWNm1jvnNC1Bq2nNNSJiuCpuZaIVCCjH7= 7Zyd0tnqMQnTvxXVaKsKXkxWnjneSCmnl51mnvvFmJ+QklQ0ja7NbelFqYCIGeeSzrfjeiUyhUF= GCycIAhfJtB3JtLFidfvq0azi5smVR4mYKZpTC9jU/Z7qkhEBYg6uSZmpIt/47oOYwkAFIKQiX3= RRQcD/uf9JfKEwdI1dz/dz6Pggngsl1+E7dz2CFwhsy+RQ3yj93/0pZdcjFjV59kA/R44NkCtWL= yK//f3HcBwXX0HU1nBLknTEnF6Kljz21At4gaJSdqlPmDgu+K7H/dt2UfICJIKaqIYQGgSCkuuf= 49B9IYQQmLpJQ/LFCxvHc5jfsJz9/cdm5/NMZpLBzCAddfPRNR3XdYnH4vzOOz9MuqYe13V45Ik= H+Ndt3+f33//HVSuMUoFHn3gAe7rq7S1vuhkpX51fVyQS4aqrruKqq646Z+znQ9d1Vq1axapVqy= 667dmo6dyhJjtOsx1n1+QZNta2ETUtdK26FCeFIOdWuLF5IY+N9ZN1K8QNA12T1NkxKoHH9swpr= mmYz7BTxFMBTuBTCXz8IKDVTrAjM8DieC2WZgAKx68KIjfwcAKfOjNCxfcZKGVptePETIt50RQ7= JgeJaQbz4zXkfJdABTiBR96r0BRJcMYpkjRtYrqJ9Zuek5SdyvIP3/oHFvQsYN3G9Xzpz7/EW69= /K729vbiuy65du3jksUfZdOUV/PD7dzM8NIxt26Rr0nieR7lcBsFscpoQglg0itR0lApIJJKMjY= 7iuA5QrVior6vDcR18z6PiODiOAwp6e3t57++894LjlcInEvGJRvXZ0lVd11ixqqG6/Db7jVPYU= YgnHQQumgappMAwPBAKQYBtVHjrjXE+9/lOdOOlVvdTWZ/yZw7gT1v9SxmQTASYZtU8c2ZZr3qf= Ip3WiUV8vDl4eFSrfRQ93VmkHEUTiuamCvF4kYoxBvjEYv1ky/9MvhLB8zNIawoAU3e5csULCOH= jeSaJaBHH15CiKh8TkRIbFxzC0AKkDCg7JobuEjErtNWOIoXCNAIKFRNT94hZFeJ2AcvwyRVtep= p9yp6BZThEDIfWmnGEBM/TSUXzc9qvZggmJ6k89ChidJTo5z8NlgVSEgwPo3d3YVy2Abl2FTgOQ= T6PTKdxf/Yo/vAY3j33EwyeIejXqlGhs645hVIoz0epABmJohwH/7nnUX5QzUWyTBCSYHQM0daM= 1tCAPq/9HHF3sS+mEIJEMkltQwO7nt7O2975TnJTGXY99lOuvP4W4qmac8v/Z/5QCtcpkRk8TKS= xk6d27iIzOsbKNete5pUU5VyGY7u2EQQBqWSSyy67nLGxMR578jHSNTU0Njby5je/meGREf7tgX= 8jnU5jWhbDQ0N0XXstgqoPkmmaJJNJkskkhUIBpRTxeHx2nLlcDtM0Zw1bZ0rez77KjUarV37pd= BrgHD+mGc5321xprevkYzd+llNjJ9i2+5/Z9uw/c+P6W0lEa2ivq2FoMkfMtojaMcbzQ1i6zVD2= DE2pZopOgVKlRDKaouyUmCpNEDVjWLqFrptoUkMKSb6UI1ucpKOxm0xulIgVw/UcPL+atFqqFEn= Hqn5sZbdEV1MPg+OnyJWmSMfrmCxksM0IqWgt+WKWdKzuAhduLxIoj7HCXjLFw0hhcmn3jShlky= mcnhXQgQpQKsCbtgKYWU7UhMa6jpuJmkmELDJSfJrhQkB9bDm10cVIcWGhpIQila7FLytct0Kqx= iKW8qhUXFLJGIGviEcrGNKi5FawTMnEVIGmlka8wCWe15FSR0hBvWETBD4+PoamqBEGE+N56uqT= DAyOEHiCeCJGtMmiUqwQjxooNIoVl8xEFiE9FiyYT3ZiioipY+qSQwMZ6tJJLFthW1FcJ6B/cGx= uF1wvgy51mlLt+IGJN+2OXVCK0ezErGgC0HSdSCRGLJZAKcX8rsUcPrpvWkwHnBo4jm3HePNVN/= PAtu+zcf3VJBM1r2pMM87aMyatwLTPnjd9vjr39HwhUTRTSPCLlaaVwEdHUnAd1qZbcIKAU8Upr= m/u4fnsMOniFCtSTUw4ZYbLeVrsOPPjaWxNZ/d0hGdxop5F8VoOZsdotmLkvAoTlRJ1uo0b+CyI= pxks5Xhq7BTtkSRt0SQRIfFVQNatkJQGtmZwfXMPz00OMVTMYU/nSq2Qkp2Z07RGEriBjyYkbVa= cg9lRNtS2M1Qp8PPxAeZFUyyvaYJXVaTwyzFnkVSpVOjvO0nfiRNc/ZbNrFi5nF17dvP4U09MH2= ATrFqzmkcffphndj6D7/l0dXVx69ZbGRoawrZtHn/8cY4dPQZUP8wrr7yS5cuXUywWOX36NLlcj= oGBAQBisRhvuuoqcrkc8Xic/fv38/TTTwNVv4mLVdMsXGhz++21LF+Wml3DrAqWmR1t5reirdXi= jz/ejmUoIhHJzW9roKXFI5kE35e873ejXHddE7GYmDaYPHdn1TSN2z80jxPHh4nFBGvXRJnfZVC= bfmnulBCCRQtj/PGnWujtnUOTSlEVXcuXHGPZ4pNA9f9QzTkChZQeSh2cjocFSOkiBBi6T2vtyy= Q8qmrArO1l7k9Gymf9XZz92zbcl9w2QyJSfsltc0II7Ms2or39Rkp/+n/j7z+A+Y6bkWtWUfnWP= 6ItXUzkv30OVXFw7rqXIJfHfsvVlP+vP8dYuxrjzVchMxNU7vsR3v6Ds0miSgUElQrekaOARO9d= OF0qFYVAVSNuUkIQIOvrwbSQpkk1Q0m+ooNyJBpj/aWXs+eZHezZs4d1a9dw4uBefv7og6y5/M2= kauvOcdIOggC3UmJqbAA72cCxvkG23Xcf8xf30tE1/2WmqZpcvee551izZg2+73PHHf8v73vf+/= jH73yHT37yk3zve99j8eLFJBIJHnnkEbZs2UJHOs3999/PjTfeiOd5PP7440QiETzPY8GCBezYs= YPGxkaCIKClpQWoiqREIsGZM2fo6uri5MmTLFq0iIULF74mPafmQsxOsLB1CXE7znPHf86+/t30= ti9ncdtybMPANnTqEzH8wOPgwH6SkRSO71As5xmZHCQeTTGZH0fTdI6eOUCpUmBB8xJs06Yp3Uq= 2MMlYbpTx3AhtdZ2cyZzC0C3y5Rx+UC2HzxYm6WiYTzJaw2RhguZ0O6fG+jgw8DyrutYzOjVMPJ= rE0C2eP/kMLbXtc3pvCii7kxwZ+2dcv0jCbmVd2ydIWo0o5KxAmokkzUSVPBUgpca89AqylYPsH= /4uRWcE20iRjiyc02uLICA3NUVQATSDsdE8Qih8P6BUdHAdhWkayMAj0CCfd/E8l6HhcaRUuI6i= 7JcwNImplRFoKOnjug5S6ASBYnwsi+cG+H5ANlckmy9CoJjKKXTdxJ02+NUCjTOnx/A9lyzVZTW= /7JGdKqEVQNc8CHwCT/LLqCQhBBEjiedZOF71eXxfI19+sc3ITPL28/t3koinqFTKPPXzn3HJui= vRpl3m9x3YxbLe1XR3LiKRqOHw0X2sW71pTlEd13WrXSOCAE3TmJycZHh4mI6Ojtkih3K5zJ49e= +jo6Jg1lZ3x9Jp5H1LKc0wlhRCMjo4SjUapqzt32TWi6Wxp7q6eG6TGFfUduCrAkhqLEnUECixN= oyESxw18DKlhSo24btIRqyFQCkvTaI+lcKarzNwgQJeSzngaTQh0KdnS3E3Z99BFtXPGFjuGJgQ= dsRpW1jRhTD9nsx2vCjchsTWdlkiCzlh6Osqr0IXk+paFeCogohlc07QAJ/DRhMD8NQgkeBUNbn= PZHA/+2485sG8/q9euobGpEd8LONXfz/333cfIyAjBdGLlTMmv4ziYpsnBgwdnn0cIge/72LaN6= 7o0NjbS19c3e7+UklKpxJIlS/B9fzZaVa1yuzBCCFasqGfZsvrZaM4vbHHWtpJ4XPKud3UiAMPU= WL4iyZKlCQxDopTJH/6XDViW/rLW9KYpuPTSJBs2JNB1yZs3tyGlwDBeejIRAtJpg9//j73TBpQ= Xey/VHyld4ELv/eK9g8594l/qwuw1R1gWxppVuKtXUv77O9F6FxH575+n8NE/pvB7/wmtcx5BNo= vKF7D/4D+AaeL39xP9n3+BfcO1+KNj+AcO4f30EYz2FoLhUfJ/8T8gUPhPPoXxljejLVqINE3Ek= l6C8XH8UwMoTUf4PtgmamwM3/cJNIkxvwsZnXslha7rrFi7np6ly3jy4Z9WjfA2bOTkC/t46sf3= s3jNWprndWFFomhSVn2J8jkw4vT3n+Ifv/HXZPNTfPjdnyASjb7sQTcWi1FXV0d3dzednZ3cddd= deJ6HUopt27bUHzg+AAAgAElEQVSh6zrJZJKamhoSiQRNTU20tbURiURmzeYKhQLHjh2js7OT++= +/n56eHrZv305tbS2ZTIZdu3axadMmxqbn49FHH6Wjo4P+/n56enpei497bkxf1DTWtHD92lv4u= 598lf/vJ1/jYzd8hsaaHhpTSWqiEQLl0tEwn4gRZWTqDKlYLXE7gSKgJlZHrjTFyq71VJwy6UQd= umagSUlL7TzikRRxO46Ugpp4HTWxOoLAp+yWMHSLslMkZieqy7QqwNTNWdFUG68jYkWxjAiWbrG= m+1KMOS61aUKjMb6GpsQ6Tk08xlTxJKP53TRGr8ChKob86UiD779oKlldYtcIApfh/C4KlWGklM= yvvY7aaC9iDgnjAIZuEY1LcgUXoXSSqTiuU2FiIodtmdTUJMgXCwgFiVgNfuBVoxUCIjGdydNjJ= OpqcEsuiaSF7znEbIvxiQKJRByp+aTNBAidQtEhGjFxHAcRuOQLFZAa6VSUqG3huBUSqeh0AYpO= JBrBcz0CRTU/L1D4udJMguarQqEoVFwqro47faisLlWfO1+FQo5jxw8QqIDdzz3Fbe/8j1y24S2= AIDMxSt/JwyzrXYvnuaxdeRnbfnYPS3vXEIvGLzqGHTt20NzczEMPPcTmzZt54YUX8H2fXbt20d= fXx9VXX80LL7zAyMgIl19+OT/5yU/QdZ2enh6effbZ2Yusjo4ONm3axPHjx9m1axeFQoEFCxbQ2= 9v7EpEkhCBy9j4pQJ/21LLPul0TnCNChBDYmn7O/cb0/cZ5xIomBDH9xYt+XTt7Xl/c3tJ0LO1c= 2RE9T2XgTEafnBZhv07mJJKEELS2tnLddddRKBRmb3PLDmdODVYVoNRYv279OREewzA4cuQIlUq= FQqHA5s2bZ+8XQmCaJv39/QRBgG3b9Pb2zh6EZ8qJjxw5guM4KKW4/vrrUUrNtke4EIYxd9UpBF= jWi9vruuTFSKcgErn4h6TrL25jWReeViHAti+8jaHFWd7wMbpSN1/0tX/TSUeWv7wg0zSs67egL= ZiPbKgn8rlP4vzT3eB6GIsWkvg//4D7rz/GfWY3en0d5o3XYaxZhfPkdqzfeSfGpkvBtpGNjVjv= /x385/chli3F2PIm1HgGmUwQ+fTHMa95CzIRr06+JsEPUBOToBvguviex0zemAJUWxu8ApEkhKA= mnebdv/shvnZqgAfuvYsTfUd5+9Z3oymPg3t28/zO7SQSCZLpWlK19ehWjN07f86P7rmL/FSGW9= 7ze6xee8kFr0pnvJKUUgwODiKlJJlMYlkWt9xyC3fffTf79+/HNM3ZC4qzr5R1XWfRokU0NzfT0= NBAS0sLJ06c4Morr2RiYoLa2lq2bt1KqVSioaFhNiF779699Pb2znk+Xi0z7mdnZ+lqUmd+0yI+= cPUfcPdT/5uK6zBVLDO/MT19MLZY1lF1Iu5uXvhimeU5TFdZiLNyiKq1oSi1AiEE7XWd0wUSLz0= ZzzxKIEjHa1/cU84pQ5xpUzSXyw+BpSdZ2Xw7rYlLyTknZ0vzA+XjKx8vqP52A49ABQQqwFcKX1= WjXAlrHstbfpeU3UV9bAW6tOe01IfSqQQKw/fw/QBNN3H8AF3XsKMGsWiEQqkIQlH2fEoVBxlUr= QqQAa6v0AwNVwUYtoGimpQbCCj5CksJolLDc1wMQ0NT1ZS/qF3taGArnXzFxzAiBKKE6wmCQOD6= iorrYRogNIFSGo6vkMJEyJdGrl8RCiQGrmfgTkeSNE0ihMns/iAErS3zuPmG95JO1bFq+Uae3PE= TLtuwGd/3eebZx9l7YBenB0+i6zq+79N/+jhHju1n9YqNFx1Cd3c39957L5lMhoceeoiamhoMwy= CZTLJhwwYOHz7MTTfdxJNPPsmhQ4fYtGkTp06d4vDhw/T29pLNZmlvb2fv3r0MDw/z8MMP8773v= Y9HHnmEwcFBOjo6frk5CjkvIpPJKKiKkmg0+rItBi62vPXr4o3QtynkjYPv+zy3+xn+11/8d4ZP= 92PaUVasvoQNV1xFe0dH1QguO8mBvc/z1MMPMzQ4gGVZbH7rzXzwD/4z8fO0EJkhCAJ27tzJpz7= 1KSqVColEgo997GNMTEzw9a9/neuuu45cLkc+n2d0dBSlFF/+8pe588472bFjB5/97Ge55ppr0D= TtHF+d83nsnP19Hx0dZefOnVxyySU0Nr7yap5XNH+BR6FcwDYjGJpxzhiDIKBQyWEbEaTUpxti/= 3Z//2cEmVI+Q9lnsbUWir7idKVIJjNGvZUik5ukt62b/uwQIhqhWRekrQiaDEjYbUhRPWbPZS5O= D0/y3/76fvoGz6CCaoUdgQACgrMLDMSMr5GYjjpXk9eF8qtJ7UIAVjX/TwD4VZEXVC8WhZzuYs+= M0ehZeYJCECCplrn4VMUlVTdJACmrOYRKVsuLAcPQ+b2tV/K2zWswX8EF8Ow8K8WB033852/+Ba= NTkwDUJVJ8+QMfZePCZWhSY2j4NN/74d/yu+/+Q2rTDThOhb/9+y+zduVlLFuylr/7zle45Yb30= 9O9hJmKgD17d7Bj12P8h/f/8bQB5ctTKpX4whe+wNatW/mnf/ontm7dyt69eykWi6xevZrR0VEs= y+LZZ59l+fLlVCoVxsbG6Onpob6+nlwuR0tLC7t376apqYmTJ0/S1tbG9u3bWbBgARs3bmTp0qW= veG5CXsTzqgVqZxewzFkkhYSEzA3f9zl+5DDf/fbfcfD53RRzOTzfh+l8tkAFCKWwLZv65jauu/= kdXHPTzSSSqYtGkWaWnoFZDyPf92d7sc1UYjmOg67rsy1HZqJIZyeJvhLOjgC/3syYDp7vtX6V4= 3g9UUpRcR1KlXK1VFrXKbonsbQ6ykox7jrks1lSZoypYp622loG84MIy6Ze16ixatCkImLV4wVl= DBlFiosvDLiuz/hknop77vL8+WJvF+fsz+BCj77Ys7/8/S8G6QSpRIRkzH7Vn70f+Dy091l+uP1= RfD/gres2cu2q9cQj1QKE8cwo2352Nzde9+7ZZOyBwT7u+9c72XL1LRw49BzXbH7HrLu2UopCMc= +dP/hrbn3bB6mva77g6yulyGazRKNR8vk8tm1TKBTI5/MEQUBjYyPj4+OzRRX5fH72vHx2HqDne= biui23bjI2Noes6sVhstvo05NUTiqSQkF8RVVuMHIf27+XnTz7OsUMHyU5NEqgA3TBpaGpmzSUb= Wbfxclrb581WkV2MXzai+9suLt4o+L7P0y88yz1PbGN55yJqEinWL16ObVrVXKTpHKgZU0rNGOf= g2J3URZejqDAvtRlDixAon0Pjd9KVuomE1YahxcPP+AIEQUDJdQgCRcQ0z4lG+r5PxSljWTbadN= 5NEAQUCjlMq1rFZ1vntv9QSlEqFzENc86u2yG/uZxPJL3ixO2QkJCLU80VSrH+0stZte4S8rkcp= WKRIAgwDINEMoUdicxeIb4Sx96Q336EEJiGyVBmlCXzFtBSW8/f3Hcna3qWMTQxSraYxzYtoqZN= yalw42XrKVSGaIytIu9McDRzDzGjCSkMCpUzDOV2Mlk+Smf6GnTxGjTefYMipSRmnT/aomka0Uj= sJdsnEi9vYyGEeMljQt5YhCIpJOR1RAiJaVrU1lkwd1PkkDc4CmavVtPxJJnsFIOZETqyrYxMjq= OUYmPvanYf3sdUMcdYNoPUJbXRxbSlLudI5m6K3gi6iCKExNZrKbqDswazoZgOCXltCEVSSEhIy= OvMTCn/TN5YEASYus6WNZvwg4CIZXHt2iuJWRFqYkl0KVnU3oVtWmSLOTqbGyn4WzBkEkuroym6= gZI3jiZsEsYCkD7tybcgMc6pgJRvgOT2kJBfJ2FOUkhISMjrjO/7lMsVgqAqlGZFjKadVT0W4Hl= VTyQCNeuebFomnucRBN50yxOBH1TbzgTTOWq2ZVVbULjerA2B7wfEYtGXuDCHhIScnzAnKSQkJO= TXgKZpRF+B7xZAECgcJ0AKQcQ28byq87ZhyJc1obXCdKSQkNeUUCSFhIS8LH5QbS2h69pse5+QV= 8crWfbyPMXp0yUGBso4nsuSxUkGByuUKz6LFsaorbVftgNASEjIa0cokkJCXgUzXkRSytdsiToI= FGXXx/erXejzJY+RqTLt9VHS8blZBPyyeKraU8tzPfLFCqB4bPdRNl+yiKOnRlnc2UTil/Cq+ZU= SBKhyFlXKos5qYno+hBVDRGt52RDNq2HalfGVzFW57JPJOFQcn5N9RVatqmF4uMiRI3nWrEkzcL= rMyf48SglMUxKL6ee4/YeEhLy2hCIpJORV4DgO3/nOd2hqauLmm2/+pZu++n7AsTN5Dg5kcT3F0= ESRoYkypq6x9Yp5pKIGmvb6CpOyH7BtOMfRfIVbaiNkx6doaEpT19FM0QvYse8kdak4JwbHmd9a= NyuWlFKUKx75UgWAeNRC1+S0B825ERTPDyiUHPwgQAhBImKi6+fPmfllq7SC4gSVh/8Gt/95CHy= UZiIiSVRxEkEAmoWQEuU7iGQTxrWfRMYbLtrU8JUYLwoh0Q0DMYf9QynF0aN5PE9RLFeoq7OwLE= mhELBiRc1sRx1dM5icdMlMOCxeFCeV+tUI6JCQf4+EIink3xXnc2x+ORfnC21bqVT40Y9+RFdXF= zfddNM5Jo9zPWFVW21UhYAXKI4NZultT7Dr6CSOCzdvbAOqCbi/SBAoAqVmT9gCkPKVRS3OGQuQ= 83y+cXyM5zJ51mycz250RgeyHM9X+HjU4tYtawHF5//6X/j4+7ewdsk8QDE2mecnTx+iq70e1/E= oVTw0qVi1qB3HDWiqi2Po1VYoZcfl/sf3E4vaRC2D1YtaaEy/1ACx7LgMjWbpaEm/agGqSlncvt= 34uVFE3XxINGGs34rzs79CRJPoq25GGBbuwUfwDj2CmDgDZnK2U/uMSJtJ4pwZx0xfydnX+QUxN= 9O1XQiJYehouj6nZtJKKUoln0WL4vi+TSbjks26JBI6rqs4fDjPvHkRWlsjaLrg9JkixZJLKnXh= PpYhISGvnlAkhbyh8H2fAwcOMDU1NXublJKWlhYMw+DQoUPE43EWL15MIpGgUqlw7Ngxzpw5Q3d= 3N52dnUgpyWQyHD58GIClS5eSSqVwXZf+/n76+/tnH+v7PoVCgUOHDlEqlVi0aNFsY9gLoRQMjh= f5/qP9XLmigVXz09SnLH7y7DCpmInreYxnK1y9sglDl8izumqXHI/H943yzOEM/nS/K8uQrO1Jc= 2lvPTH7lbceyXk+24bzrKiJsLomyncGsqxMGHRGDTpiNoZpICQMjWb54kduolB2OdI/SkdLmp/s= OMS85jRrF7UBMD5VYHg8x/B4jgeeOsitb1lJxfGYKpRprU9Srji01SfoaKnF0CQ79/cjJSztbmF= geJKh8SypuM0/P7yXP9i6ieGJHKWyS0dzmolciXLFJZ2I0N1ef5F3FVSX2RLNmFfdjnP0afA90E= 30S34HihmcXfegsmdAKUaGh9mx8yhXv+kqnnpqO6VSiWQyyXN7nscwDFavXkV/fz9XXLGJH/94G= 0GgaGioZ//+F+ic7suXyWS47rpr+OEP7yUai/O+972bjs6ui85/ECiOnyiSL5TIZEzSaYNCwadY= DHBdn2PHHNraDIaGSpw+XcLzFIYumZoMSNf42LYWRpNCQl4HQpEU8oZiYmKC2267jYGBAYDpsmi= X1tZWPM9jcnISTdPYsmULf/Znf8YPfvADvvGNb1CpVLBtm89+9rNs3LiRT3/60+zZswff91m2bB= nf+ta32L59O1/84hfJZrNIKfE8j46ODj7wgQ/w8MMPI4Sgu7ubr371q1xxxRUXEUqK4YkKj+wdJ= mJp9M5LcnK0RMXx2Hx5Oz94fAAvACkEmqz2dleq+n7yRY9/2X6KfX2TLGxLYeqSvuEc/7ZzgI/c= tIi3Xz4PQ5Oc3cHkF5e9fpFTBYcvvXCG5ojBpxc3MekrkhIqSBSCH44V6bJ1bqpNoLyAz/2vf6E= +FeVPP3wDR04Osa53HpZZFWe2ZfDY7iOs7e1AqYCR8SwPPn2QLRt7ue/hPQTAMy/0cfTUKG+9Yi= m6rvO9B3dx/aVlsvkSy3vayBfLKBXQNzjO9r0nuGZjL3f/9Fk8X9HWlObSZXPreC6sBHr3pVQe+= zv0jtVoiVq0tuVotR04fbtQ+TFUbhwlNcqVMiMjIziOy8jIKPl8Hsd1GRkZ4fLLL6fvRB8HDx4i= GolSX1dPU1MT8+a109d3kq75XezatZt0Os2RI0cZz0zguB4TmYk5iaS+vgKZ8Qq9vSlOHC9h2xq= nTpXJZBw0TdDREWFszKWpyaCzM4ptV0VzJuPyxBPjvOlN9RiG9pqmVIWEhIQiKeQNRl1dHdu2bS= ObzeJ5Hs888wyf+9znOHXqFLfddht/+qd/yqlTp/jCF77Ahz70IaampvjSl77E5s2bueuuu/jKV= 75COp2mqamJBx54ACkln/jEJ7jttttwHIfbb7+dW2+9lUceeYQvfvGLbN++HYDvf//7NDY2cscd= d3DHHXewfPly6upe3mJbzfw73SA9W/QoVAKuX9/Czw+NErcklYrHvU+dwtAlN1zSiuP6/O+H+lj= WmSIIAtrqI3z+Pctoro1waGCK//q3u+gbLlIs+wyO53h4zzBj2TILW5NsXtNMY+r8FVEKaLQN/n= BRE622zuMTZd7WGKPe1OiImuhScFWtzdHJEtlCicHhSf6fP7yF8akCsYjF4q4Wdh8YoKUhhalre= J6PoWsYhkYiFkFIQb7kYlsG73jLGh7cfoDe+Z2sXtzOjr0nOD2SxTYMJnJllFI01caJWDqpeBTP= 92lMJ0hELXzfx7ZMejsbmdecntP+oAKPYOgwZEfQezaB0DCWX4uwYsjGHrzMAG5mBNcT+L6iUqn= w3HPPUSgUzhKVAqV8Bk6fxvM9hoaHaG5uxvM9kqkkkUiEZCIx23BYKSgVi0QiNvUNDXMap5SCpi= ab2rTNRE3A9u2THDuaZ35LmUvX2liigC80BsYMBjRBLKaTThtYtka57J4jiENCQl47wrKIkDcUQ= gja29tZsmQJkUiEe++9l1gsRmtrKx/5yEdobW1l5cqVXHvttezbt4/Fixfz9re/ne7ubj74wQ/S= 2NjImTNn+OhHP8rGjRvZuHEjH//4xzly5AjpdJr3vOc9LFmyhHe9610sXbqUAwcO8M53vpMtW7a= wZs0abr/9dk6fPk0mk5nLaGf/SkUN3ryiAVPXaK+PsW3XICeG8/SPFLj3yX5Gp8o8czjD/U8PcH= q8iFKQK7rsODjGI88N8287z2AbGkvmJRkcL/Klf9rHiaE8Xc0J7nv6FP/zngNMFpzzjsJXisdGc= 3y/f5wgUCxNRmiwNFoiBoZWdWyut3SWxHRilsHJM+PsOTzAZ792D4dPjvDWTUuJxyzue+R5Hn7m= KAMjUzTWpYhFbdJxi5htcumKLvrOTDCVL5GIRfECgaFJkvEIUgoWz2+iu70ex/V5dPex6Z5YJs3= 1KZKxCEdOjbN5Qy+tjWmKjn/e93FeAh/KOUS8Dlk3j8que/BHjlE5/gzZB75GYf+TOI43XS1mUp= uu5dTAaXTDpKOzg8bGRhYvXsSGDRvomDePyy+7jKamJk6fHuTgwUNIIWhqbKCxsZGG+nomJyfp7= p7P2rVrWLqkl8x4pmoOeRHa2iKMjVV4+ukJXFdRU6ORjAWYRx7l5H33cOyb3+TQ33+bqR0P4zke= qZRBPu8zcKpE+zwT03x576SQkJBXTxhJCnlDMjk5ybe//W3Gx8f5zGc+w1e+8hX+5m/+hpqamtm= 8JSEEsVhstoTfNM3Z/8disdnlspqaGjRNw7ZtbLvaHNOyLCKRqjlgKpVC06o5IdFoFOAcx9a5oG= uCeQ3Vx45NlYlYOqahsWZBmqcOjHLwVJanXhgjFTVY3pli+wujTOYd7nnyFLomOJMp0VBj09EY5= emDY4xny2xYVIdtSBa0JDkxlCOTc6hNvNRtUCJYmLDZWBenK2YipCSpaxQKZYyoja5LgkCRLZSp= VFzmt9YhgLVLu2hIx0lEba6/fAmTZRdLExiaxsLuZhSC7nn1SCno6mhE+QFKStpb69CkQEnJsp5= WerqaCYRACsGirkacQBHRNd5/0wakFDQ31hAECiUlC7ua0IWYu0eQ7xKMHEFfuxUVKMojp4ivuA= Fnz4P4lTLVEv1qNK2pqYlbV1yBcksIqYHvIjSNKy5dj+YWefe73gFuCUU10V74DnYiyi03XINum= Nx641tQQmJG4nQ3xNBiafRonIuWy1H1RQJobjYZG3Molz0KRR9iNRABK52G2jp8GceOaOTzHnV1= JrYtGR0VBIF63asfQ0L+PRKKpJA3HJ7ncf/99/Pggw/yyU9+kpaWlnNaQQghWLhwIZ2dnVxyySW= zIulXn/haHY/rB5QqPn4A1QKq6jikgM7GGM3pCD97bojDAzkuXVJPQ6oq1JpqInxi6xLqkhY/fm= aQHz7Rz8FTWUoVj6otkEAp6G5JsKg9SW3i/FVQUkBX1KTFNjiSr9AYtWiQ8I/3bOfyFZ10tdZSc= TyGxnNkCyVOj0yyfc8xGmsTxKMWQghcBPsrATW6ROJRDBQVBVFN4k+vBdUbEs8NmHB9dCmRwidQ= 4CDwfA8DRYttkKl4SC3AU4og8BFSQ0NQUgFNpqQ7MjdfKqXA9RSeqzCaFuNNnEFpFsKK4g4eQih= /1hdJCDBME93SKB95Gq15EZW9D6LVtqE39VA+/CSR3jdROfQ41HdjNXXj7LwLccXvIQf3oTX2wM= 7vozV0Q9syghcewVx4GVZ67Zz2q5GRCm1tERoaLHw/BwjiyQjjrKNzTZyGOp2yoxjPBEQiOqYpK= ZerCdu5nIfnKaQMG9uGhLzWhCIp5A2FUornn3+eO+64gxtvvJHrr7+eo0ePEo1G+fCHP8yaNWuo= VCo88MAD3HnnnYyOjp4T9Zkxicxms7MNScfHx/F9n1KpRKlUAqBUKpHL5QAYGxub3TaXy802Fr0= oouob9Oi+EU6OldCEwDI1bruifXaTmpjBuoVpvvdwH0rB9etaMKd9hSxTo7UuSktthEsW1XLXY3= 1MFRzW9tTx02eHGMwUaa61OXBqkpqYiXEB00GJQBPVn5UJkydHc9xwxVKO9o/Qd2aCVNyi4nj8+= Ml9fOCmjTzwxD5S8Uj1pCxAE7A4ZuJP2xKkVFV8IV5MOrckGAISmiCYvl0IgUKhlIYgwJICgYYh= JZ4CKapO3/70ilVUijkvKykFrgsqUodWN4/KsV0YzQsJijn8zMAvbDyT3K4TxOrRrBiqaTGBGUV= YCfxIGhVJESRbQLdRnk/QsqK670TrUGaEoHExIl6LjNXhm3Gw4ggp51T+X1dnMDBQplgMmJryaG= +PMDHh4nkWB0/A0ITE96u+S/kjReJxnULRIxqVWNEKijjny55QSuH7Ab7vYZpmtRqzVCYasdE1j= VK5jKZpmIZxXoHl+T65QgHTMIjavyUmoiEhryGhSAp5QzE5Ockf/dEfAXDZZZdx6NAhhoeHkVJy= xx138PnPf57Tp0/zta99jb6+Ppqams7xvJFS4jgOf/mXf0ksFkNKyZe//GVWrFhBNpvlm9/8Jlu= 3buWhhx6ir6+PG2+8kbvvvpuVK1fS1NTEX/3VX9HV1XXBpG2oNjRtqolw5YpmhiZKeF6AC+iaxD= Y1lnSkaKuLYpsam5Y2suPgGPUpm57WBH4AvfNqyBYcYla1oqmrOc6annrSCYtlnSk+dsti/mX7A= D/aMUBbXYwbLmklar58tV1MF3yoK83jY0W+1TfBH3TWMOVEKJ0e47v/+jTJeIRl3c2sXdLJBz//= bd68YQmf+9D11CQiCMDUJE2zwvAXc3DOPbGmXhIImtm+Or5a4xeNr8+1b5x7exQBQqLVtSMiSdy= +57BXbsEdPIRySiCNs7asrrlJ0yK2+DIAzHRr9TmkIF0/D6EZmOmW6QcI7Naeauivrmp9kNpwS/= WZhMS46n0ITUcIOScX71jMoLtbcuJEkc7OKIYh6eiwMU1JNutRqVRd2Ht745TLPvG4zuSUyyNH9= 7Nt134+F91Me30tgVKk43EAxiYmyWSzHBoeIVsuc9O6NRQrDl977Ck+umkjrbVpfrBjF90tzVze= Mx+lFGfGMzTWpDANg2K5zNGRMb76xNPc3DOfm9atxtCqfldThQIANdOvVZ2SV+/TFRLym4rIZDI= KqieHaDT6mrVYCAn5dXDy5EnWrVtHLpc754Dd0NBANBqlv78f27a5/vrrMU0TwzC44447SCaTTE= 1N8fu///u0t7dz/PhxHnvsMZRSXHHFFXz961/nmWee4Qtf+AKnTp2irq6OP/mTP+G9730vn/rUp= 7j33ntxXZd169bxla98hfXr11/QAkApGMuWOTaYpSFlY+gS25AUKh5BAMWyRyJqIBCkEyZnMiUq= rk9NwiRiaEwVHBJRg7LjoxA01diMTJWRQiAFuF5AECikFBi6xA8UTekIlnGBMQHbxwvsnSrxrrY= aJl0fpvI88exRNq1eQDwR5ed7jvGxP/8uW69Zz59/7BZs6zf3eOEOH2f8u5/B7L2SyLqbKDx1F8= KOo4RAeQ4qN4aM1yITDZSfuY+ad3wGs2Pla3qiVzCbr3bRbZVi374s3d0xPE9x4kRhWiS5LF2a5= PjxIo4TkE7rdHZGyGRcXjjdx/94YR/tymNoaIioaaDpBqZtUSiWODMyQs5xEXaEZW0tLG1s4OB4= BqEU7VGb/RM5NCmImQamEBw4cYL5ra3MS9dwNF/khkULeGZsgmw2i6iUsSM2ZcdlbHSEmkSSWCR= CyQ/QDJ3bL13PZUt6Q6EU8luL53kUCoVzVhdCkRTyhsL3fY4fP06xWDzn9traWuLxOH19fUQiET= o7OykUCvi+T319/azL8vDwMJFIBNM06evrA6CnpwfTNAmCgNHRUYaGhqivr5/NdXJdl5MnT1Iul= 6Ww9S8AAAQYSURBVOno6CCZTAIXznFSCjK5MidHCjiuDwh0reqJVHZ8dE1Qdn0MTdJSG2UiVyGT= d0jFDFpqI4xOVihUXCxDo+IGLJmXZP/JSTRNkowYTOYdpKw+pxcoamIG7Q1xEhfJ51GqWov12Fi= BbaMFPjq/lh0TRTbXx3g+77IyplPKFqlLxTCN32wDQ784ReHx7+KMngRNxy9MVl0XAg8hdQg8EB= KkRK9pJnHNR9BiNa9p/zYB1SW3OYqk4eEyU1MeIBgcLLN+fYqxsQqjow7LliXwPMXBg3kMQ2Dbk= u2n97Dz9ADDQCQzxolihUp2CjMWpykeRVeKsoJAN9AiNlekkxwrljmWmaSYy9La2MjAVBZ/IkOq= uZmobVMolsl5LslEkiub6hgrlzmWLTJ24jjzu7tY2tzE4MQkg/kiSQKOjWVQmsYX3vZWblj92or= MkJBfJaFICgn5DcL3A/xA4QfVprJy2jTS8fzpnmjVk6xpSBwvQMpqnzTLkPj+TDMScH0f29QoV6= qJyFJAoAClEGdVgdmmjjbHqjAvULgqIFCCSden3tQwpscHv44k91eOUoDvonyHCxsJCdB0hP76t= Pd4JXMVBArPC/B9xZEjeVpbbQoFn9FRh/Z2G6VA1wXptIkQUHYcJvN5TMOg4lYbLqsgQCCqwl8p= giCY7vsmkVIjCAL8IEAKcHwfTcrpHWZ6rEIwODHBE0dPcMWiHtpqUkgp8D0fKQWJSJSy6+D5AYE= KUEE1B68mESdivbR6MiTkt4VQJIWEhIT8FqCUolj06esr0tRkkUjoDA1V8H1oa7OmfZFeP6E6I6= S06SjYb4MoDgn5ZQlFUkhISEhISEjIeTifSAodt0NCQkJCQkJCzkMokkJCQkJCQkJCzkMokkJCQ= kJCQkJCzkMokkJCQkJCQkJCzkMokkJCQkJCQkJCzkMokkJCQkJCQkJCzkMokkJCQkJCQkJCzkMo= kkJCQkJCQkJCzoM+l438IODMaJ7xqdLrPZ6QkJCQkJCQkNccKaC9KUlNIjLnFo1zEklSCGpTEWL= RsC9PSEhISEhIyG8fAoja+ivqYT0nkSSEIGobRO1XObKQkJCQkJCQkN8ywpykkJCQkJCQkJDzEI= qkkJCQkJCQkJDzEIqkkJCQkJCQkJDzMCuSlFIopX6dYwkJCQkJCQkJ+bVwPg10TiTJ9/1QKIWEh= ISEhIT8u8PzPIIgOOe2cyJJruu+ZIOQkJCQkJCQkDcyvu/jed5Lbn9JJKlUKuH7/q9sYCEhISEh= ISEhvy5mtM/5RNJLfJJc10UphWmaaJoGVH2SQkJCQkJCQkLeKCil8H2fSqXyssGh85pJep6H53k= IIUKBFBISEhISEvKG5GIpRhd03A4r3kJCQkJCQkJCQkJCQkJCQkJCZvn/AQTqrkP9uV+8AAAAAE= lFTkSuQmCC" width=3D"585" height=3D"136" alt=3D"" style=3D"margin-top:23.15= pt; margin-left:-0.3pt; position:absolute" /></span><span> </span></p>= <p><span> </span></p><p><span> </span></p><p><span> </span><= /p><p style=3D"margin-bottom:10pt; line-height:normal"><span> </span><= /p><div style=3D"clear:both"><p style=3D"margin-bottom:0pt; line-height:nor= mal"><span style=3D"height:0pt; display:block; position:absolute; z-index:-= 65535"><img src=3D" YAAACWsrt9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABxJREFUSIntw= TEBAAAIwKDZP7TG8AGm2gAAgA9zmTsBAl+AgmQAAAAASUVORK5CYII=3D" width=3D"740" he= ight=3D"1" alt=3D"" style=3D"margin-top:-37.82pt; margin-left:-63.3pt; posi= tion:absolute" /></span><span style=3D"letter-spacing:3pt; color:#ffffff">&= #xa0;            = 0;          </span><span style= =3D"letter-spacing:3pt; color:#ffffff">      =            </span><span s= tyle=3D"letter-spacing:3pt; color:#ffffff">Nombre</span><span style=3D"widt= h:68.18pt; letter-spacing:3pt; display:inline-block"> </span><span sty= le=3D"width:63.4pt; letter-spacing:3pt; display:inline-block"> </span>= <span style=3D"width:27.7pt; letter-spacing:3pt; display:inline-block"> = 0;</span><span style=3D"width:35.4pt; letter-spacing:3pt; display:inline-bl= ock"> </span><span style=3D"letter-spacing:3pt; color:#ffffff"> </span= ><span style=3D"width:32.4pt; letter-spacing:3pt; display:inline-block">&#x= a0;</span><span style=3D"color:#ffffff"> </span><span style=3D"color:#fffff= f; background-color:#ffff00">1</span></p><p class=3D"Footer"><span> </= span></p></div></div></body></html>